File size: 13,993 Bytes
c8faba2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Qwen3-Embedding-0.6B 推理测试代码
使用 RKLLM API 进行文本嵌入推理
"""
import faulthandler
faulthandler.enable()
import os
os.environ["RKLLM_LOG_LEVEL"] = "1"
import numpy as np
import time
from typing import List, Dict, Any
from rkllm_binding import *
class Qwen3EmbeddingTester:
def __init__(self, model_path: str, library_path: str = "./librkllmrt.so"):
"""
初始化 Qwen3 嵌入模型测试器
Args:
model_path: 模型文件路径(.rkllm 格式)
library_path: RKLLM 库文件路径
"""
self.model_path = model_path
self.library_path = library_path
self.runtime = None
self.embeddings_buffer = []
self.current_result = None
def callback_function(self, result_ptr, userdata_ptr, state_enum):
"""
推理回调函数
Args:
result_ptr: 结果指针
userdata_ptr: 用户数据指针
state_enum: 状态枚举
"""
state = LLMCallState(state_enum)
if state == LLMCallState.RKLLM_RUN_NORMAL:
result = result_ptr.contents
print(f"result: {result}")
# 获取最后隐藏层输出作为嵌入
if result.last_hidden_layer.hidden_states and result.last_hidden_layer.embd_size > 0:
embd_size = result.last_hidden_layer.embd_size
num_tokens = result.last_hidden_layer.num_tokens
print(f"获取到嵌入向量:维度={embd_size}, 令牌数={num_tokens}")
# 将 C 数组转换为 numpy 数组
# 这里我们取最后一个 token 的隐藏状态作为句子嵌入
if num_tokens > 0:
# 获取最后一个 token 的嵌入(shape: [embd_size])
last_token_embedding = np.array([
result.last_hidden_layer.hidden_states[(num_tokens-1) * embd_size + i]
for i in range(embd_size)
])
self.current_result = {
'embedding': last_token_embedding,
'embd_size': embd_size,
'num_tokens': num_tokens
}
print(f"嵌入向量范数: {np.linalg.norm(last_token_embedding):.4f}")
print(f"嵌入向量前10维: {last_token_embedding[:10]}")
elif state == LLMCallState.RKLLM_RUN_ERROR:
print("推理过程发生错误")
def init_model(self):
"""初始化模型"""
try:
print(f"初始化 RKLLM 运行时,库路径: {self.library_path}")
self.runtime = RKLLMRuntime(self.library_path)
print("创建默认参数...")
params = self.runtime.create_default_param()
# 配置参数
params.model_path = self.model_path.encode('utf-8')
params.max_context_len = 1024 # 设置上下文长度
params.max_new_tokens = 1 # 嵌入任务不需要生成新token
params.temperature = 1.0 # 嵌入任务温度设置
params.top_k = 1 # 嵌入任务不需要采样
params.top_p = 1.0 # 嵌入任务不需要采样
# 扩展参数配置
params.extend_param.base_domain_id = 1 # 建议为 >1B 模型设置为1
params.extend_param.embed_flash = 0 # 是否使用flash存储Embedding
params.extend_param.enabled_cpus_num = 4 # 启用的CPU核心数
params.extend_param.enabled_cpus_mask = 0x0F # CPU核心掩码
print(f"初始化模型: {self.model_path}")
self.runtime.init(params, self.callback_function)
self.runtime.set_chat_template("","","")
print("模型初始化成功!")
except Exception as e:
print(f"模型初始化失败: {e}")
raise
def get_detailed_instruct(self, task_description: str, query: str) -> str:
"""
构建指令提示词(参考 README 中的用法)
Args:
task_description: 任务描述
query: 查询文本
Returns:
格式化的指令提示词
"""
return f'Instruct: {task_description}\nQuery: {query}'
def encode_text(self, text: str, task_description: str = None) -> np.ndarray:
"""
编码文本为嵌入向量
Args:
text: 要编码的文本
task_description: 任务描述,如果提供则使用指令提示
Returns:
嵌入向量(numpy数组)
"""
try:
# 如果提供了任务描述,则使用指令提示
if task_description:
input_text = self.get_detailed_instruct(task_description, text)
else:
input_text = text
print(f"编码文本: {input_text[:100]}{'...' if len(input_text) > 100 else ''}")
# 准备输入
rk_input = RKLLMInput()
rk_input.input_type = RKLLMInputType.RKLLM_INPUT_PROMPT
c_prompt = input_text.encode('utf-8')
rk_input._union_data.prompt_input = c_prompt
# 准备推理参数
infer_params = RKLLMInferParam()
infer_params.mode = RKLLMInferMode.RKLLM_INFER_GET_LAST_HIDDEN_LAYER # 获取隐藏层输出
infer_params.keep_history = 0 # 不保留历史
# 清空之前的结果
self.current_result = None
self.runtime.clear_kv_cache(False)
# 执行推理
start_time = time.time()
self.runtime.run(rk_input, infer_params)
end_time = time.time()
print(f"推理耗时: {end_time - start_time:.3f}秒")
if self.current_result and 'embedding' in self.current_result:
# 对嵌入向量进行L2标准化
embedding = self.current_result['embedding']
normalized_embedding = embedding / np.linalg.norm(embedding)
return normalized_embedding
else:
raise RuntimeError("未能获取到有效的嵌入向量")
except Exception as e:
print(f"编码文本时发生错误: {e}")
raise
def compute_similarity(self, emb1: np.ndarray, emb2: np.ndarray) -> float:
"""
计算两个嵌入向量的余弦相似度
Args:
emb1: 第一个嵌入向量
emb2: 第二个嵌入向量
Returns:
余弦相似度值
"""
return np.dot(emb1, emb2)
def test_embedding_similarity(self):
"""测试嵌入相似度计算"""
print("\n" + "="*50)
print("测试嵌入相似度计算")
print("="*50)
# 测试文本
task_description = "Given a web search query, retrieve relevant passages that answer the query"
queries = [
"What is the capital of China?",
"Explain gravity"
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
]
# 编码查询(使用指令)
print("\n编码查询文本:")
query_embeddings = []
for i, query in enumerate(queries):
print(f"\n查询 {i+1}: {query}")
emb = self.encode_text(query, task_description)
query_embeddings.append(emb)
# 编码文档(不使用指令)
print("\n编码文档文本:")
doc_embeddings = []
for i, doc in enumerate(documents):
print(f"\n文档 {i+1}: {doc}")
emb = self.encode_text(doc)
doc_embeddings.append(emb)
# 计算相似度矩阵
print("\n计算相似度矩阵:")
print("查询 vs 文档相似度:")
print("-" * 30)
similarities = []
for i, q_emb in enumerate(query_embeddings):
row_similarities = []
for j, d_emb in enumerate(doc_embeddings):
sim = self.compute_similarity(q_emb, d_emb)
row_similarities.append(sim)
print(f"查询{i+1} vs 文档{j+1}: {sim:.4f}")
similarities.append(row_similarities)
print()
return similarities
def test_multilingual_embedding(self):
"""测试多语言嵌入能力"""
print("\n" + "="*50)
print("测试多语言嵌入能力")
print("="*50)
# 多语言测试文本(相同含义的不同语言)
texts = {
"英语": "Hello, how are you?",
"中文": "你好,你好吗?",
"法语": "Bonjour, comment allez-vous?",
"西班牙语": "Hola, ¿cómo estás?",
"日语": "こんにちは、元気ですか?"
}
embeddings = {}
print("\n编码多语言文本:")
for lang, text in texts.items():
print(f"\n{lang}: {text}")
emb = self.encode_text(text)
embeddings[lang] = emb
# 计算跨语言相似度
print("\n跨语言相似度:")
print("-" * 30)
languages = list(texts.keys())
for i, lang1 in enumerate(languages):
for j, lang2 in enumerate(languages):
if i <= j:
sim = self.compute_similarity(embeddings[lang1], embeddings[lang2])
print(f"{lang1} vs {lang2}: {sim:.4f}")
def test_code_embedding(self):
"""测试代码嵌入能力"""
print("\n" + "="*50)
print("测试代码嵌入能力")
print("="*50)
# 代码示例
codes = {
"Python函数": """
def fibonacci(n):
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
""",
"JavaScript函数": """
function fibonacci(n) {
if (n <= 1) return n;
return fibonacci(n-1) + fibonacci(n-2);
}
""",
"C++函数": """
int fibonacci(int n) {
if (n <= 1) return n;
return fibonacci(n-1) + fibonacci(n-2);
}
""",
"数组排序": """
def bubble_sort(arr):
n = len(arr)
for i in range(n):
for j in range(0, n-i-1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]
"""
}
embeddings = {}
print("\n编码代码文本:")
for name, code in codes.items():
print(f"\n{name}:")
print(code[:100] + "..." if len(code) > 100 else code)
emb = self.encode_text(code)
embeddings[name] = emb
# 计算代码相似度
print("\n代码相似度:")
print("-" * 30)
code_names = list(codes.keys())
for i, name1 in enumerate(code_names):
for j, name2 in enumerate(code_names):
if i <= j:
sim = self.compute_similarity(embeddings[name1], embeddings[name2])
print(f"{name1} vs {name2}: {sim:.4f}")
def cleanup(self):
"""清理资源"""
if self.runtime:
try:
self.runtime.destroy()
print("模型资源已清理")
except Exception as e:
print(f"清理资源时发生错误: {e}")
def main():
"""主函数"""
import argparse
# 解析命令行参数
parser = argparse.ArgumentParser(description='Qwen3-Embedding-0.6B 推理测试')
parser.add_argument('model_path', help='模型文件路径(.rkllm格式)')
parser.add_argument('--library_path', default="./librkllmrt.so", help='RKLLM库文件路径(默认为./librkllmrt.so)')
args = parser.parse_args()
# 检查文件是否存在
if not os.path.exists(args.model_path):
print(f"错误: 模型文件不存在: {args.model_path}")
print("请确保:")
print("1. 已下载 Qwen3-Embedding-0.6B 模型")
print("2. 已使用 rkllm-convert.py 将模型转换为 .rkllm 格式")
return
if not os.path.exists(args.library_path):
print(f"错误: RKLLM 库文件不存在: {args.library_path}")
print("请确保 librkllmrt.so 在当前目录或 LD_LIBRARY_PATH 中")
return
print("Qwen3-Embedding-0.6B 推理测试")
print("=" * 50)
# 创建测试器
tester = Qwen3EmbeddingTester(args.model_path, args.library_path)
try:
# 初始化模型
tester.init_model()
# 运行测试
print("\n开始运行嵌入测试...")
# 测试基础嵌入相似度
tester.test_embedding_similarity()
# 测试多语言嵌入
tester.test_multilingual_embedding()
# 测试代码嵌入
tester.test_code_embedding()
print("\n" + "="*50)
print("所有测试完成!")
print("="*50)
except KeyboardInterrupt:
print("\n测试被用户中断")
except Exception as e:
print(f"\n测试过程中发生错误: {e}")
import traceback
traceback.print_exc()
finally:
# 清理资源
tester.cleanup()
if __name__ == "__main__":
main()
|