harpreetsahota commited on
Commit
562bbe6
·
verified ·
1 Parent(s): b7a7473

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -13
README.md CHANGED
@@ -21,21 +21,16 @@ This model detects and segments six types of vehicle damage: cracks, dents, glas
21
 
22
  ## Performance Metrics
23
 
24
- ### Overall Performance
25
- | Task | Precision | Recall | mAP50 | mAP50-95 |
26
- |------|-----------|--------|-------|----------|
27
- | Box | 0.753 | 0.689 | 0.734 | 0.513 |
28
- | Mask | 0.762 | 0.692 | 0.735 | 0.503 |
29
 
30
  ### Class-Specific Performance (Mask Segmentation)
31
- | Class | Precision | Recall | mAP50 | mAP50-95 |
32
- |---------------|-----------|--------|-------|----------|
33
- | crack | 0.665 | 0.368 | 0.445 | 0.167 |
34
- | dent | 0.626 | 0.530 | 0.562 | 0.281 |
35
- | glass shatter | 0.881 | 1.000 | 0.986 | 0.724 |
36
- | lamp broken | 0.759 | 0.825 | 0.857 | 0.669 |
37
- | scratch | 0.684 | 0.560 | 0.589 | 0.284 |
38
- | tire flat | 0.958 | 0.869 | 0.971 | 0.891 |
39
 
40
  ## Training Recipe
41
 
@@ -116,6 +111,62 @@ The model was trained on the CarDD (Car Damage Detection) dataset with:
116
 
117
  ## Usage
118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
  ## Limitations
120
 
121
  - Lower recall for crack detection (36.8%)
 
21
 
22
  ## Performance Metrics
23
 
 
 
 
 
 
24
 
25
  ### Class-Specific Performance (Mask Segmentation)
26
+ Class Images Instances Box(P R mAP50 mAP50-95) Mask(P R mAP50 mAP50-95)
27
+ all 571 1247 0.824 0.75 0.799 0.599 0.827 0.749 0.792 0.576
28
+ crack 92 152 0.657 0.48 0.545 0.322 0.665 0.483 0.518 0.214
29
+ dent 249 366 0.706 0.571 0.633 0.377 0.697 0.56 0.612 0.344
30
+ glass shatter 89 91 0.98 0.989 0.994 0.728 0.981 0.989 0.994 0.784
31
+ lamp broken 103 103 0.91 0.893 0.964 0.791 0.921 0.902 0.967 0.808
32
+ scratch 281 482 0.728 0.614 0.676 0.421 0.734 0.613 0.68 0.368
33
+ tire flat 50 53 0.962 0.951 0.982 0.951 0.962 0.949 0.982 0.941
34
 
35
  ## Training Recipe
36
 
 
111
 
112
  ## Usage
113
 
114
+
115
+ Download weight: `!wget https://huggingface.co/harpreetsahota/car-dd-segmentation-yolov11/resolve/main/best.pt -O yolov11-seg-cardd.pt`
116
+
117
+ ```
118
+ from ultralytics import YOLO
119
+ import os
120
+ import gdown
121
+
122
+ # Load the model
123
+ model = YOLO('best.pt')
124
+
125
+ # Apply the model to the test dataset
126
+ # FiftyOne automatically handles batching and processing
127
+ test_dataset.apply_model(
128
+ model,
129
+ label_field="yolo_predictions", # Field name to store predictions
130
+ confidence_thresh=0.25, # Minimum confidence threshold
131
+ batch_size=8 # Adjust based on your GPU memory
132
+ )
133
+
134
+ # Define the class list to match your model's classes
135
+ classes = ["crack", "dent", "glass shatter", "lamp broken", "scratch", "tire flat"]
136
+
137
+ # Evaluate detections against ground truth
138
+ eval_results = test_dataset.evaluate_detections(
139
+ "yolo_predictions", # Field containing model predictions
140
+ gt_field="segmentations", # Field containing ground truth
141
+ eval_key="model_eval", # Key to store evaluation results
142
+ use_masks=True, # Use pixel masks for IoU calculation
143
+ compute_mAP=True, # Compute mean Average Precision
144
+ method="coco", # COCO evaluation protocol
145
+ classes=classes, # Class list
146
+ iou=0.50 # IoU threshold
147
+ )
148
+
149
+ # Print evaluation results
150
+ print(eval_results)
151
+
152
+ # Visualize evaluation results in the FiftyOne App
153
+ from fiftyone import ViewField as F
154
+
155
+ # Create a view showing false positives with high confidence
156
+ high_conf_fp_view = test_dataset.filter_labels(
157
+ "yolo_predictions",
158
+ (F("confidence") > 0.7) & (F("eval") == "fp")
159
+ )
160
+
161
+ # Sort by false positive count
162
+ sorted_view = high_conf_fp_view.sort_by(
163
+ F("yolo_predictions.detections").length(), reverse=True
164
+ )
165
+
166
+ # Launch the app with this view
167
+ session = fo.launch_app(sorted_view)
168
+ ```
169
+
170
  ## Limitations
171
 
172
  - Lower recall for crack detection (36.8%)