--- base_model: GreenerPastures/Golden-Curry-12B datasets: - Mielikki/Erebus-87k - PocketDoc/Dans-MemoryCore-CoreCurriculum-Small - NewEden/Kalo-Opus-Instruct-22k-Refusal-Murdered - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - NewEden/Gryphe-Sonnet-3.5-35k-Subset - Nitral-AI/GU_Instruct-ShareGPT - Nitral-AI/Medical_Instruct-ShareGPT - AquaV/Resistance-Sharegpt - AquaV/US-Army-Survival-Sharegpt - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - ResplendentAI/bluemoon - hardlyworking/openerotica-freedomrp-sharegpt-system - MinervaAI/Aesir-Preview - anthracite-core/c2_logs_32k_v1.1 - Nitral-AI/Creative_Writing-ShareGPT - PJMixers/lodrick-the-lafted_OpusStories-Story2Prompt-ShareGPT - NewEden/Opus-accepted-hermes-rejected-shuffled language: - en license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # hardlyworking/Golden-Curry-12B-Q3_K_M-GGUF This model was converted to GGUF format from [`GreenerPastures/Golden-Curry-12B`](https://huggingface.co/GreenerPastures/Golden-Curry-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/GreenerPastures/Golden-Curry-12B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo hardlyworking/Golden-Curry-12B-Q3_K_M-GGUF --hf-file golden-curry-12b-q3_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo hardlyworking/Golden-Curry-12B-Q3_K_M-GGUF --hf-file golden-curry-12b-q3_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo hardlyworking/Golden-Curry-12B-Q3_K_M-GGUF --hf-file golden-curry-12b-q3_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo hardlyworking/Golden-Curry-12B-Q3_K_M-GGUF --hf-file golden-curry-12b-q3_k_m.gguf -c 2048 ```