happyme531 commited on
Commit
e3e3c5c
·
verified ·
1 Parent(s): 238d8ca

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -10
README.md CHANGED
@@ -13,7 +13,7 @@ tags:
13
 
14
  ONNX/RKNN2部署Florence-2视觉多模态大模型!
15
 
16
- - 推理速度(RKNN2):RK3588推理一张768x768图片, 使用`<MORE_DETAILED_CAPTION>`指令, 总时间需要~4.5
17
  - 内存占用(RKNN2):约2GB
18
 
19
  ## 使用方法
@@ -23,11 +23,9 @@ ONNX/RKNN2部署Florence-2视觉多模态大模型!
23
  2. 安装依赖
24
 
25
  ```bash
26
- pip install transformers onnxruntime pillow numpy<2
27
  ```
28
 
29
- 如果需要使用rknn推理, 还需要安装rknn-toolkit2-lite2.
30
-
31
  3. 修改项目路径
32
  分词器和预处理配置仍然需要使用原项目中的文件. 将onnx/onnxrun.py或onnx/rknnrun.py中的对应路径修改为项目所在路径.
33
  ```python
@@ -44,7 +42,7 @@ python onnx/onnxrun.py # 或 python onnx/rknnrun.py
44
 
45
  ## RKNN模型转换
46
 
47
- 你需要提前安装rknn-toolkit2 v2.1.0或更高版本.
48
 
49
  ```bash
50
  cd onnx
@@ -71,7 +69,7 @@ python convert.py all
71
 
72
  ONNX/RKNN2 deployment for Florence-2 visual-language multimodal large model!
73
 
74
- - Inference speed (RKNN2): RK3588 inference with a 768x768 image, using the `<MORE_DETAILED_CAPTION>` instruction, takes ~4.5 seconds in total.
75
  - Memory usage (RKNN2): Approximately 2GB
76
 
77
  ## Usage
@@ -81,11 +79,9 @@ ONNX/RKNN2 deployment for Florence-2 visual-language multimodal large model!
81
  2. Install dependencies
82
 
83
  ```bash
84
- pip install transformers onnxruntime pillow numpy<2
85
  ```
86
 
87
- If you need to use rknn for inference, you also need to install rknn-toolkit2-lite2.
88
-
89
  3. Modify project paths
90
  The tokenizer and preprocessing configurations still need to use files from the original project. Modify the corresponding paths in onnx/onnxrun.py or onnx/rknnrun.py to the project's location.
91
  ```python
@@ -102,7 +98,7 @@ python onnx/onnxrun.py # or python onnx/rknnrun.py
102
 
103
  ## RKNN Model Conversion
104
 
105
- You need to install rknn-toolkit2 v2.1.0 or higher in advance.
106
 
107
  ```bash
108
  cd onnx
 
13
 
14
  ONNX/RKNN2部署Florence-2视觉多模态大模型!
15
 
16
+ - 推理速度(RKNN2):RK3588推理一张768x768图片, 使用`<MORE_DETAILED_CAPTION>`指令, 总时间需要~4秒
17
  - 内存占用(RKNN2):约2GB
18
 
19
  ## 使用方法
 
23
  2. 安装依赖
24
 
25
  ```bash
26
+ pip install transformers onnxruntime pillow numpy<2 rknn-toolkit-lite2
27
  ```
28
 
 
 
29
  3. 修改项目路径
30
  分词器和预处理配置仍然需要使用原项目中的文件. 将onnx/onnxrun.py或onnx/rknnrun.py中的对应路径修改为项目所在路径.
31
  ```python
 
42
 
43
  ## RKNN模型转换
44
 
45
+ 你需要提前安装rknn-toolkit2 v2.3.2或更高版本.
46
 
47
  ```bash
48
  cd onnx
 
69
 
70
  ONNX/RKNN2 deployment for Florence-2 visual-language multimodal large model!
71
 
72
+ - Inference speed (RKNN2): RK3588 inference with a 768x768 image, using the `<MORE_DETAILED_CAPTION>` instruction, takes ~4 seconds in total.
73
  - Memory usage (RKNN2): Approximately 2GB
74
 
75
  ## Usage
 
79
  2. Install dependencies
80
 
81
  ```bash
82
+ pip install transformers onnxruntime pillow numpy<2 rknn-toolkit-lite2
83
  ```
84
 
 
 
85
  3. Modify project paths
86
  The tokenizer and preprocessing configurations still need to use files from the original project. Modify the corresponding paths in onnx/onnxrun.py or onnx/rknnrun.py to the project's location.
87
  ```python
 
98
 
99
  ## RKNN Model Conversion
100
 
101
+ You need to install rknn-toolkit2 v2.3.2 or higher in advance.
102
 
103
  ```bash
104
  cd onnx