Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,117 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: mlx
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
inference: false
|
5 |
+
license: apache-2.0
|
6 |
+
base_model: openai/gpt-oss-120b
|
7 |
+
base_model_relation: quantized
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
- ro
|
11 |
+
tags:
|
12 |
+
- apple-silicon
|
13 |
+
- metal
|
14 |
+
- arm64
|
15 |
+
- 6-bit
|
16 |
+
- group-size-64
|
17 |
+
- mlx
|
18 |
+
- mlx-lm
|
19 |
+
- openai
|
20 |
+
- halley-ai
|
21 |
+
---
|
22 |
+
|
23 |
+
# gpt-oss-120b — MLX 6-bit (group size 64)
|
24 |
+
|
25 |
+
**Summary.** This is a 6-bit MLX quantization of gpt-oss-120B with group size 64. It targets a smaller memory footprint and higher throughput than the 8-bit gs=32 build while keeping quality close to the bf16/8-bit references.
|
26 |
+
|
27 |
+
- **Base model:** `openai/gpt-oss-120b` (Apache-2.0)
|
28 |
+
- **Quantization:** MLX int6, `q_group_size=64` (some tensors may remain 16-bit for stability)
|
29 |
+
- **Files:** MLX weight shards + `config.json`; tokenizer files included for drop-in use
|
30 |
+
- **Intended use:** local inference / research on M-series Macs
|
31 |
+
- **Not intended for:** safety-critical decisions; outputs may be inaccurate or biased
|
32 |
+
|
33 |
+
## Requirements
|
34 |
+
|
35 |
+
Runs on Apple Silicon (M1 or newer) with macOS ≥ 13.5 via MLX (Metal).
|
36 |
+
|
37 |
+
- Not supported: Intel macOS / Linux / Windows (consider a GGUF build + llama.cpp instead).
|
38 |
+
- Memory guidance: notably smaller footprint vs 8-bit/gs32; 64–96 GB recommended for comfortable headroom on 120B with moderate context sizes. The effective GPU working set is capped by Metal’s budget; keep 5–10% headroom.
|
39 |
+
|
40 |
+
## How to use (MLX)
|
41 |
+
|
42 |
+
```bash
|
43 |
+
pip install mlx-lm
|
44 |
+
```
|
45 |
+
|
46 |
+
```python
|
47 |
+
# Python API (uses tokenizer bundled with this repo)
|
48 |
+
from mlx_lm import load, generate
|
49 |
+
|
50 |
+
model, tokenizer = load("halley-ai/gpt-oss-120b-MLX-6bit-gs64")
|
51 |
+
print(generate(
|
52 |
+
model, tokenizer,
|
53 |
+
prompt="Explain the Chudnovsky algorithm to compute π.",
|
54 |
+
max_tokens=256, max_kv_size=512
|
55 |
+
))
|
56 |
+
```
|
57 |
+
|
58 |
+
```bash
|
59 |
+
# CLI
|
60 |
+
python -m mlx_lm generate --model halley-ai/gpt-oss-120b-MLX-6bit-gs64 \
|
61 |
+
--prompt "Explain the Chudnovsky algorithm to compute pi." \
|
62 |
+
--max-kv-size 512 --max-tokens 256
|
63 |
+
```
|
64 |
+
|
65 |
+
## Evaluation
|
66 |
+
|
67 |
+
Perplexity (PPL) streaming evaluation on WikiText-2 (raw, test) is recommended with the fast preset (`window=stride=4096`, ~100k tokens, EOS inserted between docs):
|
68 |
+
|
69 |
+
```bash
|
70 |
+
python python/scripts/test_perplexity-mlx.py \
|
71 |
+
--model_path "/path/to/gpt-oss-120b-MLX-6bit-gs64" \
|
72 |
+
--fast --progress
|
73 |
+
```
|
74 |
+
|
75 |
+
For more sensitive comparisons, use overlapping windows (for example, `--stride 512`) and evaluate the full split.
|
76 |
+
|
77 |
+
### Results
|
78 |
+
|
79 |
+
| Variant | PPL (ctx=4096, fast) |
|
80 |
+
|----------------------|-----------------------|
|
81 |
+
| MLX 6-bit (gs=64) | 7.40 |
|
82 |
+
| MLX 8-bit (gs=32) | 7.39 |
|
83 |
+
| MLX bf16 (reference) | 7.38 |
|
84 |
+
|
85 |
+
## Conversion details (provenance)
|
86 |
+
|
87 |
+
```bash
|
88 |
+
python -m mlx_lm convert \
|
89 |
+
--hf-path openai/gpt-oss-120b \
|
90 |
+
--mlx-path gpt-oss-120b-MLX-6bit-gs64 \
|
91 |
+
--q-bits 6 --q-group-size 64 -q
|
92 |
+
```
|
93 |
+
|
94 |
+
- Some tensors (for example, embeddings/norms/router) may remain 16-bit for numerical stability.
|
95 |
+
|
96 |
+
## Footprint and speed tips
|
97 |
+
|
98 |
+
- **Limit KV cache:** set `--max-kv-size` (CLI) or `max_kv_size` (Python) to the smallest context you need.
|
99 |
+
- **Batching:** prefer single-stream generation; large batches increase memory pressure on 120B.
|
100 |
+
- **Compute windowing:** when evaluating PPL, the provided script auto-clamps the compute window to avoid Metal’s per-buffer limits.
|
101 |
+
- **Sampler settings:** top‑p/top‑k sampling with moderate temperature can improve throughput versus beam search.
|
102 |
+
|
103 |
+
## Sibling and reference models
|
104 |
+
|
105 |
+
- halley-ai/gpt-oss-120b-MLX-8bit-gs32 (reference 8-bit)
|
106 |
+
- halley-ai/gpt-oss-120b-MLX-bf16 (non-quantized reference)
|
107 |
+
|
108 |
+
## Limitations and biases
|
109 |
+
|
110 |
+
Outputs may be factually wrong or unsafe. Do not use for medical, legal, or financial decisions without human review. Large models can be sensitive to prompt wording; prefer explicit instructions and structure.
|
111 |
+
|
112 |
+
## License and credits
|
113 |
+
|
114 |
+
- License: Apache-2.0 (inherits from base model)
|
115 |
+
- Base model: OpenAI gpt-oss-120B
|
116 |
+
- Quantization: Halley AI Lab (MLX int6, gs=64)
|
117 |
+
- Please cite both the base model and this repository when you use the weights.
|