harpreetsahota commited on
Commit
cf246fd
·
verified ·
1 Parent(s): e9156ef

Upload YOLOv11 car damage segmentation model

Browse files
Files changed (2) hide show
  1. README.md +109 -0
  2. best.pt +3 -0
README.md ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Car Damage Segmentation YOLOv11 Model
2
+
3
+ ## Model Overview
4
+ This model is a fine-tuned YOLOv11-seg specifically optimized for vehicle damage segmentation. It can accurately detect and segment various types of vehicle damage using the CarDD dataset.
5
+
6
+ ## Model Details
7
+ - **Base Architecture**: YOLOv11-seg
8
+ - **Training Dataset**: CarDD dataset (Car Damage Detection)
9
+ - **Input Resolution**: 1280×1280
10
+ - **Damage Classes**:
11
+ - crack
12
+ - dent
13
+ - glass shatter
14
+ - lamp broken
15
+ - scratch
16
+ - tire flat
17
+
18
+ ## Performance Metrics
19
+
20
+ ### Overall Performance
21
+ | Task | Precision | Recall | mAP50 | mAP50-95 |
22
+ |------|-----------|--------|-------|----------|
23
+ | Box | 0.753 | 0.689 | 0.734 | 0.513 |
24
+ | Mask | 0.762 | 0.692 | 0.735 | 0.503 |
25
+
26
+ ### Class-Specific Performance (Box Detection)
27
+ | Class | Precision | Recall | mAP50 | mAP50-95 |
28
+ |---------------|-----------|--------|-------|----------|
29
+ | crack | 0.649 | 0.362 | 0.452 | 0.249 |
30
+ | dent | 0.607 | 0.524 | 0.565 | 0.324 |
31
+ | glass shatter | 0.879 | 1.000 | 0.986 | 0.656 |
32
+ | lamp broken | 0.749 | 0.816 | 0.838 | 0.639 |
33
+ | scratch | 0.673 | 0.563 | 0.595 | 0.327 |
34
+ | tire flat | 0.958 | 0.871 | 0.971 | 0.880 |
35
+
36
+ ### Class-Specific Performance (Mask Segmentation)
37
+ | Class | Precision | Recall | mAP50 | mAP50-95 |
38
+ |---------------|-----------|--------|-------|----------|
39
+ | crack | 0.665 | 0.368 | 0.445 | 0.167 |
40
+ | dent | 0.626 | 0.530 | 0.562 | 0.281 |
41
+ | glass shatter | 0.881 | 1.000 | 0.986 | 0.724 |
42
+ | lamp broken | 0.759 | 0.825 | 0.857 | 0.669 |
43
+ | scratch | 0.684 | 0.560 | 0.589 | 0.284 |
44
+ | tire flat | 0.958 | 0.869 | 0.971 | 0.891 |
45
+
46
+ ### Dataset Stats
47
+ - **Images**: 571
48
+ - **Instances**: 1247
49
+ - **Instance Distribution**:
50
+ - crack: 152
51
+ - dent: 366
52
+ - glass shatter: 91
53
+ - lamp broken: 103
54
+ - scratch: 482
55
+ - tire flat: 53
56
+
57
+ ## Training Configuration
58
+ ```yaml
59
+ batch: 24
60
+ imgsz: 1280
61
+ epochs: 300
62
+ patience: 15
63
+ workers: 16
64
+ device: cuda
65
+ cache: True
66
+ amp: True
67
+ overlap_mask: True
68
+ warmup_epochs: 3
69
+ mosaic: 1.0
70
+ mixup: 0.1
71
+ copy_paste: 0.1
72
+ ```
73
+
74
+ ## Usage
75
+
76
+ ### Installation
77
+ ```bash
78
+ pip install ultralytics
79
+ ```
80
+
81
+ ### Inference with Python
82
+ ```python
83
+ from ultralytics import YOLO
84
+
85
+ # Load the model
86
+ model = YOLO('best.pt')
87
+
88
+ # Run inference on an image
89
+ results = model('path/to/car/image.jpg')
90
+
91
+ # Process results
92
+ for result in results:
93
+ boxes = result.boxes # Bounding boxes
94
+ masks = result.masks # Segmentation masks
95
+ ```
96
+
97
+ ## Model Strengths
98
+ - Excellent performance on glass shatter (98.6% mAP50) and tire flat (97.1% mAP50)
99
+ - Good balance between precision and recall for most damage types
100
+ - High-quality segmentation masks, particularly for well-defined damage types
101
+
102
+ ## Model Limitations
103
+ - Lower recall for crack detection (36.2%)
104
+ - Performance varies across damage types (mAP50 ranges from 45.2% for cracks to 98.6% for glass shatter)
105
+ - Small damages might be missed, particularly fine cracks
106
+ - Works best with clear, well-lit images of vehicles
107
+
108
+ ## License
109
+ This model is available under the [insert license type].
best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b52d0d7b78a5d6a2514d369b9c96fc2bb372629bd879e97004fa06fec5058dd1
3
+ size 20682724