Initial Commit
Browse files- .gitattributes +1 -0
- AntBulletEnv-v0-A2C.zip +3 -0
- AntBulletEnv-v0-A2C/_stable_baselines3_version +1 -0
- AntBulletEnv-v0-A2C/data +106 -0
- AntBulletEnv-v0-A2C/policy.optimizer.pth +3 -0
- AntBulletEnv-v0-A2C/policy.pth +3 -0
- AntBulletEnv-v0-A2C/pytorch_variables.pth +3 -0
- AntBulletEnv-v0-A2C/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
AntBulletEnv-v0-A2C.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:188d2aa601178b1b11562f7c47e77dc323020082c4f983b6c9d2c69579a4d91b
|
3 |
+
size 129265
|
AntBulletEnv-v0-A2C/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
AntBulletEnv-v0-A2C/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f57430b6550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f57430b65e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f57430b6670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f57430b6700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f57430b6790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f57430b6820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f57430b68b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f57430b6940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f57430b69d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f57430b6a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f57430b6af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f57430b6b80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f57430b5dc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679723456443578675,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEvadT41tsO/ZhoAwBGlPr31Tni+W8AwwEYNFj7of7k9iLZTP1hJa795FDm+XPYgwCggsj9f7aS7Jqj2vr138r8qG2C/5BiAP3qG7j45I0Q+HyucvvTNV79G/Ow9aX0bQMBaKj97AIY+wX3Ev0jEVL9eQzw/tx/Ov+V2F8D3nIg+phxwvslR1b83rle+AGeNv/1Zcz/dGwK/ZJtXPwmOzjyGC7I/JZ3qvGH3cT6J7Pm+Itenv8tk2z6JQSs/9M8Hv8I5pb4cOoG/o1lKv3M50T/AWio/ewCGPsF9xL9IxFS/oq+hP/fbwL+GOPW/S5kPP0ZVvD4ph4a/1b2Cv5+5mr8jqk0/96Cvv74+n72b7LQ+c8ScPxtQaj+0hBg+Fk0vv2EH8b7puOA/8Pr2vl9Rhz5fcdw95sdvv3JnZb9l28w/EVrAv3sAhj7BfcS/SMRUv3/1wb+GI6M+5pYkP40Xrr+MLHI/hGs6PYMi7T5CqZ4/6dSEv+kV8D2cTpy/bXSEvbXCJ8ArJhm9nAm0Pn6aiDxpc8A9rGHWPQsCQT98MKa970jOPbhfJb6CvJa/2UEpv8BaKj97AIY+BsQmP1ACmj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAEnKU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjbpWPQAAAAAoyvS/AAAAAMvX4z0AAAAAZtLbPwAAAADybeU8AAAAAGIZ/z8AAAAA83IBvgAAAACNpve/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsZGDNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNaiqj0AAAAAi9b1vwAAAACbckO9AAAAAEEn2z8AAAAAadzBPQAAAABDtfI/AAAAAEDqob0AAAAAOTD1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/UuDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICIdFG9AAAAAOBb7L8AAAAAJrwDPgAAAACA4Oc/AAAAAKHfID0AAAAA1DH8PwAAAABEslO8AAAAAMAL9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiYAg0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASah1OwAAAACjVei/AAAAAJAJcz0AAAAA11XsPwAAAAAW0Pe9AAAAAMqr8T8AAAAAf2GfvQAAAAAS4Py/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKBJ5awD/2mMAWyUTegDjAF0lEdAqpJrSE12q3V9lChoBkdAoLVNI065oWgHTegDaAhHQKqVlahYeT51fZQoaAZHQKF3J4NZvDRoB03oA2gIR0CqmgqGUOd5dX2UKGgGR0ChQu2ZRbbDaAdN6ANoCEdAqpq9BdD6WXV9lChoBkdAoPARkNFz+2gHTegDaAhHQKqjBHIZIhB1fZQoaAZHQKEnb6ZYxL1oB03oA2gIR0CqpQXvx6OYdX2UKGgGR0CgCc/zBhx6aAdN6ANoCEdAqqiBLsa86HV9lChoBkdAnPPzR6Ww/2gHTegDaAhHQKqpOFqSHM51fZQoaAZHQKAz6Xw9aEBoB03oA2gIR0CqszoVM23sdX2UKGgGR0CgLyW1UlzEaAdN6ANoCEdAqrZXPgNwznV9lChoBkdAn4HypeeFtmgHTegDaAhHQKq5/LpzLfV1fZQoaAZHQKAeB4vexfRoB03oA2gIR0Cquq2jXWe6dX2UKGgGR0CaeSn62v0RaAdN6ANoCEdAqsJcwztTk3V9lChoBkdAoDabOmixmmgHTegDaAhHQKrEVhvR7Z51fZQoaAZHQJ2+KMZP2wpoB03oA2gIR0Cqx7b9ycTbdX2UKGgGR0CVQD5RCQcQaAdN6ANoCEdAqsh1Cu2ZzHV9lChoBkdAnuspPIn0CmgHTegDaAhHQKrTGzhP0qZ1fZQoaAZHQJrqsgB91EFoB03oA2gIR0Cq1foYekpJdX2UKGgGR0CVC7W1MM7VaAdN6ANoCEdAqtl8s6JZXHV9lChoBkdAlt3Jv1lGw2gHTegDaAhHQKraLPbfxc51fZQoaAZHQJ+KEMhHLA5oB03oA2gIR0Cq4hKCHymRdX2UKGgGR0CdDrx4Y77saAdN6ANoCEdAquP4x33Yc3V9lChoBkdAntamukk8imgHTegDaAhHQKrnXmK64Dt1fZQoaAZHQKBHMaESM99oB03oA2gIR0Cq6CGIsRQKdX2UKGgGR0CeLx4hllK9aAdN6ANoCEdAqvKdD8cdYHV9lChoBkdAnLfQkxASnWgHTegDaAhHQKr1ntWuHN51fZQoaAZHQJAS+CtihFpoB03oA2gIR0Cq+Psenyd4dX2UKGgGR0CUMnShJyyVaAdN6ANoCEdAqvmiMvRJE3V9lChoBkdAnF1YhdMTOGgHTegDaAhHQKsBOg3974V1fZQoaAZHQJtp6Xw9aEBoB03oA2gIR0CrAxOPvKEGdX2UKGgGR0CfwmVGCqZMaAdN6ANoCEdAqwYieNDMNnV9lChoBkdAn170DQqqfmgHTegDaAhHQKsGybNKRMh1fZQoaAZHQKAuSu/1xsFoB03oA2gIR0CrEAuFpPAPdX2UKGgGR0CggpVdxAB1aAdN6ANoCEdAqxLK9bor4HV9lChoBkdAnSf1p9JBgWgHTegDaAhHQKsWZV5KODJ1fZQoaAZHQJ5Vb2exwAFoB03oA2gIR0CrFzHoHLRsdX2UKGgGR0CezFMoMKCyaAdN6ANoCEdAqx8vqVyFPHV9lChoBkdAn3o5HAh0Q2gHTegDaAhHQKsg+RuCPIZ1fZQoaAZHQJagBOj7AL1oB03oA2gIR0CrJCeR5kbxdX2UKGgGR0CQ2J4xDb8FaAdN6ANoCEdAqyTWpS75EnV9lChoBkdAlUgCQLeANGgHTegDaAhHQKstztALRa51fZQoaAZHQJ+v8lhPTG5oB03oA2gIR0CrMHbsniNsdX2UKGgGR0Cfcg4rz5GjaAdN6ANoCEdAqzQamKqGUXV9lChoBkdAnSIOFDfFaWgHTegDaAhHQKs0ulYU34t1fZQoaAZHQJ41HaN+9aloB03oA2gIR0CrO69c8kledX2UKGgGR0Cd1pROUMXraAdN6ANoCEdAqz2HV9Wp63V9lChoBkdAnKa/ikwevWgHTegDaAhHQKtAhU2kzoF1fZQoaAZHQJ3RUc5sCT5oB03oA2gIR0CrQSJUo8ZDdX2UKGgGR0CWqtzU7Sy/aAdN6ANoCEdAq0kbEDQqqnV9lChoBkdAmagTuv2XcGgHTegDaAhHQKtLpzasZHd1fZQoaAZHQJLkASUTtb9oB03oA2gIR0CrUDoMa0hNdX2UKGgGR0CVM91UEPlNaAdN6ANoCEdAq1Da4lQdj3V9lChoBkdAnz9ptWMjvGgHTegDaAhHQKtXpLidat91fZQoaAZHQJ858OZssQNoB03oA2gIR0CrWUxxkupTdX2UKGgGR0CgzzCj1wo9aAdN6ANoCEdAq1w03l0YCXV9lChoBkdAoGXCJXQtz2gHTegDaAhHQKtc15N47ih1fZQoaAZHQJqGlkNFz+5oB03oA2gIR0CrZmexW1c/dX2UKGgGR0ChUjWweNkwaAdN6ANoCEdAq2j3ZkCmuXV9lChoBkdAoI9wDzRQamgHTegDaAhHQKtt1D/EOy51fZQoaAZHQKBr0P/aQFNoB03oA2gIR0Crbr9aUzKtdX2UKGgGR0CeqW/JvHcUaAdN6ANoCEdAq3aFIwudw3V9lChoBkdAlxZVuzhP02gHTegDaAhHQKt4QG1x82J1fZQoaAZHQKCkbCBwuNBoB03oA2gIR0Cre2R+BpYcdX2UKGgGR0CgdbfCQ9zPaAdN6ANoCEdAq3wCULUkOnV9lChoBkdAoLwiqQzUJGgHTegDaAhHQKuDCVRk3CN1fZQoaAZHQKBCNOVPepJoB03oA2gIR0CrhLp84PwvdX2UKGgGR0CglW305EMLaAdN6ANoCEdAq4i767/XG3V9lChoBkdAoN8boyKvV2gHTegDaAhHQKuJpCRfWtl1fZQoaAZHQKA1LafSQYFoB03oA2gIR0CrkmS8an76dX2UKGgGR0Cf4TbrkbPyaAdN6ANoCEdAq5QUCYCyQnV9lChoBkdAoHE6ouPFN2gHTegDaAhHQKuXCR0U4711fZQoaAZHQJtNER5C4SZoB03oA2gIR0Crl6oNEw36dX2UKGgGR0CbaTnpjc2zaAdN6ANoCEdAq56aF0xM4HV9lChoBkdAmy450r9VFWgHTegDaAhHQKugX863iJh1fZQoaAZHQJfrlwyZa3ZoB03oA2gIR0Cro5mQCCBgdX2UKGgGR0CXv8EHdGiIaAdN6ANoCEdAq6SxEpiI+HV9lChoBkdAn3gwcDKYA2gHTegDaAhHQKuuzZvkzXV1fZQoaAZHQJ5/Q1jy4F1oB03oA2gIR0CrsI50CA+ZdX2UKGgGR0CeNluRLbpNaAdN6ANoCEdAq7OS8cuJ13V9lChoBkdAnkNJIQOFxmgHTegDaAhHQKu0MYRdyDJ1fZQoaAZHQIJgVmHxjKBoB03oA2gIR0Cru4KtxMnJdX2UKGgGR0Cdu1mY0EX+aAdN6ANoCEdAq70zncL0BnV9lChoBkdAnRzyKBNEgGgHTegDaAhHQKvASOSW7e51fZQoaAZHQJlfe+De0oloB03oA2gIR0CrwOSxRl6JdX2UKGgGR0CeLze2/i5vaAdN6ANoCEdAq8s0UfxMFnV9lChoBkdAnRd2+fywwGgHTegDaAhHQKvNITJQtSR1fZQoaAZHQJ1fmSmqHXVoB03oA2gIR0Cr0BtIK+i8dX2UKGgGR0CVsdlchTwVaAdN6ANoCEdAq9DAOOKfnXV9lChoBkdAmQnFtCRfW2gHTegDaAhHQKvXurn1WbR1fZQoaAZHQJ1ETZVXFLpoB03oA2gIR0Cr2WWB8QZodX2UKGgGR0Ce+Uu/DcdpaAdN6ANoCEdAq9ybJU5uInV9lChoBkdAn0/1ocrAg2gHTegDaAhHQKvdPVYISlF1fZQoaAZHQJAX8QoTfzloB03oA2gIR0Cr5tPG6wt8dX2UKGgGR0CbWrHymQ8waAdN6ANoCEdAq+lyNyYG+3V9lChoBkdAnvvzpkf9xmgHTegDaAhHQKvs3ELpiZx1fZQoaAZHQJzUEdT5wfhoB03oA2gIR0Cr7Yk+5e7ddX2UKGgGR0CRLxiLl3hXaAdN6ANoCEdAq/Sj544ZM3V9lChoBkdAlBCG/vfCRGgHTegDaAhHQKv2XIRRMvh1fZQoaAZHQJPxBFZxJd1oB03oA2gIR0Cr+YIiLVFydX2UKGgGR0CQHoDtPYWdaAdN6ANoCEdAq/oovL5h0HVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
AntBulletEnv-v0-A2C/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d6b7c7b1128a757720ecaddd5026c908caf357946a39e74847b1c3ec76a8ccd
|
3 |
+
size 56190
|
AntBulletEnv-v0-A2C/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d517d70ae5c6780983624a4aabc067a8df95eacb5951b629184f1f7885f43b16
|
3 |
+
size 56958
|
AntBulletEnv-v0-A2C/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
AntBulletEnv-v0-A2C/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1577.24 +/- 171.58
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f57430b6550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f57430b65e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f57430b6670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f57430b6700>", "_build": "<function ActorCriticPolicy._build at 0x7f57430b6790>", "forward": "<function ActorCriticPolicy.forward at 0x7f57430b6820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f57430b68b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f57430b6940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f57430b69d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f57430b6a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f57430b6af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f57430b6b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f57430b5dc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679723456443578675, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEvadT41tsO/ZhoAwBGlPr31Tni+W8AwwEYNFj7of7k9iLZTP1hJa795FDm+XPYgwCggsj9f7aS7Jqj2vr138r8qG2C/5BiAP3qG7j45I0Q+HyucvvTNV79G/Ow9aX0bQMBaKj97AIY+wX3Ev0jEVL9eQzw/tx/Ov+V2F8D3nIg+phxwvslR1b83rle+AGeNv/1Zcz/dGwK/ZJtXPwmOzjyGC7I/JZ3qvGH3cT6J7Pm+Itenv8tk2z6JQSs/9M8Hv8I5pb4cOoG/o1lKv3M50T/AWio/ewCGPsF9xL9IxFS/oq+hP/fbwL+GOPW/S5kPP0ZVvD4ph4a/1b2Cv5+5mr8jqk0/96Cvv74+n72b7LQ+c8ScPxtQaj+0hBg+Fk0vv2EH8b7puOA/8Pr2vl9Rhz5fcdw95sdvv3JnZb9l28w/EVrAv3sAhj7BfcS/SMRUv3/1wb+GI6M+5pYkP40Xrr+MLHI/hGs6PYMi7T5CqZ4/6dSEv+kV8D2cTpy/bXSEvbXCJ8ArJhm9nAm0Pn6aiDxpc8A9rGHWPQsCQT98MKa970jOPbhfJb6CvJa/2UEpv8BaKj97AIY+BsQmP1ACmj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAEnKU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjbpWPQAAAAAoyvS/AAAAAMvX4z0AAAAAZtLbPwAAAADybeU8AAAAAGIZ/z8AAAAA83IBvgAAAACNpve/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsZGDNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNaiqj0AAAAAi9b1vwAAAACbckO9AAAAAEEn2z8AAAAAadzBPQAAAABDtfI/AAAAAEDqob0AAAAAOTD1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/UuDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICIdFG9AAAAAOBb7L8AAAAAJrwDPgAAAACA4Oc/AAAAAKHfID0AAAAA1DH8PwAAAABEslO8AAAAAMAL9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiYAg0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASah1OwAAAACjVei/AAAAAJAJcz0AAAAA11XsPwAAAAAW0Pe9AAAAAMqr8T8AAAAAf2GfvQAAAAAS4Py/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKBJ5awD/2mMAWyUTegDjAF0lEdAqpJrSE12q3V9lChoBkdAoLVNI065oWgHTegDaAhHQKqVlahYeT51fZQoaAZHQKF3J4NZvDRoB03oA2gIR0CqmgqGUOd5dX2UKGgGR0ChQu2ZRbbDaAdN6ANoCEdAqpq9BdD6WXV9lChoBkdAoPARkNFz+2gHTegDaAhHQKqjBHIZIhB1fZQoaAZHQKEnb6ZYxL1oB03oA2gIR0CqpQXvx6OYdX2UKGgGR0CgCc/zBhx6aAdN6ANoCEdAqqiBLsa86HV9lChoBkdAnPPzR6Ww/2gHTegDaAhHQKqpOFqSHM51fZQoaAZHQKAz6Xw9aEBoB03oA2gIR0CqszoVM23sdX2UKGgGR0CgLyW1UlzEaAdN6ANoCEdAqrZXPgNwznV9lChoBkdAn4HypeeFtmgHTegDaAhHQKq5/LpzLfV1fZQoaAZHQKAeB4vexfRoB03oA2gIR0Cquq2jXWe6dX2UKGgGR0CaeSn62v0RaAdN6ANoCEdAqsJcwztTk3V9lChoBkdAoDabOmixmmgHTegDaAhHQKrEVhvR7Z51fZQoaAZHQJ2+KMZP2wpoB03oA2gIR0Cqx7b9ycTbdX2UKGgGR0CVQD5RCQcQaAdN6ANoCEdAqsh1Cu2ZzHV9lChoBkdAnuspPIn0CmgHTegDaAhHQKrTGzhP0qZ1fZQoaAZHQJrqsgB91EFoB03oA2gIR0Cq1foYekpJdX2UKGgGR0CVC7W1MM7VaAdN6ANoCEdAqtl8s6JZXHV9lChoBkdAlt3Jv1lGw2gHTegDaAhHQKraLPbfxc51fZQoaAZHQJ+KEMhHLA5oB03oA2gIR0Cq4hKCHymRdX2UKGgGR0CdDrx4Y77saAdN6ANoCEdAquP4x33Yc3V9lChoBkdAntamukk8imgHTegDaAhHQKrnXmK64Dt1fZQoaAZHQKBHMaESM99oB03oA2gIR0Cq6CGIsRQKdX2UKGgGR0CeLx4hllK9aAdN6ANoCEdAqvKdD8cdYHV9lChoBkdAnLfQkxASnWgHTegDaAhHQKr1ntWuHN51fZQoaAZHQJAS+CtihFpoB03oA2gIR0Cq+Psenyd4dX2UKGgGR0CUMnShJyyVaAdN6ANoCEdAqvmiMvRJE3V9lChoBkdAnF1YhdMTOGgHTegDaAhHQKsBOg3974V1fZQoaAZHQJtp6Xw9aEBoB03oA2gIR0CrAxOPvKEGdX2UKGgGR0CfwmVGCqZMaAdN6ANoCEdAqwYieNDMNnV9lChoBkdAn170DQqqfmgHTegDaAhHQKsGybNKRMh1fZQoaAZHQKAuSu/1xsFoB03oA2gIR0CrEAuFpPAPdX2UKGgGR0CggpVdxAB1aAdN6ANoCEdAqxLK9bor4HV9lChoBkdAnSf1p9JBgWgHTegDaAhHQKsWZV5KODJ1fZQoaAZHQJ5Vb2exwAFoB03oA2gIR0CrFzHoHLRsdX2UKGgGR0CezFMoMKCyaAdN6ANoCEdAqx8vqVyFPHV9lChoBkdAn3o5HAh0Q2gHTegDaAhHQKsg+RuCPIZ1fZQoaAZHQJagBOj7AL1oB03oA2gIR0CrJCeR5kbxdX2UKGgGR0CQ2J4xDb8FaAdN6ANoCEdAqyTWpS75EnV9lChoBkdAlUgCQLeANGgHTegDaAhHQKstztALRa51fZQoaAZHQJ+v8lhPTG5oB03oA2gIR0CrMHbsniNsdX2UKGgGR0Cfcg4rz5GjaAdN6ANoCEdAqzQamKqGUXV9lChoBkdAnSIOFDfFaWgHTegDaAhHQKs0ulYU34t1fZQoaAZHQJ41HaN+9aloB03oA2gIR0CrO69c8kledX2UKGgGR0Cd1pROUMXraAdN6ANoCEdAqz2HV9Wp63V9lChoBkdAnKa/ikwevWgHTegDaAhHQKtAhU2kzoF1fZQoaAZHQJ3RUc5sCT5oB03oA2gIR0CrQSJUo8ZDdX2UKGgGR0CWqtzU7Sy/aAdN6ANoCEdAq0kbEDQqqnV9lChoBkdAmagTuv2XcGgHTegDaAhHQKtLpzasZHd1fZQoaAZHQJLkASUTtb9oB03oA2gIR0CrUDoMa0hNdX2UKGgGR0CVM91UEPlNaAdN6ANoCEdAq1Da4lQdj3V9lChoBkdAnz9ptWMjvGgHTegDaAhHQKtXpLidat91fZQoaAZHQJ858OZssQNoB03oA2gIR0CrWUxxkupTdX2UKGgGR0CgzzCj1wo9aAdN6ANoCEdAq1w03l0YCXV9lChoBkdAoGXCJXQtz2gHTegDaAhHQKtc15N47ih1fZQoaAZHQJqGlkNFz+5oB03oA2gIR0CrZmexW1c/dX2UKGgGR0ChUjWweNkwaAdN6ANoCEdAq2j3ZkCmuXV9lChoBkdAoI9wDzRQamgHTegDaAhHQKtt1D/EOy51fZQoaAZHQKBr0P/aQFNoB03oA2gIR0Crbr9aUzKtdX2UKGgGR0CeqW/JvHcUaAdN6ANoCEdAq3aFIwudw3V9lChoBkdAlxZVuzhP02gHTegDaAhHQKt4QG1x82J1fZQoaAZHQKCkbCBwuNBoB03oA2gIR0Cre2R+BpYcdX2UKGgGR0CgdbfCQ9zPaAdN6ANoCEdAq3wCULUkOnV9lChoBkdAoLwiqQzUJGgHTegDaAhHQKuDCVRk3CN1fZQoaAZHQKBCNOVPepJoB03oA2gIR0CrhLp84PwvdX2UKGgGR0CglW305EMLaAdN6ANoCEdAq4i767/XG3V9lChoBkdAoN8boyKvV2gHTegDaAhHQKuJpCRfWtl1fZQoaAZHQKA1LafSQYFoB03oA2gIR0CrkmS8an76dX2UKGgGR0Cf4TbrkbPyaAdN6ANoCEdAq5QUCYCyQnV9lChoBkdAoHE6ouPFN2gHTegDaAhHQKuXCR0U4711fZQoaAZHQJtNER5C4SZoB03oA2gIR0Crl6oNEw36dX2UKGgGR0CbaTnpjc2zaAdN6ANoCEdAq56aF0xM4HV9lChoBkdAmy450r9VFWgHTegDaAhHQKugX863iJh1fZQoaAZHQJfrlwyZa3ZoB03oA2gIR0Cro5mQCCBgdX2UKGgGR0CXv8EHdGiIaAdN6ANoCEdAq6SxEpiI+HV9lChoBkdAn3gwcDKYA2gHTegDaAhHQKuuzZvkzXV1fZQoaAZHQJ5/Q1jy4F1oB03oA2gIR0CrsI50CA+ZdX2UKGgGR0CeNluRLbpNaAdN6ANoCEdAq7OS8cuJ13V9lChoBkdAnkNJIQOFxmgHTegDaAhHQKu0MYRdyDJ1fZQoaAZHQIJgVmHxjKBoB03oA2gIR0Cru4KtxMnJdX2UKGgGR0Cdu1mY0EX+aAdN6ANoCEdAq70zncL0BnV9lChoBkdAnRzyKBNEgGgHTegDaAhHQKvASOSW7e51fZQoaAZHQJlfe+De0oloB03oA2gIR0CrwOSxRl6JdX2UKGgGR0CeLze2/i5vaAdN6ANoCEdAq8s0UfxMFnV9lChoBkdAnRd2+fywwGgHTegDaAhHQKvNITJQtSR1fZQoaAZHQJ1fmSmqHXVoB03oA2gIR0Cr0BtIK+i8dX2UKGgGR0CVsdlchTwVaAdN6ANoCEdAq9DAOOKfnXV9lChoBkdAmQnFtCRfW2gHTegDaAhHQKvXurn1WbR1fZQoaAZHQJ1ETZVXFLpoB03oA2gIR0Cr2WWB8QZodX2UKGgGR0Ce+Uu/DcdpaAdN6ANoCEdAq9ybJU5uInV9lChoBkdAn0/1ocrAg2gHTegDaAhHQKvdPVYISlF1fZQoaAZHQJAX8QoTfzloB03oA2gIR0Cr5tPG6wt8dX2UKGgGR0CbWrHymQ8waAdN6ANoCEdAq+lyNyYG+3V9lChoBkdAnvvzpkf9xmgHTegDaAhHQKvs3ELpiZx1fZQoaAZHQJzUEdT5wfhoB03oA2gIR0Cr7Yk+5e7ddX2UKGgGR0CRLxiLl3hXaAdN6ANoCEdAq/Sj544ZM3V9lChoBkdAlBCG/vfCRGgHTegDaAhHQKv2XIRRMvh1fZQoaAZHQJPxBFZxJd1oB03oA2gIR0Cr+YIiLVFydX2UKGgGR0CQHoDtPYWdaAdN6ANoCEdAq/oovL5h0HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a575328ea36528e9d4107cc54bd742c4a970e8bf940c0a987449af2a999cbe4
|
3 |
+
size 1240904
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1577.2430614792975, "std_reward": 171.5822039796612, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-25T06:51:23.052459"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:608f51eacc346cf02adb1740c08e60df44fa0f3760090f5d700bf376fd57b784
|
3 |
+
size 2136
|