Update models and scripts with toolchain version 2.3.2
Browse files- onnx/convert.py +98 -54
- onnx/decoder_model.rknn +2 -2
- onnx/encoder_model.rknn +2 -2
- onnx/rknnrun.py +20 -17
- onnx/vision_encoder.rknn +3 -0
onnx/convert.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
# coding: utf-8
|
3 |
|
|
|
4 |
from rknn.api import RKNN
|
5 |
from math import exp
|
6 |
from sys import exit
|
@@ -67,7 +68,64 @@ def convert_decoder():
|
|
67 |
[batch_size, decoder_seq_len, 768]] for encoder_seq_len in encoder_seq_len_list]
|
68 |
# pre-process config
|
69 |
print('--> Config model')
|
70 |
-
rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
dynamic_input=input_shapes)
|
72 |
print('done')
|
73 |
|
@@ -108,7 +166,7 @@ def convert_encoder():
|
|
108 |
input_shapes = [[[batch_size, encoder_seq_len], [batch_size, encoder_seq_len, 768]] for encoder_seq_len in encoder_seq_len_list]
|
109 |
# pre-process config
|
110 |
print('--> Config model')
|
111 |
-
rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3,
|
112 |
print('done')
|
113 |
|
114 |
# Load ONNX model
|
@@ -137,49 +195,43 @@ def convert_encoder():
|
|
137 |
print('done')
|
138 |
|
139 |
def convert_vision():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
rknn = RKNN(verbose=True)
|
141 |
-
|
142 |
ONNX_MODEL="vision_encoder.onnx"
|
|
|
143 |
DATASET="dataset.txt"
|
144 |
QUANTIZE=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
# split the first Transformers block into a separate model because it's too large to fit in the rknn
|
147 |
-
onnx.utils.extract_model(ONNX_MODEL, "vision_encoder_part1.onnx", ['pixel_values'], ['/blocks.0/blocks.0.0/channel_block/channel_attn/Add_output_0'])
|
148 |
-
|
149 |
-
##### Build stage 1, this will crash the python process, so we need to run it in a separate process
|
150 |
-
code = f"""
|
151 |
-
from rknn.api import RKNN
|
152 |
-
rknn = RKNN(verbose=True)
|
153 |
-
ONNX_MODEL="vision_encoder.onnx"
|
154 |
-
RKNN_MODEL=ONNX_MODEL.replace(".onnx",".rknn")
|
155 |
-
DATASET="dataset.txt"
|
156 |
-
QUANTIZE=False
|
157 |
-
batch_size = {batch_size}
|
158 |
-
# pre-process config
|
159 |
-
print('--> Config model')
|
160 |
-
rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3, single_core_mode=True)
|
161 |
-
print('done')
|
162 |
-
|
163 |
-
# Load ONNX model
|
164 |
-
print('--> Loading model')
|
165 |
-
ret = rknn.load_onnx(model=ONNX_MODEL,
|
166 |
-
inputs=["pixel_values"],
|
167 |
-
input_size_list=[[batch_size, 3, 768, 768]],
|
168 |
-
)
|
169 |
-
if ret != 0:
|
170 |
-
print('Load model failed!')
|
171 |
-
exit(ret)
|
172 |
-
print('done')
|
173 |
-
|
174 |
-
print('--> Building model stage 1')
|
175 |
-
ret = rknn.build(do_quantization=QUANTIZE, dataset=DATASET, rknn_batch_size=None)
|
176 |
-
if ret != 0:
|
177 |
-
print('Build model failed!')
|
178 |
-
exit(ret)
|
179 |
-
print('done')
|
180 |
-
"""
|
181 |
-
run_python_code(code)
|
182 |
print("Build stage 1 done")
|
|
|
183 |
|
184 |
intermidiate_model = onnx.load("check3_fuse_ops.onnx")
|
185 |
|
@@ -210,9 +262,9 @@ print('done')
|
|
210 |
intermidiate_model,
|
211 |
pattern_rewrite_rules=rewrite_rule_set
|
212 |
)
|
213 |
-
onnx.save(fused_model, "
|
214 |
-
ONNX_MODEL = "
|
215 |
-
RKNN_MODEL=ONNX_MODEL.replace(".onnx",".rknn")
|
216 |
del intermidiate_model
|
217 |
del fused_model
|
218 |
|
@@ -221,14 +273,12 @@ print('done')
|
|
221 |
|
222 |
# pre-process config
|
223 |
print('--> Config model')
|
224 |
-
rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3
|
225 |
print('done')
|
226 |
|
227 |
# Load ONNX model
|
228 |
print('--> Loading model')
|
229 |
-
ret = rknn.load_onnx(model=
|
230 |
-
inputs=["/blocks.0/blocks.0.0/channel_block/channel_attn/Add_output_0-rs"],
|
231 |
-
input_size_list=[[batch_size, 128, 1, 36864]],)
|
232 |
if ret != 0:
|
233 |
print('Load model failed!')
|
234 |
exit(ret)
|
@@ -249,10 +299,7 @@ print('done')
|
|
249 |
print('Export RKNN model failed!')
|
250 |
exit(ret)
|
251 |
print('done')
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
|
257 |
|
258 |
|
@@ -266,7 +313,7 @@ def check_vision_model():
|
|
266 |
|
267 |
# pre-process config
|
268 |
print('--> Config model')
|
269 |
-
rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3
|
270 |
print('done')
|
271 |
|
272 |
# Load ONNX model
|
@@ -311,9 +358,6 @@ def check_vision_model():
|
|
311 |
print('Precision check failed!')
|
312 |
exit(ret)
|
313 |
print('done')
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
|
318 |
|
319 |
import argparse
|
|
|
1 |
#!/usr/bin/env python
|
2 |
# coding: utf-8
|
3 |
|
4 |
+
import numpy as np
|
5 |
from rknn.api import RKNN
|
6 |
from math import exp
|
7 |
from sys import exit
|
|
|
68 |
[batch_size, decoder_seq_len, 768]] for encoder_seq_len in encoder_seq_len_list]
|
69 |
# pre-process config
|
70 |
print('--> Config model')
|
71 |
+
rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3,
|
72 |
+
dynamic_input=input_shapes)
|
73 |
+
print('done')
|
74 |
+
|
75 |
+
# Load ONNX model
|
76 |
+
print('--> Loading model')
|
77 |
+
ret = rknn.load_onnx(model=ONNX_MODEL,
|
78 |
+
)
|
79 |
+
if ret != 0:
|
80 |
+
print('Load model failed!')
|
81 |
+
exit(ret)
|
82 |
+
print('done')
|
83 |
+
|
84 |
+
# Build model
|
85 |
+
print('--> Building model')
|
86 |
+
ret = rknn.build(do_quantization=QUANTIZE, dataset=DATASET, rknn_batch_size=None)
|
87 |
+
if ret != 0:
|
88 |
+
print('Build model failed!')
|
89 |
+
exit(ret)
|
90 |
+
print('done')
|
91 |
+
|
92 |
+
#export
|
93 |
+
print('--> Export RKNN model')
|
94 |
+
ret = rknn.export_rknn(RKNN_MODEL)
|
95 |
+
if ret != 0:
|
96 |
+
print('Export RKNN model failed!')
|
97 |
+
exit(ret)
|
98 |
+
print('done')
|
99 |
+
|
100 |
+
def convert_decoder_2():
|
101 |
+
import onnx_graphsurgeon as gs
|
102 |
+
ONNX_MODEL="decoder_model_merged.onnx"
|
103 |
+
|
104 |
+
graph = gs.import_onnx(onnx.load(ONNX_MODEL))
|
105 |
+
inp = graph.inputs[27] # use_cache_branch
|
106 |
+
inp.to_constant(np.array([True], dtype=np.bool_))
|
107 |
+
ONNX_MODEL
|
108 |
+
onnx.save(gs.export_onnx(graph), "new_model.onnx")
|
109 |
+
|
110 |
+
np_true = np.array([True], dtype=np.bool_)
|
111 |
+
np.save("np_true.npy", np_true)
|
112 |
+
|
113 |
+
|
114 |
+
rknn = RKNN(verbose=True)
|
115 |
+
|
116 |
+
RKNN_MODEL=ONNX_MODEL.replace(".onnx",".rknn")
|
117 |
+
DATASET="dataset.txt"
|
118 |
+
QUANTIZE=False
|
119 |
+
|
120 |
+
# [[batch_size, encoder_seq_len],
|
121 |
+
# [batch_size, encoder_seq_len, 768],
|
122 |
+
# [batch_size, decoder_seq_len, 768]]
|
123 |
+
input_shapes =[[[batch_size, encoder_seq_len],
|
124 |
+
[batch_size, encoder_seq_len, 768],
|
125 |
+
[batch_size, decoder_seq_len, 768]] for encoder_seq_len in encoder_seq_len_list]
|
126 |
+
# pre-process config
|
127 |
+
print('--> Config model')
|
128 |
+
rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3,
|
129 |
dynamic_input=input_shapes)
|
130 |
print('done')
|
131 |
|
|
|
166 |
input_shapes = [[[batch_size, encoder_seq_len], [batch_size, encoder_seq_len, 768]] for encoder_seq_len in encoder_seq_len_list]
|
167 |
# pre-process config
|
168 |
print('--> Config model')
|
169 |
+
rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3, dynamic_input=input_shapes)
|
170 |
print('done')
|
171 |
|
172 |
# Load ONNX model
|
|
|
195 |
print('done')
|
196 |
|
197 |
def convert_vision():
|
198 |
+
ONNX_MODEL="vision_encoder.onnx"
|
199 |
+
DATASET="dataset.txt"
|
200 |
+
QUANTIZE=False
|
201 |
+
global batch_size
|
202 |
+
|
203 |
+
##### Build stage 1
|
204 |
+
from rknn.api import RKNN
|
205 |
rknn = RKNN(verbose=True)
|
|
|
206 |
ONNX_MODEL="vision_encoder.onnx"
|
207 |
+
RKNN_MODEL=ONNX_MODEL.replace(".onnx",".rknn")
|
208 |
DATASET="dataset.txt"
|
209 |
QUANTIZE=False
|
210 |
+
# pre-process config
|
211 |
+
print('--> Config model')
|
212 |
+
rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3)
|
213 |
+
print('done')
|
214 |
+
|
215 |
+
# Load ONNX model
|
216 |
+
print('--> Loading model')
|
217 |
+
ret = rknn.load_onnx(model=ONNX_MODEL,
|
218 |
+
inputs=["pixel_values"],
|
219 |
+
input_size_list=[[batch_size, 3, 768, 768]],
|
220 |
+
)
|
221 |
+
if ret != 0:
|
222 |
+
print('Load model failed!')
|
223 |
+
exit(ret)
|
224 |
+
print('done')
|
225 |
+
|
226 |
+
print('--> Building model stage 1')
|
227 |
+
ret = rknn.build(do_quantization=QUANTIZE, dataset=DATASET, rknn_batch_size=None)
|
228 |
+
if ret != 0:
|
229 |
+
print('Build model failed!')
|
230 |
+
exit(ret)
|
231 |
+
print('done')
|
232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
print("Build stage 1 done")
|
234 |
+
del rknn
|
235 |
|
236 |
intermidiate_model = onnx.load("check3_fuse_ops.onnx")
|
237 |
|
|
|
262 |
intermidiate_model,
|
263 |
pattern_rewrite_rules=rewrite_rule_set
|
264 |
)
|
265 |
+
onnx.save(fused_model, "vision_encoder_optimized.onnx")
|
266 |
+
ONNX_MODEL = "vision_encoder_optimized.onnx"
|
267 |
+
# RKNN_MODEL=ONNX_MODEL.replace(".onnx",".rknn")
|
268 |
del intermidiate_model
|
269 |
del fused_model
|
270 |
|
|
|
273 |
|
274 |
# pre-process config
|
275 |
print('--> Config model')
|
276 |
+
rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3)
|
277 |
print('done')
|
278 |
|
279 |
# Load ONNX model
|
280 |
print('--> Loading model')
|
281 |
+
ret = rknn.load_onnx(model=ONNX_MODEL)
|
|
|
|
|
282 |
if ret != 0:
|
283 |
print('Load model failed!')
|
284 |
exit(ret)
|
|
|
299 |
print('Export RKNN model failed!')
|
300 |
exit(ret)
|
301 |
print('done')
|
302 |
+
os.remove("vision_encoder_optimized.onnx")
|
|
|
|
|
|
|
303 |
|
304 |
|
305 |
|
|
|
313 |
|
314 |
# pre-process config
|
315 |
print('--> Config model')
|
316 |
+
rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3)
|
317 |
print('done')
|
318 |
|
319 |
# Load ONNX model
|
|
|
358 |
print('Precision check failed!')
|
359 |
exit(ret)
|
360 |
print('done')
|
|
|
|
|
|
|
361 |
|
362 |
|
363 |
import argparse
|
onnx/decoder_model.rknn
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ccb57a522ab8b0fa73123d654807748fbaf841c6852c775eb293e054b520341
|
3 |
+
size 207755060
|
onnx/encoder_model.rknn
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3121d4ff0f5fc79420e6eda1d657eb8ff36355a414fcab3f236c72b2f4e9ddd1
|
3 |
+
size 106957934
|
onnx/rknnrun.py
CHANGED
@@ -20,7 +20,7 @@ rknn_encoder = RKNNLite(verbose=False)
|
|
20 |
rknn_decoder_prefill = RKNNLite(verbose=False)
|
21 |
|
22 |
# Load RKNN models
|
23 |
-
ret = rknn_vision_encoder.load_rknn('./
|
24 |
ret = rknn_encoder.load_rknn('./encoder_model.rknn')
|
25 |
ret = rknn_decoder_prefill.load_rknn('./decoder_model.rknn')
|
26 |
|
@@ -31,18 +31,18 @@ ret = rknn_decoder_prefill.init_runtime()
|
|
31 |
|
32 |
text_embed = ort.InferenceSession("embed_tokens_fp16.onnx", providers=['CPUExecutionProvider'])
|
33 |
decoder_decode = ort.InferenceSession("decoder_model_merged_q4.onnx", providers=['CPUExecutionProvider'])
|
34 |
-
|
35 |
prompt_tokens_list = [15, 17, 21, 25]
|
36 |
|
37 |
# 1. prepare inputs
|
38 |
-
processor = AutoProcessor.from_pretrained("
|
39 |
|
40 |
# 2. prepare image
|
41 |
image = Image.open("./test.jpg")
|
42 |
original_image = image.copy()
|
43 |
original_size = image.size
|
44 |
# resize image to 768x768
|
45 |
-
image = image.resize((768, 768))
|
46 |
# 3. prepare text
|
47 |
prompt = "<MORE_DETAILED_CAPTION>"
|
48 |
|
@@ -56,16 +56,17 @@ for i in prompt_tokens_list:
|
|
56 |
pad_to = i
|
57 |
break
|
58 |
print("pad_to: ", pad_to)
|
59 |
-
|
|
|
60 |
for k, v in inputs.items():
|
61 |
print(k, v.shape)
|
62 |
|
63 |
# 4. run vision encoder using RKNN
|
64 |
start_time = time.time()
|
65 |
-
image_features0 = vision_encoder.run(None, {
|
66 |
-
|
67 |
-
})[0]
|
68 |
-
image_features = rknn_vision_encoder.inference(inputs=[
|
69 |
|
70 |
end_time = time.time()
|
71 |
vision_encoder_time = (end_time - start_time) * 1000
|
@@ -90,6 +91,7 @@ batch_size, image_token_length = image_features.shape[:-1]
|
|
90 |
image_attention_mask = np.ones((batch_size, image_token_length))
|
91 |
task_prefix_embeds = inputs_embeds
|
92 |
task_prefix_attention_mask = np.ones((batch_size, task_prefix_embeds.shape[1]))
|
|
|
93 |
if len(task_prefix_attention_mask.shape) == 3:
|
94 |
task_prefix_attention_mask = task_prefix_attention_mask[:, 0]
|
95 |
inputs_embeds = np.concatenate([image_features, task_prefix_embeds], axis=1)
|
@@ -135,7 +137,7 @@ while generated_tokens.__len__() < max_new_tokens:
|
|
135 |
|
136 |
# 使用argmax选择下一个token (贪心算法)
|
137 |
next_token = np.argmax(next_token_logits, axis=-1)[0]
|
138 |
-
print("next_token: ", next_token)
|
139 |
# 将新生成的token添加到结果中
|
140 |
generated_tokens.append(next_token)
|
141 |
|
@@ -220,7 +222,7 @@ def plot_bbox(image, data):
|
|
220 |
font = ImageFont.load_default().font_variant(size=20) # 如果Arial不可用,使用默认字体并放大
|
221 |
|
222 |
# Plot each bounding box
|
223 |
-
for bbox, label in zip(data['bboxes'], data
|
224 |
# Unpack the bounding box coordinates
|
225 |
x1, y1, x2, y2 = bbox
|
226 |
# Draw the rectangle with thicker outline
|
@@ -312,14 +314,15 @@ def draw_ocr_bboxes(image, prediction, scale=1):
|
|
312 |
# display(image)
|
313 |
image.save("result_image.jpg")
|
314 |
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
|
|
320 |
|
321 |
|
322 |
# Release RKNNLite instances
|
323 |
rknn_vision_encoder.release()
|
324 |
rknn_encoder.release()
|
325 |
-
rknn_decoder_prefill.release()
|
|
|
20 |
rknn_decoder_prefill = RKNNLite(verbose=False)
|
21 |
|
22 |
# Load RKNN models
|
23 |
+
ret = rknn_vision_encoder.load_rknn('./vision_encoder.rknn')
|
24 |
ret = rknn_encoder.load_rknn('./encoder_model.rknn')
|
25 |
ret = rknn_decoder_prefill.load_rknn('./decoder_model.rknn')
|
26 |
|
|
|
31 |
|
32 |
text_embed = ort.InferenceSession("embed_tokens_fp16.onnx", providers=['CPUExecutionProvider'])
|
33 |
decoder_decode = ort.InferenceSession("decoder_model_merged_q4.onnx", providers=['CPUExecutionProvider'])
|
34 |
+
|
35 |
prompt_tokens_list = [15, 17, 21, 25]
|
36 |
|
37 |
# 1. prepare inputs
|
38 |
+
processor = AutoProcessor.from_pretrained("..", trust_remote_code=True)
|
39 |
|
40 |
# 2. prepare image
|
41 |
image = Image.open("./test.jpg")
|
42 |
original_image = image.copy()
|
43 |
original_size = image.size
|
44 |
# resize image to 768x768
|
45 |
+
# image = image.resize((768, 768))
|
46 |
# 3. prepare text
|
47 |
prompt = "<MORE_DETAILED_CAPTION>"
|
48 |
|
|
|
56 |
pad_to = i
|
57 |
break
|
58 |
print("pad_to: ", pad_to)
|
59 |
+
|
60 |
+
inputs = processor(text=prompt, images=image, return_tensors="np", do_resize=True, padding="max_length", max_length=pad_to + 577, truncation=True)
|
61 |
for k, v in inputs.items():
|
62 |
print(k, v.shape)
|
63 |
|
64 |
# 4. run vision encoder using RKNN
|
65 |
start_time = time.time()
|
66 |
+
# image_features0 = vision_encoder.run(None, {
|
67 |
+
# "pixel_values": inputs["pixel_values"]
|
68 |
+
# })[0]
|
69 |
+
image_features = rknn_vision_encoder.inference(inputs=[inputs["pixel_values"]], data_format="nchw")[0]
|
70 |
|
71 |
end_time = time.time()
|
72 |
vision_encoder_time = (end_time - start_time) * 1000
|
|
|
91 |
image_attention_mask = np.ones((batch_size, image_token_length))
|
92 |
task_prefix_embeds = inputs_embeds
|
93 |
task_prefix_attention_mask = np.ones((batch_size, task_prefix_embeds.shape[1]))
|
94 |
+
# task_prefix_attention_mask = inputs["attention_mask"]
|
95 |
if len(task_prefix_attention_mask.shape) == 3:
|
96 |
task_prefix_attention_mask = task_prefix_attention_mask[:, 0]
|
97 |
inputs_embeds = np.concatenate([image_features, task_prefix_embeds], axis=1)
|
|
|
137 |
|
138 |
# 使用argmax选择下一个token (贪心算法)
|
139 |
next_token = np.argmax(next_token_logits, axis=-1)[0]
|
140 |
+
print("next_token: ", processor.decode([next_token]))
|
141 |
# 将新生成的token添加到结果中
|
142 |
generated_tokens.append(next_token)
|
143 |
|
|
|
222 |
font = ImageFont.load_default().font_variant(size=20) # 如果Arial不可用,使用默认字体并放大
|
223 |
|
224 |
# Plot each bounding box
|
225 |
+
for bbox, label in zip(data['bboxes'], data.get('labels', data.get('bboxes_labels'))):
|
226 |
# Unpack the bounding box coordinates
|
227 |
x1, y1, x2, y2 = bbox
|
228 |
# Draw the rectangle with thicker outline
|
|
|
314 |
# display(image)
|
315 |
image.save("result_image.jpg")
|
316 |
|
317 |
+
if parsed_answer.get('<REFERRING_EXPRESSION_SEGMENTATION>'):
|
318 |
+
draw_polygons(original_image, parsed_answer['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
319 |
+
elif parsed_answer.get("<OCR_WITH_REGION>"):
|
320 |
+
draw_ocr_bboxes(original_image, parsed_answer["<OCR_WITH_REGION>"], scale=1)
|
321 |
+
else:
|
322 |
+
plot_bbox(original_image, parsed_answer[prompt.split(">")[0].strip() + ">"])
|
323 |
|
324 |
|
325 |
# Release RKNNLite instances
|
326 |
rknn_vision_encoder.release()
|
327 |
rknn_encoder.release()
|
328 |
+
rknn_decoder_prefill.release()
|
onnx/vision_encoder.rknn
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:463a02cf1643c26a3414096f543a5f267ea49f384c1bcff7210cee2168912a4b
|
3 |
+
size 261704579
|