Commit
路
dd38fc4
1
Parent(s):
4b2efc2
Create model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch import nn
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
from transformers import BertPreTrainedModel
|
| 6 |
+
from transformers.modeling_outputs import TokenClassifierOutput, BaseModelOutputWithPoolingAndCrossAttentions
|
| 7 |
+
from transformers.models.bert.modeling_bert import BertPooler, BertEncoder
|
| 8 |
+
|
| 9 |
+
class MetaQA_Model(BertPreTrainedModel):
|
| 10 |
+
def __init__(self, config):
|
| 11 |
+
super().__init__(config)
|
| 12 |
+
self.bert = MetaQABertModel(config)
|
| 13 |
+
self.num_agents = config.num_agents
|
| 14 |
+
|
| 15 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 16 |
+
self.list_MoSeN = nn.ModuleList([nn.Linear(config.hidden_size, 1) for i in range(self.num_agents)])
|
| 17 |
+
self.input_size_ans_sel = 1 + config.hidden_size
|
| 18 |
+
interm_size = int(config.hidden_size/2)
|
| 19 |
+
self.ans_sel = nn.Sequential(nn.Linear(self.input_size_ans_sel, interm_size),
|
| 20 |
+
nn.ReLU(),
|
| 21 |
+
nn.Dropout(config.hidden_dropout_prob),
|
| 22 |
+
nn.Linear(interm_size, 2))
|
| 23 |
+
|
| 24 |
+
self.init_weights()
|
| 25 |
+
|
| 26 |
+
def forward(
|
| 27 |
+
self,
|
| 28 |
+
input_ids=None,
|
| 29 |
+
attention_mask=None,
|
| 30 |
+
token_type_ids=None,
|
| 31 |
+
position_ids=None,
|
| 32 |
+
head_mask=None,
|
| 33 |
+
inputs_embeds=None,
|
| 34 |
+
labels=None,
|
| 35 |
+
output_attentions=None,
|
| 36 |
+
output_hidden_states=None,
|
| 37 |
+
return_dict=None,
|
| 38 |
+
ans_sc=None,
|
| 39 |
+
agent_sc=None,
|
| 40 |
+
):
|
| 41 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 42 |
+
|
| 43 |
+
outputs = self.bert(
|
| 44 |
+
input_ids,
|
| 45 |
+
attention_mask=attention_mask,
|
| 46 |
+
token_type_ids=token_type_ids,
|
| 47 |
+
position_ids=position_ids,
|
| 48 |
+
head_mask=head_mask,
|
| 49 |
+
inputs_embeds=inputs_embeds,
|
| 50 |
+
output_attentions=output_attentions,
|
| 51 |
+
output_hidden_states=output_hidden_states,
|
| 52 |
+
return_dict=return_dict,
|
| 53 |
+
ans_sc=ans_sc,
|
| 54 |
+
agent_sc=agent_sc,
|
| 55 |
+
)
|
| 56 |
+
# domain classification
|
| 57 |
+
pooled_output = outputs[1]
|
| 58 |
+
|
| 59 |
+
pooled_output = self.dropout(pooled_output)
|
| 60 |
+
list_domains_logits = []
|
| 61 |
+
for MoSeN in self.list_MoSeN:
|
| 62 |
+
domain_logits = MoSeN(pooled_output)
|
| 63 |
+
list_domains_logits.append(domain_logits)
|
| 64 |
+
domain_logits = torch.stack(list_domains_logits)
|
| 65 |
+
# shape = (num_agents, batch_size, 1)
|
| 66 |
+
# we have to transpose the shape to (batch_size, num_agents, 1)
|
| 67 |
+
domain_logits = domain_logits.transpose(0,1)
|
| 68 |
+
|
| 69 |
+
# ans classifier
|
| 70 |
+
sequence_output = outputs[0] # (batch_size, seq_len, hidden_size)
|
| 71 |
+
# select the [RANK] token embeddings
|
| 72 |
+
idx_rank = (input_ids == 1).nonzero() # (batch_size x num_agents, 2)
|
| 73 |
+
idx_rank = idx_rank[:,1].view(-1, self.num_agents)
|
| 74 |
+
list_emb = []
|
| 75 |
+
for i in range(idx_rank.shape[0]):
|
| 76 |
+
rank_emb = sequence_output[i][idx_rank[i], :]
|
| 77 |
+
# rank shape = (1, hidden_size)
|
| 78 |
+
list_emb.append(rank_emb)
|
| 79 |
+
|
| 80 |
+
rank_emb = torch.stack(list_emb)
|
| 81 |
+
|
| 82 |
+
rank_emb = self.dropout(rank_emb)
|
| 83 |
+
rank_emb = torch.cat((rank_emb, domain_logits), dim=2)
|
| 84 |
+
# rank emb shape = (batch_size, num_agents, hidden_size+1)
|
| 85 |
+
logits = self.ans_sel(rank_emb) # (batch_size, num_agents, 2)
|
| 86 |
+
|
| 87 |
+
if not return_dict:
|
| 88 |
+
output = (logits,) + outputs[2:]
|
| 89 |
+
return output
|
| 90 |
+
|
| 91 |
+
return TokenClassifierOutput(
|
| 92 |
+
loss=None,
|
| 93 |
+
logits=logits,
|
| 94 |
+
hidden_states=outputs.hidden_states,
|
| 95 |
+
attentions=outputs.attentions,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class MetaQABertModel(BertPreTrainedModel):
|
| 100 |
+
def __init__(self, config, add_pooling_layer=True):
|
| 101 |
+
super().__init__(config)
|
| 102 |
+
self.config = config
|
| 103 |
+
|
| 104 |
+
self.embeddings = MetaQABertEmbeddings(config) # NEW
|
| 105 |
+
self.encoder = BertEncoder(config)
|
| 106 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
| 107 |
+
|
| 108 |
+
self.init_weights()
|
| 109 |
+
|
| 110 |
+
def get_input_embeddings(self):
|
| 111 |
+
return self.embeddings.word_embeddings
|
| 112 |
+
|
| 113 |
+
def set_input_embeddings(self, value):
|
| 114 |
+
self.embeddings.word_embeddings = value
|
| 115 |
+
|
| 116 |
+
def _prune_heads(self, heads_to_prune):
|
| 117 |
+
for layer, heads in heads_to_prune.items():
|
| 118 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 119 |
+
|
| 120 |
+
def forward(
|
| 121 |
+
self,
|
| 122 |
+
input_ids=None,
|
| 123 |
+
attention_mask=None,
|
| 124 |
+
token_type_ids=None,
|
| 125 |
+
position_ids=None,
|
| 126 |
+
head_mask=None,
|
| 127 |
+
inputs_embeds=None,
|
| 128 |
+
encoder_hidden_states=None,
|
| 129 |
+
encoder_attention_mask=None,
|
| 130 |
+
past_key_values=None,
|
| 131 |
+
use_cache=None,
|
| 132 |
+
output_attentions=None,
|
| 133 |
+
output_hidden_states=None,
|
| 134 |
+
return_dict=None,
|
| 135 |
+
ans_sc=None,
|
| 136 |
+
agent_sc=None,
|
| 137 |
+
):
|
| 138 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 139 |
+
output_hidden_states = (
|
| 140 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 141 |
+
)
|
| 142 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 143 |
+
|
| 144 |
+
if self.config.is_decoder:
|
| 145 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 146 |
+
else:
|
| 147 |
+
use_cache = False
|
| 148 |
+
|
| 149 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 150 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 151 |
+
elif input_ids is not None:
|
| 152 |
+
input_shape = input_ids.size()
|
| 153 |
+
batch_size, seq_length = input_shape
|
| 154 |
+
elif inputs_embeds is not None:
|
| 155 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 156 |
+
batch_size, seq_length = input_shape
|
| 157 |
+
else:
|
| 158 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 159 |
+
|
| 160 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 161 |
+
|
| 162 |
+
# past_key_values_length
|
| 163 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 164 |
+
|
| 165 |
+
if attention_mask is None:
|
| 166 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
| 167 |
+
|
| 168 |
+
if token_type_ids is None:
|
| 169 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
| 170 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
| 171 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
| 172 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 173 |
+
else:
|
| 174 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
| 175 |
+
|
| 176 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 177 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 178 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
| 179 |
+
|
| 180 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 181 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 182 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
| 183 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 184 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 185 |
+
if encoder_attention_mask is None:
|
| 186 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 187 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 188 |
+
else:
|
| 189 |
+
encoder_extended_attention_mask = None
|
| 190 |
+
|
| 191 |
+
# Prepare head mask if needed
|
| 192 |
+
# 1.0 in head_mask indicate we keep the head
|
| 193 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 194 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 195 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 196 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 197 |
+
|
| 198 |
+
embedding_output = self.embeddings(
|
| 199 |
+
input_ids=input_ids,
|
| 200 |
+
position_ids=position_ids,
|
| 201 |
+
token_type_ids=token_type_ids,
|
| 202 |
+
inputs_embeds=inputs_embeds,
|
| 203 |
+
past_key_values_length=past_key_values_length,
|
| 204 |
+
ans_sc=ans_sc,
|
| 205 |
+
agent_sc=agent_sc,
|
| 206 |
+
)
|
| 207 |
+
encoder_outputs = self.encoder(
|
| 208 |
+
embedding_output,
|
| 209 |
+
attention_mask=extended_attention_mask,
|
| 210 |
+
head_mask=head_mask,
|
| 211 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 212 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 213 |
+
past_key_values=past_key_values,
|
| 214 |
+
use_cache=use_cache,
|
| 215 |
+
output_attentions=output_attentions,
|
| 216 |
+
output_hidden_states=output_hidden_states,
|
| 217 |
+
return_dict=return_dict,
|
| 218 |
+
)
|
| 219 |
+
sequence_output = encoder_outputs[0]
|
| 220 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 221 |
+
|
| 222 |
+
if not return_dict:
|
| 223 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 224 |
+
|
| 225 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
| 226 |
+
last_hidden_state=sequence_output,
|
| 227 |
+
pooler_output=pooled_output,
|
| 228 |
+
past_key_values=encoder_outputs.past_key_values,
|
| 229 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 230 |
+
attentions=encoder_outputs.attentions,
|
| 231 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
class MetaQABertEmbeddings(nn.Module):
|
| 235 |
+
"""Construct the embeddings from
|
| 236 |
+
word, position, token_type embeddings, and scores from the QA agents."""
|
| 237 |
+
|
| 238 |
+
def __init__(self, config):
|
| 239 |
+
super().__init__()
|
| 240 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
| 241 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
| 242 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
| 243 |
+
self.ans_sc_proj = nn.Linear(1, config.hidden_size)
|
| 244 |
+
self.agent_sc_proj = nn.Linear(1, config.hidden_size)
|
| 245 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
| 246 |
+
# any TensorFlow checkpoint file
|
| 247 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 248 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 249 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 250 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
| 251 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
| 252 |
+
self.register_buffer(
|
| 253 |
+
"token_type_ids",
|
| 254 |
+
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
|
| 255 |
+
persistent=False,
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def forward(
|
| 260 |
+
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0,
|
| 261 |
+
ans_sc=None, agent_sc=None):
|
| 262 |
+
if input_ids is not None:
|
| 263 |
+
input_shape = input_ids.size()
|
| 264 |
+
else:
|
| 265 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 266 |
+
|
| 267 |
+
seq_length = input_shape[1]
|
| 268 |
+
|
| 269 |
+
if position_ids is None:
|
| 270 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
| 271 |
+
|
| 272 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
| 273 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
| 274 |
+
# issue #5664
|
| 275 |
+
if token_type_ids is None:
|
| 276 |
+
if hasattr(self, "token_type_ids"):
|
| 277 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
| 278 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
| 279 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 280 |
+
else:
|
| 281 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
| 282 |
+
|
| 283 |
+
if inputs_embeds is None:
|
| 284 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 285 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 286 |
+
|
| 287 |
+
embeddings = inputs_embeds + token_type_embeddings
|
| 288 |
+
if self.position_embedding_type == "absolute":
|
| 289 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 290 |
+
embeddings += position_embeddings
|
| 291 |
+
|
| 292 |
+
if ans_sc is not None:
|
| 293 |
+
ans_sc_emb = self.ans_sc_proj(ans_sc.unsqueeze(2))
|
| 294 |
+
embeddings += ans_sc_emb
|
| 295 |
+
if agent_sc is not None:
|
| 296 |
+
agent_sc_emb = self.agent_sc_proj(agent_sc.unsqueeze(2))
|
| 297 |
+
embeddings += agent_sc_emb
|
| 298 |
+
|
| 299 |
+
embeddings = self.LayerNorm(embeddings)
|
| 300 |
+
embeddings = self.dropout(embeddings)
|
| 301 |
+
return embeddings
|