Update README.md
Browse files
README.md
CHANGED
@@ -1,96 +1,98 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
-
# Weaver Distilled
|
6 |
|
7 |
-
|
8 |
|
9 |
## Model Details
|
10 |
|
11 |
-
- **Base Model**: [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large)
|
12 |
- **Architecture**: Cross-encoder with MLP head (1024 → 512 → 256 → 1)
|
13 |
-
- **Max Sequence Length**: 4096
|
14 |
-
- **Training Data**:
|
15 |
-
- **
|
16 |
|
17 |
-
##
|
18 |
-
TODO: ADD POINTER TO CUSTOM_CROSSENCODER.PY SCRIPT
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
|
26 |
-
logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO)
|
27 |
-
logger = logging.getLogger(__name__)
|
28 |
|
29 |
-
|
30 |
-
config = TrainingConfig(
|
31 |
-
model_name="answerdotai/ModernBERT-large", # Base model to use
|
32 |
-
max_length=4096,
|
33 |
-
mlp_hidden_dims=[1024, 512, 256], # Default for ModernBERT
|
34 |
-
dropout_rate=0.1,
|
35 |
-
dataset_path="hazyresearch/MATH500_with_Llama_3.1_70B_Instruct_v1",
|
36 |
-
)
|
37 |
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
-
# Load model
|
42 |
-
|
43 |
-
|
44 |
-
model.
|
45 |
-
model.eval() # Set to evaluation mode
|
46 |
|
47 |
-
#
|
48 |
-
instruction = "Solve
|
49 |
-
response = "The
|
50 |
|
51 |
-
# Tokenize input
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
truncation=True,
|
56 |
-
max_length=
|
57 |
-
padding=
|
58 |
return_tensors="pt"
|
59 |
)
|
60 |
|
61 |
-
# Get
|
62 |
-
logger.info("\nMaking prediction on dummy example:")
|
63 |
-
logger.info(f"Instruction: {instruction}")
|
64 |
-
logger.info(f"Response: {response}")
|
65 |
-
|
66 |
-
# Move tensors to the same device as model
|
67 |
-
device = next(model.parameters()).device
|
68 |
-
input_ids = encoded["input_ids"].to(device)
|
69 |
-
attention_mask = encoded["attention_mask"].to(device)
|
70 |
-
|
71 |
-
# Get raw score
|
72 |
with torch.no_grad():
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
binary_prediction = "Correct" if score >= 0.5 else "Incorrect"
|
79 |
-
logger.info(f"Binary prediction (threshold 0.5): {binary_prediction}")
|
80 |
```
|
81 |
|
82 |
-
##
|
83 |
|
84 |
-
|
85 |
|
86 |
-
##
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
|
94 |
```bibtex
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
```
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
pipeline_tag: text-classification
|
4 |
+
library_name: transformers
|
5 |
+
base_model: answerdotai/ModernBERT-large
|
6 |
+
tags:
|
7 |
+
- math
|
8 |
+
- reasoning
|
9 |
+
- verification
|
10 |
+
- weaver
|
11 |
+
- cross-encoder
|
12 |
+
language:
|
13 |
+
- en
|
14 |
---
|
15 |
|
16 |
+
# Weaver Distilled for MATH500
|
17 |
|
18 |
+
A distilled cross-encoder model that captures 98.7% of Weaver's accuracy while reducing verification compute by 99.97%. This model is fine-tuned from ModernBERT-large to predict the correctness of mathematical reasoning responses, trained on Weaver ensemble scores from 35 different verifiers.
|
19 |
|
20 |
## Model Details
|
21 |
|
22 |
+
- **Base Model**: [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) (395M parameters)
|
23 |
- **Architecture**: Cross-encoder with MLP head (1024 → 512 → 256 → 1)
|
24 |
+
- **Max Sequence Length**: 4096 tokens
|
25 |
+
- **Training Data**: MATH500 problems with Weaver scores from 35 LM judges and reward models
|
26 |
+
- **Task**: Binary classification for answer correctness prediction
|
27 |
|
28 |
+
## Performance
|
|
|
29 |
|
30 |
+
On MATH500 with Llama 3.1 70B generations:
|
31 |
+
- **Weaver (Full)**: 93.4% accuracy, high compute cost
|
32 |
+
- **Weaver (Distilled)**: 92.2% accuracy, 99.97% compute reduction
|
33 |
+
- **Majority Voting**: 83.0% accuracy
|
34 |
|
35 |
+
TODO: replace these with the actual numbers
|
|
|
|
|
36 |
|
37 |
+
## Quick Start
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
```python
|
40 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
41 |
+
import torch
|
42 |
|
43 |
+
# Load model and tokenizer
|
44 |
+
model_name = "hazyresearch/Weaver_Distilled_for_MATH500"
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
46 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
47 |
|
48 |
+
# Example usage
|
49 |
+
instruction = "Solve: What is the derivative of x^2 + 3x + 2?"
|
50 |
+
response = "The derivative is 2x + 3. Using the power rule..."
|
51 |
|
52 |
+
# Tokenize input pair
|
53 |
+
inputs = tokenizer(
|
54 |
+
instruction,
|
55 |
+
response,
|
56 |
truncation=True,
|
57 |
+
max_length=4096,
|
58 |
+
padding=True,
|
59 |
return_tensors="pt"
|
60 |
)
|
61 |
|
62 |
+
# Get correctness score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
with torch.no_grad():
|
64 |
+
outputs = model(**inputs)
|
65 |
+
score = torch.sigmoid(outputs.logits).item()
|
66 |
+
|
67 |
+
print(f"Correctness score: {score:.3f}")
|
68 |
+
print(f"Prediction: {'Correct' if score > 0.5 else 'Incorrect'}")
|
|
|
|
|
69 |
```
|
70 |
|
71 |
+
## Training Details
|
72 |
|
73 |
+
This model was trained using the [Weaver distillation pipeline](https://github.com/ScalingIntelligence/scaling-verification/tree/main/distillation). For training your own distilled models, see the [distillation README](https://github.com/ScalingIntelligence/scaling-verification/blob/main/distillation/README.md).
|
74 |
|
75 |
+
## Evaluation
|
76 |
|
77 |
+
Evaluate this model using:
|
78 |
|
79 |
+
```bash
|
80 |
+
python evaluate_crossencoder.py \
|
81 |
+
--model_name "answerdotai/ModernBERT-large" \
|
82 |
+
--checkpoint_path "hazyresearch/Weaver_Distilled_for_MATH500" \
|
83 |
+
--dataset_path "hazyresearch/MATH500_with_Llama_3.1_70B_Instruct_v1" \
|
84 |
+
--dataset_split "data" \
|
85 |
+
--max_length 4096 \
|
86 |
+
--batch_size 64
|
87 |
+
```
|
88 |
|
89 |
+
## Citation
|
90 |
|
91 |
```bibtex
|
92 |
+
@article{weaver2025,
|
93 |
+
title={Weaver: Shrinking the Generation-Verification Gap with Weak Verifiers},
|
94 |
+
author={},
|
95 |
+
journal={arXiv preprint},
|
96 |
+
year={2025}
|
97 |
+
}
|
98 |
```
|