Update README.md
Browse files
README.md
CHANGED
@@ -4,6 +4,55 @@ datasets:
|
|
4 |
- haipradana/indonesian-twitter-hate-speech-cleaned
|
5 |
language:
|
6 |
- id
|
7 |
-
|
8 |
-
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
- haipradana/indonesian-twitter-hate-speech-cleaned
|
5 |
language:
|
6 |
- id
|
7 |
+
tags:
|
8 |
+
- bert
|
9 |
+
- RoBERTa
|
10 |
+
- tweet
|
11 |
+
- hate
|
12 |
+
- twitter
|
13 |
+
---
|
14 |
+
|
15 |
+
# Fine-tuned RoBERTa pre-trained model to classify Indonesian hate tweet(s)
|
16 |
+
|
17 |
+
Just check GitHub for full-code and Google Colab: https://github.com/haipradana/RoBERTa-Indonesian-Hate-Tweet-Classification/tree/main
|
18 |
+
|
19 |
+
This project fine-tunes a RoBERTa model from [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) to classify Indonesian tweets as either **neutral** or **hate speech**.
|
20 |
+
|
21 |
+
## How to use this model?
|
22 |
+
|
23 |
+
|
24 |
+
```python
|
25 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
26 |
+
import torch
|
27 |
+
|
28 |
+
# Load model
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained('./model')
|
30 |
+
model = AutoModelForSequenceClassification.from_pretrained('./model')
|
31 |
+
|
32 |
+
# Predict
|
33 |
+
def predict(text):
|
34 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=511)
|
35 |
+
with torch.no_grad():
|
36 |
+
outputs = model(**inputs)
|
37 |
+
prediction = torch.argmax(outputs.logits, dim=1).item()
|
38 |
+
return 'hate' if prediction == 1 else 'neutral'
|
39 |
+
|
40 |
+
# Example
|
41 |
+
result = predict("Paru-parumu terbuat dari batu ya? udah sakit gini masih aja merokok!")
|
42 |
+
print(result) # Output: hate
|
43 |
+
```
|
44 |
+
|
45 |
+
### Or just using the script in the GitHub Repos
|
46 |
+
|
47 |
+
```bash
|
48 |
+
cd scripts
|
49 |
+
python predict.py
|
50 |
+
```
|
51 |
+
## Performance Metrics
|
52 |
+
|
53 |
+
```
|
54 |
+
Accuracy: 82.01%
|
55 |
+
Precision: 82.68%
|
56 |
+
Recall: 81.72%
|
57 |
+
F1-Score: 82.19%
|
58 |
+
```
|