Upload YOLOv11 car damage segmentation model
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Car Damage Segmentation YOLOv11 Model
|
2 |
+
|
3 |
+
## Model Overview
|
4 |
+
This model is a fine-tuned YOLOv11-seg specifically optimized for vehicle damage segmentation. It can accurately detect and segment various types of vehicle damage using the CarDD dataset.
|
5 |
+
|
6 |
+
## Model Details
|
7 |
+
- **Base Architecture**: YOLOv11-seg
|
8 |
+
- **Training Dataset**: CarDD dataset (Car Damage Detection)
|
9 |
+
- **Input Resolution**: 1280×1280
|
10 |
+
- **Damage Classes**:
|
11 |
+
- crack
|
12 |
+
- dent
|
13 |
+
- glass shatter
|
14 |
+
- lamp broken
|
15 |
+
- scratch
|
16 |
+
- tire flat
|
17 |
+
|
18 |
+
## Performance Metrics
|
19 |
+
|
20 |
+
### Overall Performance
|
21 |
+
| Task | Precision | Recall | mAP50 | mAP50-95 |
|
22 |
+
|------|-----------|--------|-------|----------|
|
23 |
+
| Box | 0.753 | 0.689 | 0.734 | 0.513 |
|
24 |
+
| Mask | 0.762 | 0.692 | 0.735 | 0.503 |
|
25 |
+
|
26 |
+
### Class-Specific Performance (Box Detection)
|
27 |
+
| Class | Precision | Recall | mAP50 | mAP50-95 |
|
28 |
+
|---------------|-----------|--------|-------|----------|
|
29 |
+
| crack | 0.649 | 0.362 | 0.452 | 0.249 |
|
30 |
+
| dent | 0.607 | 0.524 | 0.565 | 0.324 |
|
31 |
+
| glass shatter | 0.879 | 1.000 | 0.986 | 0.656 |
|
32 |
+
| lamp broken | 0.749 | 0.816 | 0.838 | 0.639 |
|
33 |
+
| scratch | 0.673 | 0.563 | 0.595 | 0.327 |
|
34 |
+
| tire flat | 0.958 | 0.871 | 0.971 | 0.880 |
|
35 |
+
|
36 |
+
### Class-Specific Performance (Mask Segmentation)
|
37 |
+
| Class | Precision | Recall | mAP50 | mAP50-95 |
|
38 |
+
|---------------|-----------|--------|-------|----------|
|
39 |
+
| crack | 0.665 | 0.368 | 0.445 | 0.167 |
|
40 |
+
| dent | 0.626 | 0.530 | 0.562 | 0.281 |
|
41 |
+
| glass shatter | 0.881 | 1.000 | 0.986 | 0.724 |
|
42 |
+
| lamp broken | 0.759 | 0.825 | 0.857 | 0.669 |
|
43 |
+
| scratch | 0.684 | 0.560 | 0.589 | 0.284 |
|
44 |
+
| tire flat | 0.958 | 0.869 | 0.971 | 0.891 |
|
45 |
+
|
46 |
+
### Dataset Stats
|
47 |
+
- **Images**: 571
|
48 |
+
- **Instances**: 1247
|
49 |
+
- **Instance Distribution**:
|
50 |
+
- crack: 152
|
51 |
+
- dent: 366
|
52 |
+
- glass shatter: 91
|
53 |
+
- lamp broken: 103
|
54 |
+
- scratch: 482
|
55 |
+
- tire flat: 53
|
56 |
+
|
57 |
+
## Training Configuration
|
58 |
+
```yaml
|
59 |
+
batch: 24
|
60 |
+
imgsz: 1280
|
61 |
+
epochs: 300
|
62 |
+
patience: 15
|
63 |
+
workers: 16
|
64 |
+
device: cuda
|
65 |
+
cache: True
|
66 |
+
amp: True
|
67 |
+
overlap_mask: True
|
68 |
+
warmup_epochs: 3
|
69 |
+
mosaic: 1.0
|
70 |
+
mixup: 0.1
|
71 |
+
copy_paste: 0.1
|
72 |
+
```
|
73 |
+
|
74 |
+
## Usage
|
75 |
+
|
76 |
+
### Installation
|
77 |
+
```bash
|
78 |
+
pip install ultralytics
|
79 |
+
```
|
80 |
+
|
81 |
+
### Inference with Python
|
82 |
+
```python
|
83 |
+
from ultralytics import YOLO
|
84 |
+
|
85 |
+
# Load the model
|
86 |
+
model = YOLO('best.pt')
|
87 |
+
|
88 |
+
# Run inference on an image
|
89 |
+
results = model('path/to/car/image.jpg')
|
90 |
+
|
91 |
+
# Process results
|
92 |
+
for result in results:
|
93 |
+
boxes = result.boxes # Bounding boxes
|
94 |
+
masks = result.masks # Segmentation masks
|
95 |
+
```
|
96 |
+
|
97 |
+
## Model Strengths
|
98 |
+
- Excellent performance on glass shatter (98.6% mAP50) and tire flat (97.1% mAP50)
|
99 |
+
- Good balance between precision and recall for most damage types
|
100 |
+
- High-quality segmentation masks, particularly for well-defined damage types
|
101 |
+
|
102 |
+
## Model Limitations
|
103 |
+
- Lower recall for crack detection (36.2%)
|
104 |
+
- Performance varies across damage types (mAP50 ranges from 45.2% for cracks to 98.6% for glass shatter)
|
105 |
+
- Small damages might be missed, particularly fine cracks
|
106 |
+
- Works best with clear, well-lit images of vehicles
|
107 |
+
|
108 |
+
## License
|
109 |
+
This model is available under the [insert license type].
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b52d0d7b78a5d6a2514d369b9c96fc2bb372629bd879e97004fa06fec5058dd1
|
3 |
+
size 20682724
|