Add files using upload-large-folder tool
Browse files- README.md +61 -0
- added_tokens.json +24 -0
- all_results.json +8 -0
- chat_template.jinja +54 -0
- checkpoint-1042/config.json +28 -0
- checkpoint-1042/generation_config.json +14 -0
- checkpoint-1042/latest +1 -0
- checkpoint-1042/trainer_state.json +0 -0
- checkpoint-1042/vocab.json +0 -0
- checkpoint-1042/zero_to_fp32.py +760 -0
- checkpoint-2084/added_tokens.json +24 -0
- checkpoint-2084/chat_template.jinja +54 -0
- checkpoint-2084/config.json +28 -0
- checkpoint-2084/generation_config.json +14 -0
- checkpoint-2084/latest +1 -0
- checkpoint-2084/merges.txt +0 -0
- checkpoint-2084/special_tokens_map.json +31 -0
- checkpoint-2084/tokenizer_config.json +208 -0
- checkpoint-2084/trainer_state.json +0 -0
- checkpoint-2084/vocab.json +0 -0
- checkpoint-2084/zero_to_fp32.py +760 -0
- checkpoint-2605/added_tokens.json +24 -0
- checkpoint-2605/chat_template.jinja +54 -0
- checkpoint-2605/generation_config.json +14 -0
- checkpoint-2605/latest +1 -0
- checkpoint-2605/merges.txt +0 -0
- checkpoint-2605/special_tokens_map.json +31 -0
- checkpoint-2605/tokenizer_config.json +208 -0
- checkpoint-2605/trainer_state.json +0 -0
- checkpoint-521/added_tokens.json +24 -0
- checkpoint-521/chat_template.jinja +54 -0
- checkpoint-521/config.json +28 -0
- checkpoint-521/generation_config.json +14 -0
- checkpoint-521/latest +1 -0
- checkpoint-521/merges.txt +0 -0
- checkpoint-521/special_tokens_map.json +31 -0
- checkpoint-521/tokenizer_config.json +208 -0
- checkpoint-521/trainer_state.json +3681 -0
- checkpoint-521/vocab.json +0 -0
- checkpoint-521/zero_to_fp32.py +760 -0
- config.json +28 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- special_tokens_map.json +31 -0
- tokenizer_config.json +208 -0
- train_results.json +8 -0
- trainer_log.jsonl +0 -0
- trainer_state.json +0 -0
- training_loss.png +0 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: Qwen/Qwen2.5-1.5B-Instruct
|
5 |
+
tags:
|
6 |
+
- llama-factory
|
7 |
+
- full
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: Qwen2.5-1.5B-Instruct-OT3-8K-QwQ
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Qwen2.5-1.5B-Instruct-OT3-8K-QwQ
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the ot3_8k_subset_qwq dataset.
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 1e-05
|
39 |
+
- train_batch_size: 1
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 2
|
44 |
+
- gradient_accumulation_steps: 8
|
45 |
+
- total_train_batch_size: 16
|
46 |
+
- total_eval_batch_size: 16
|
47 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
+
- lr_scheduler_type: cosine
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 5.0
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
### Framework versions
|
57 |
+
|
58 |
+
- Transformers 4.52.4
|
59 |
+
- Pytorch 2.7.1+cu126
|
60 |
+
- Datasets 3.6.0
|
61 |
+
- Tokenizers 0.21.1
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"total_flos": 451881746563072.0,
|
4 |
+
"train_loss": 1.2663256504714147,
|
5 |
+
"train_runtime": 105590.0324,
|
6 |
+
"train_samples_per_second": 0.394,
|
7 |
+
"train_steps_per_second": 0.025
|
8 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0]['role'] == 'system' %}
|
4 |
+
{{- messages[0]['content'] }}
|
5 |
+
{%- else %}
|
6 |
+
{{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
|
7 |
+
{%- endif %}
|
8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
9 |
+
{%- for tool in tools %}
|
10 |
+
{{- "\n" }}
|
11 |
+
{{- tool | tojson }}
|
12 |
+
{%- endfor %}
|
13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
14 |
+
{%- else %}
|
15 |
+
{%- if messages[0]['role'] == 'system' %}
|
16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
17 |
+
{%- else %}
|
18 |
+
{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
|
19 |
+
{%- endif %}
|
20 |
+
{%- endif %}
|
21 |
+
{%- for message in messages %}
|
22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
24 |
+
{%- elif message.role == "assistant" %}
|
25 |
+
{{- '<|im_start|>' + message.role }}
|
26 |
+
{%- if message.content %}
|
27 |
+
{{- '\n' + message.content }}
|
28 |
+
{%- endif %}
|
29 |
+
{%- for tool_call in message.tool_calls %}
|
30 |
+
{%- if tool_call.function is defined %}
|
31 |
+
{%- set tool_call = tool_call.function %}
|
32 |
+
{%- endif %}
|
33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
34 |
+
{{- tool_call.name }}
|
35 |
+
{{- '", "arguments": ' }}
|
36 |
+
{{- tool_call.arguments | tojson }}
|
37 |
+
{{- '}\n</tool_call>' }}
|
38 |
+
{%- endfor %}
|
39 |
+
{{- '<|im_end|>\n' }}
|
40 |
+
{%- elif message.role == "tool" %}
|
41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
42 |
+
{{- '<|im_start|>user' }}
|
43 |
+
{%- endif %}
|
44 |
+
{{- '\n<tool_response>\n' }}
|
45 |
+
{{- message.content }}
|
46 |
+
{{- '\n</tool_response>' }}
|
47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
48 |
+
{{- '<|im_end|>\n' }}
|
49 |
+
{%- endif %}
|
50 |
+
{%- endif %}
|
51 |
+
{%- endfor %}
|
52 |
+
{%- if add_generation_prompt %}
|
53 |
+
{{- '<|im_start|>assistant\n' }}
|
54 |
+
{%- endif %}
|
checkpoint-1042/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 1536,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 8960,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 21,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": 32768,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.52.4",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
checkpoint-1042/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.52.4"
|
14 |
+
}
|
checkpoint-1042/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1041
|
checkpoint-1042/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1042/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1042/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-2084/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-2084/chat_template.jinja
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0]['role'] == 'system' %}
|
4 |
+
{{- messages[0]['content'] }}
|
5 |
+
{%- else %}
|
6 |
+
{{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
|
7 |
+
{%- endif %}
|
8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
9 |
+
{%- for tool in tools %}
|
10 |
+
{{- "\n" }}
|
11 |
+
{{- tool | tojson }}
|
12 |
+
{%- endfor %}
|
13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
14 |
+
{%- else %}
|
15 |
+
{%- if messages[0]['role'] == 'system' %}
|
16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
17 |
+
{%- else %}
|
18 |
+
{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
|
19 |
+
{%- endif %}
|
20 |
+
{%- endif %}
|
21 |
+
{%- for message in messages %}
|
22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
24 |
+
{%- elif message.role == "assistant" %}
|
25 |
+
{{- '<|im_start|>' + message.role }}
|
26 |
+
{%- if message.content %}
|
27 |
+
{{- '\n' + message.content }}
|
28 |
+
{%- endif %}
|
29 |
+
{%- for tool_call in message.tool_calls %}
|
30 |
+
{%- if tool_call.function is defined %}
|
31 |
+
{%- set tool_call = tool_call.function %}
|
32 |
+
{%- endif %}
|
33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
34 |
+
{{- tool_call.name }}
|
35 |
+
{{- '", "arguments": ' }}
|
36 |
+
{{- tool_call.arguments | tojson }}
|
37 |
+
{{- '}\n</tool_call>' }}
|
38 |
+
{%- endfor %}
|
39 |
+
{{- '<|im_end|>\n' }}
|
40 |
+
{%- elif message.role == "tool" %}
|
41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
42 |
+
{{- '<|im_start|>user' }}
|
43 |
+
{%- endif %}
|
44 |
+
{{- '\n<tool_response>\n' }}
|
45 |
+
{{- message.content }}
|
46 |
+
{{- '\n</tool_response>' }}
|
47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
48 |
+
{{- '<|im_end|>\n' }}
|
49 |
+
{%- endif %}
|
50 |
+
{%- endif %}
|
51 |
+
{%- endfor %}
|
52 |
+
{%- if add_generation_prompt %}
|
53 |
+
{{- '<|im_start|>assistant\n' }}
|
54 |
+
{%- endif %}
|
checkpoint-2084/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 1536,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 8960,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 21,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": 32768,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.52.4",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
checkpoint-2084/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.52.4"
|
14 |
+
}
|
checkpoint-2084/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2083
|
checkpoint-2084/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-2084/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-2084/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"clean_up_tokenization_spaces": false,
|
199 |
+
"eos_token": "<|im_end|>",
|
200 |
+
"errors": "replace",
|
201 |
+
"extra_special_tokens": {},
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"padding_side": "right",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-2084/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-2084/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-2084/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-2605/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-2605/chat_template.jinja
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0]['role'] == 'system' %}
|
4 |
+
{{- messages[0]['content'] }}
|
5 |
+
{%- else %}
|
6 |
+
{{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
|
7 |
+
{%- endif %}
|
8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
9 |
+
{%- for tool in tools %}
|
10 |
+
{{- "\n" }}
|
11 |
+
{{- tool | tojson }}
|
12 |
+
{%- endfor %}
|
13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
14 |
+
{%- else %}
|
15 |
+
{%- if messages[0]['role'] == 'system' %}
|
16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
17 |
+
{%- else %}
|
18 |
+
{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
|
19 |
+
{%- endif %}
|
20 |
+
{%- endif %}
|
21 |
+
{%- for message in messages %}
|
22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
24 |
+
{%- elif message.role == "assistant" %}
|
25 |
+
{{- '<|im_start|>' + message.role }}
|
26 |
+
{%- if message.content %}
|
27 |
+
{{- '\n' + message.content }}
|
28 |
+
{%- endif %}
|
29 |
+
{%- for tool_call in message.tool_calls %}
|
30 |
+
{%- if tool_call.function is defined %}
|
31 |
+
{%- set tool_call = tool_call.function %}
|
32 |
+
{%- endif %}
|
33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
34 |
+
{{- tool_call.name }}
|
35 |
+
{{- '", "arguments": ' }}
|
36 |
+
{{- tool_call.arguments | tojson }}
|
37 |
+
{{- '}\n</tool_call>' }}
|
38 |
+
{%- endfor %}
|
39 |
+
{{- '<|im_end|>\n' }}
|
40 |
+
{%- elif message.role == "tool" %}
|
41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
42 |
+
{{- '<|im_start|>user' }}
|
43 |
+
{%- endif %}
|
44 |
+
{{- '\n<tool_response>\n' }}
|
45 |
+
{{- message.content }}
|
46 |
+
{{- '\n</tool_response>' }}
|
47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
48 |
+
{{- '<|im_end|>\n' }}
|
49 |
+
{%- endif %}
|
50 |
+
{%- endif %}
|
51 |
+
{%- endfor %}
|
52 |
+
{%- if add_generation_prompt %}
|
53 |
+
{{- '<|im_start|>assistant\n' }}
|
54 |
+
{%- endif %}
|
checkpoint-2605/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.52.4"
|
14 |
+
}
|
checkpoint-2605/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2603
|
checkpoint-2605/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-2605/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-2605/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"clean_up_tokenization_spaces": false,
|
199 |
+
"eos_token": "<|im_end|>",
|
200 |
+
"errors": "replace",
|
201 |
+
"extra_special_tokens": {},
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"padding_side": "right",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-2605/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-521/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-521/chat_template.jinja
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0]['role'] == 'system' %}
|
4 |
+
{{- messages[0]['content'] }}
|
5 |
+
{%- else %}
|
6 |
+
{{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
|
7 |
+
{%- endif %}
|
8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
9 |
+
{%- for tool in tools %}
|
10 |
+
{{- "\n" }}
|
11 |
+
{{- tool | tojson }}
|
12 |
+
{%- endfor %}
|
13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
14 |
+
{%- else %}
|
15 |
+
{%- if messages[0]['role'] == 'system' %}
|
16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
17 |
+
{%- else %}
|
18 |
+
{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
|
19 |
+
{%- endif %}
|
20 |
+
{%- endif %}
|
21 |
+
{%- for message in messages %}
|
22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
24 |
+
{%- elif message.role == "assistant" %}
|
25 |
+
{{- '<|im_start|>' + message.role }}
|
26 |
+
{%- if message.content %}
|
27 |
+
{{- '\n' + message.content }}
|
28 |
+
{%- endif %}
|
29 |
+
{%- for tool_call in message.tool_calls %}
|
30 |
+
{%- if tool_call.function is defined %}
|
31 |
+
{%- set tool_call = tool_call.function %}
|
32 |
+
{%- endif %}
|
33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
34 |
+
{{- tool_call.name }}
|
35 |
+
{{- '", "arguments": ' }}
|
36 |
+
{{- tool_call.arguments | tojson }}
|
37 |
+
{{- '}\n</tool_call>' }}
|
38 |
+
{%- endfor %}
|
39 |
+
{{- '<|im_end|>\n' }}
|
40 |
+
{%- elif message.role == "tool" %}
|
41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
42 |
+
{{- '<|im_start|>user' }}
|
43 |
+
{%- endif %}
|
44 |
+
{{- '\n<tool_response>\n' }}
|
45 |
+
{{- message.content }}
|
46 |
+
{{- '\n</tool_response>' }}
|
47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
48 |
+
{{- '<|im_end|>\n' }}
|
49 |
+
{%- endif %}
|
50 |
+
{%- endif %}
|
51 |
+
{%- endfor %}
|
52 |
+
{%- if add_generation_prompt %}
|
53 |
+
{{- '<|im_start|>assistant\n' }}
|
54 |
+
{%- endif %}
|
checkpoint-521/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 1536,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 8960,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 21,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": 32768,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.52.4",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
checkpoint-521/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.52.4"
|
14 |
+
}
|
checkpoint-521/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step520
|
checkpoint-521/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-521/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-521/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"clean_up_tokenization_spaces": false,
|
199 |
+
"eos_token": "<|im_end|>",
|
200 |
+
"errors": "replace",
|
201 |
+
"extra_special_tokens": {},
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"padding_side": "right",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-521/trainer_state.json
ADDED
@@ -0,0 +1,3681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 1.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 521,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.0019203072491598655,
|
14 |
+
"grad_norm": 3.050241640622783,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 1.5054,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.003840614498319731,
|
21 |
+
"grad_norm": 2.974162230197891,
|
22 |
+
"learning_rate": 3.831417624521073e-08,
|
23 |
+
"loss": 1.7399,
|
24 |
+
"step": 2
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.005760921747479597,
|
28 |
+
"grad_norm": 3.006494012208738,
|
29 |
+
"learning_rate": 7.662835249042146e-08,
|
30 |
+
"loss": 1.8793,
|
31 |
+
"step": 3
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.007681228996639462,
|
35 |
+
"grad_norm": 2.910641370990376,
|
36 |
+
"learning_rate": 1.1494252873563219e-07,
|
37 |
+
"loss": 1.7187,
|
38 |
+
"step": 4
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.009601536245799328,
|
42 |
+
"grad_norm": 2.6996013829444134,
|
43 |
+
"learning_rate": 1.5325670498084292e-07,
|
44 |
+
"loss": 1.6475,
|
45 |
+
"step": 5
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.011521843494959194,
|
49 |
+
"grad_norm": 3.0173297525530525,
|
50 |
+
"learning_rate": 1.9157088122605365e-07,
|
51 |
+
"loss": 1.6964,
|
52 |
+
"step": 6
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.01344215074411906,
|
56 |
+
"grad_norm": 3.0082364904112566,
|
57 |
+
"learning_rate": 2.2988505747126437e-07,
|
58 |
+
"loss": 1.6851,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.015362457993278924,
|
63 |
+
"grad_norm": 2.880521601062656,
|
64 |
+
"learning_rate": 2.681992337164751e-07,
|
65 |
+
"loss": 1.557,
|
66 |
+
"step": 8
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.01728276524243879,
|
70 |
+
"grad_norm": 2.8379079611890896,
|
71 |
+
"learning_rate": 3.0651340996168583e-07,
|
72 |
+
"loss": 1.6569,
|
73 |
+
"step": 9
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.019203072491598656,
|
77 |
+
"grad_norm": 2.902207545955143,
|
78 |
+
"learning_rate": 3.4482758620689656e-07,
|
79 |
+
"loss": 1.637,
|
80 |
+
"step": 10
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.02112337974075852,
|
84 |
+
"grad_norm": 2.8146383036248883,
|
85 |
+
"learning_rate": 3.831417624521073e-07,
|
86 |
+
"loss": 1.7074,
|
87 |
+
"step": 11
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.023043686989918388,
|
91 |
+
"grad_norm": 2.7702439023075422,
|
92 |
+
"learning_rate": 4.2145593869731807e-07,
|
93 |
+
"loss": 1.6621,
|
94 |
+
"step": 12
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.024963994239078253,
|
98 |
+
"grad_norm": 2.948897328700205,
|
99 |
+
"learning_rate": 4.5977011494252875e-07,
|
100 |
+
"loss": 1.7141,
|
101 |
+
"step": 13
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.02688430148823812,
|
105 |
+
"grad_norm": 2.6155066202719666,
|
106 |
+
"learning_rate": 4.980842911877395e-07,
|
107 |
+
"loss": 1.6133,
|
108 |
+
"step": 14
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.028804608737397985,
|
112 |
+
"grad_norm": 2.7754744384918335,
|
113 |
+
"learning_rate": 5.363984674329502e-07,
|
114 |
+
"loss": 1.6922,
|
115 |
+
"step": 15
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.030724915986557848,
|
119 |
+
"grad_norm": 3.005540548334177,
|
120 |
+
"learning_rate": 5.747126436781609e-07,
|
121 |
+
"loss": 1.5753,
|
122 |
+
"step": 16
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.03264522323571772,
|
126 |
+
"grad_norm": 2.6675051377737486,
|
127 |
+
"learning_rate": 6.130268199233717e-07,
|
128 |
+
"loss": 1.6697,
|
129 |
+
"step": 17
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.03456553048487758,
|
133 |
+
"grad_norm": 2.7911452731594326,
|
134 |
+
"learning_rate": 6.513409961685824e-07,
|
135 |
+
"loss": 1.6166,
|
136 |
+
"step": 18
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.03648583773403745,
|
140 |
+
"grad_norm": 2.754640389635153,
|
141 |
+
"learning_rate": 6.896551724137931e-07,
|
142 |
+
"loss": 1.4773,
|
143 |
+
"step": 19
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.03840614498319731,
|
147 |
+
"grad_norm": 2.58056430792743,
|
148 |
+
"learning_rate": 7.27969348659004e-07,
|
149 |
+
"loss": 1.5533,
|
150 |
+
"step": 20
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.040326452232357174,
|
154 |
+
"grad_norm": 2.5780862888672047,
|
155 |
+
"learning_rate": 7.662835249042146e-07,
|
156 |
+
"loss": 1.5408,
|
157 |
+
"step": 21
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.04224675948151704,
|
161 |
+
"grad_norm": 2.2939155489081293,
|
162 |
+
"learning_rate": 8.045977011494253e-07,
|
163 |
+
"loss": 1.4477,
|
164 |
+
"step": 22
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.044167066730676906,
|
168 |
+
"grad_norm": 2.326783109749172,
|
169 |
+
"learning_rate": 8.429118773946361e-07,
|
170 |
+
"loss": 1.6446,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.046087373979836775,
|
175 |
+
"grad_norm": 1.9784500676559427,
|
176 |
+
"learning_rate": 8.812260536398468e-07,
|
177 |
+
"loss": 1.4741,
|
178 |
+
"step": 24
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.04800768122899664,
|
182 |
+
"grad_norm": 2.158116045848602,
|
183 |
+
"learning_rate": 9.195402298850575e-07,
|
184 |
+
"loss": 1.8359,
|
185 |
+
"step": 25
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.04992798847815651,
|
189 |
+
"grad_norm": 2.035070253571019,
|
190 |
+
"learning_rate": 9.578544061302683e-07,
|
191 |
+
"loss": 1.6079,
|
192 |
+
"step": 26
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.05184829572731637,
|
196 |
+
"grad_norm": 1.9828772550714657,
|
197 |
+
"learning_rate": 9.96168582375479e-07,
|
198 |
+
"loss": 1.6275,
|
199 |
+
"step": 27
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.05376860297647624,
|
203 |
+
"grad_norm": 2.063763559262756,
|
204 |
+
"learning_rate": 1.0344827586206898e-06,
|
205 |
+
"loss": 1.6298,
|
206 |
+
"step": 28
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.0556889102256361,
|
210 |
+
"grad_norm": 1.9339129722646953,
|
211 |
+
"learning_rate": 1.0727969348659004e-06,
|
212 |
+
"loss": 1.5816,
|
213 |
+
"step": 29
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.05760921747479597,
|
217 |
+
"grad_norm": 1.916925980149754,
|
218 |
+
"learning_rate": 1.111111111111111e-06,
|
219 |
+
"loss": 1.6064,
|
220 |
+
"step": 30
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.05952952472395583,
|
224 |
+
"grad_norm": 1.6450444187274702,
|
225 |
+
"learning_rate": 1.1494252873563219e-06,
|
226 |
+
"loss": 1.5159,
|
227 |
+
"step": 31
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.061449831973115696,
|
231 |
+
"grad_norm": 1.6132237873302806,
|
232 |
+
"learning_rate": 1.1877394636015327e-06,
|
233 |
+
"loss": 1.5367,
|
234 |
+
"step": 32
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.06337013922227556,
|
238 |
+
"grad_norm": 1.818936433606168,
|
239 |
+
"learning_rate": 1.2260536398467433e-06,
|
240 |
+
"loss": 1.4623,
|
241 |
+
"step": 33
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.06529044647143543,
|
245 |
+
"grad_norm": 1.7241994573893415,
|
246 |
+
"learning_rate": 1.2643678160919542e-06,
|
247 |
+
"loss": 1.6151,
|
248 |
+
"step": 34
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.06721075372059529,
|
252 |
+
"grad_norm": 1.5649464939481088,
|
253 |
+
"learning_rate": 1.3026819923371648e-06,
|
254 |
+
"loss": 1.6588,
|
255 |
+
"step": 35
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.06913106096975516,
|
259 |
+
"grad_norm": 1.5636025180091495,
|
260 |
+
"learning_rate": 1.3409961685823756e-06,
|
261 |
+
"loss": 1.3946,
|
262 |
+
"step": 36
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.07105136821891503,
|
266 |
+
"grad_norm": 1.5461645880192942,
|
267 |
+
"learning_rate": 1.3793103448275862e-06,
|
268 |
+
"loss": 1.6768,
|
269 |
+
"step": 37
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.0729716754680749,
|
273 |
+
"grad_norm": 1.4344137662856442,
|
274 |
+
"learning_rate": 1.417624521072797e-06,
|
275 |
+
"loss": 1.4397,
|
276 |
+
"step": 38
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.07489198271723475,
|
280 |
+
"grad_norm": 1.3960130764357097,
|
281 |
+
"learning_rate": 1.455938697318008e-06,
|
282 |
+
"loss": 1.6793,
|
283 |
+
"step": 39
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.07681228996639462,
|
287 |
+
"grad_norm": 1.2396850770578887,
|
288 |
+
"learning_rate": 1.4942528735632185e-06,
|
289 |
+
"loss": 1.5595,
|
290 |
+
"step": 40
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.07873259721555449,
|
294 |
+
"grad_norm": 1.2226941074613882,
|
295 |
+
"learning_rate": 1.5325670498084292e-06,
|
296 |
+
"loss": 1.4513,
|
297 |
+
"step": 41
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.08065290446471435,
|
301 |
+
"grad_norm": 1.2420772331499856,
|
302 |
+
"learning_rate": 1.57088122605364e-06,
|
303 |
+
"loss": 1.5815,
|
304 |
+
"step": 42
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.08257321171387422,
|
308 |
+
"grad_norm": 1.1487654644464287,
|
309 |
+
"learning_rate": 1.6091954022988506e-06,
|
310 |
+
"loss": 1.5939,
|
311 |
+
"step": 43
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.08449351896303409,
|
315 |
+
"grad_norm": 1.2124391317795524,
|
316 |
+
"learning_rate": 1.6475095785440615e-06,
|
317 |
+
"loss": 1.3123,
|
318 |
+
"step": 44
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.08641382621219396,
|
322 |
+
"grad_norm": 1.2527034268005153,
|
323 |
+
"learning_rate": 1.6858237547892723e-06,
|
324 |
+
"loss": 1.6962,
|
325 |
+
"step": 45
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.08833413346135381,
|
329 |
+
"grad_norm": 1.22540150664902,
|
330 |
+
"learning_rate": 1.724137931034483e-06,
|
331 |
+
"loss": 1.5573,
|
332 |
+
"step": 46
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.09025444071051368,
|
336 |
+
"grad_norm": 1.0822330995590186,
|
337 |
+
"learning_rate": 1.7624521072796935e-06,
|
338 |
+
"loss": 1.6174,
|
339 |
+
"step": 47
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.09217474795967355,
|
343 |
+
"grad_norm": 1.3725369113494932,
|
344 |
+
"learning_rate": 1.8007662835249044e-06,
|
345 |
+
"loss": 1.5724,
|
346 |
+
"step": 48
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.09409505520883342,
|
350 |
+
"grad_norm": 1.1246522439222844,
|
351 |
+
"learning_rate": 1.839080459770115e-06,
|
352 |
+
"loss": 1.6577,
|
353 |
+
"step": 49
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.09601536245799328,
|
357 |
+
"grad_norm": 1.153435955007641,
|
358 |
+
"learning_rate": 1.8773946360153258e-06,
|
359 |
+
"loss": 1.6045,
|
360 |
+
"step": 50
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.09793566970715314,
|
364 |
+
"grad_norm": 1.1142741754051628,
|
365 |
+
"learning_rate": 1.9157088122605367e-06,
|
366 |
+
"loss": 1.6562,
|
367 |
+
"step": 51
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.09985597695631301,
|
371 |
+
"grad_norm": 1.0608003189926583,
|
372 |
+
"learning_rate": 1.9540229885057475e-06,
|
373 |
+
"loss": 1.4951,
|
374 |
+
"step": 52
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.10177628420547287,
|
378 |
+
"grad_norm": 1.0049278590265711,
|
379 |
+
"learning_rate": 1.992337164750958e-06,
|
380 |
+
"loss": 1.5432,
|
381 |
+
"step": 53
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.10369659145463274,
|
385 |
+
"grad_norm": 0.895715467779371,
|
386 |
+
"learning_rate": 2.0306513409961687e-06,
|
387 |
+
"loss": 1.4494,
|
388 |
+
"step": 54
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.10561689870379261,
|
392 |
+
"grad_norm": 0.948460307989256,
|
393 |
+
"learning_rate": 2.0689655172413796e-06,
|
394 |
+
"loss": 1.6377,
|
395 |
+
"step": 55
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.10753720595295248,
|
399 |
+
"grad_norm": 0.8960302855343928,
|
400 |
+
"learning_rate": 2.1072796934865904e-06,
|
401 |
+
"loss": 1.5476,
|
402 |
+
"step": 56
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.10945751320211233,
|
406 |
+
"grad_norm": 0.8555220673502346,
|
407 |
+
"learning_rate": 2.145593869731801e-06,
|
408 |
+
"loss": 1.2937,
|
409 |
+
"step": 57
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.1113778204512722,
|
413 |
+
"grad_norm": 0.9297918052847216,
|
414 |
+
"learning_rate": 2.1839080459770117e-06,
|
415 |
+
"loss": 1.5018,
|
416 |
+
"step": 58
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.11329812770043207,
|
420 |
+
"grad_norm": 0.8615767845690797,
|
421 |
+
"learning_rate": 2.222222222222222e-06,
|
422 |
+
"loss": 1.4411,
|
423 |
+
"step": 59
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.11521843494959194,
|
427 |
+
"grad_norm": 0.9800340953282465,
|
428 |
+
"learning_rate": 2.260536398467433e-06,
|
429 |
+
"loss": 1.6592,
|
430 |
+
"step": 60
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.1171387421987518,
|
434 |
+
"grad_norm": 0.8319044483038768,
|
435 |
+
"learning_rate": 2.2988505747126437e-06,
|
436 |
+
"loss": 1.4999,
|
437 |
+
"step": 61
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.11905904944791167,
|
441 |
+
"grad_norm": 0.8113904065691636,
|
442 |
+
"learning_rate": 2.3371647509578546e-06,
|
443 |
+
"loss": 1.4058,
|
444 |
+
"step": 62
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.12097935669707154,
|
448 |
+
"grad_norm": 0.7584474578599453,
|
449 |
+
"learning_rate": 2.3754789272030654e-06,
|
450 |
+
"loss": 1.1995,
|
451 |
+
"step": 63
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.12289966394623139,
|
455 |
+
"grad_norm": 0.8112593744821786,
|
456 |
+
"learning_rate": 2.4137931034482762e-06,
|
457 |
+
"loss": 1.622,
|
458 |
+
"step": 64
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.12481997119539126,
|
462 |
+
"grad_norm": 0.8465973433211744,
|
463 |
+
"learning_rate": 2.4521072796934867e-06,
|
464 |
+
"loss": 1.5474,
|
465 |
+
"step": 65
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.12674027844455113,
|
469 |
+
"grad_norm": 0.829645722256521,
|
470 |
+
"learning_rate": 2.4904214559386975e-06,
|
471 |
+
"loss": 1.485,
|
472 |
+
"step": 66
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.128660585693711,
|
476 |
+
"grad_norm": 0.8480123859041653,
|
477 |
+
"learning_rate": 2.5287356321839083e-06,
|
478 |
+
"loss": 1.5641,
|
479 |
+
"step": 67
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.13058089294287087,
|
483 |
+
"grad_norm": 0.7945937151249043,
|
484 |
+
"learning_rate": 2.567049808429119e-06,
|
485 |
+
"loss": 1.3511,
|
486 |
+
"step": 68
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.13250120019203074,
|
490 |
+
"grad_norm": 0.8452583555772669,
|
491 |
+
"learning_rate": 2.6053639846743296e-06,
|
492 |
+
"loss": 1.4936,
|
493 |
+
"step": 69
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.13442150744119058,
|
497 |
+
"grad_norm": 0.7913167472525273,
|
498 |
+
"learning_rate": 2.6436781609195404e-06,
|
499 |
+
"loss": 1.524,
|
500 |
+
"step": 70
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.13634181469035045,
|
504 |
+
"grad_norm": 0.7632883226077274,
|
505 |
+
"learning_rate": 2.6819923371647512e-06,
|
506 |
+
"loss": 1.4957,
|
507 |
+
"step": 71
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.13826212193951032,
|
511 |
+
"grad_norm": 0.8040467176753551,
|
512 |
+
"learning_rate": 2.720306513409962e-06,
|
513 |
+
"loss": 1.5472,
|
514 |
+
"step": 72
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.1401824291886702,
|
518 |
+
"grad_norm": 0.8063495654842968,
|
519 |
+
"learning_rate": 2.7586206896551725e-06,
|
520 |
+
"loss": 1.4355,
|
521 |
+
"step": 73
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.14210273643783006,
|
525 |
+
"grad_norm": 0.8632589003342163,
|
526 |
+
"learning_rate": 2.796934865900383e-06,
|
527 |
+
"loss": 1.6251,
|
528 |
+
"step": 74
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.14402304368698993,
|
532 |
+
"grad_norm": 0.9065110727033228,
|
533 |
+
"learning_rate": 2.835249042145594e-06,
|
534 |
+
"loss": 1.3482,
|
535 |
+
"step": 75
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.1459433509361498,
|
539 |
+
"grad_norm": 0.7358621824934779,
|
540 |
+
"learning_rate": 2.8735632183908046e-06,
|
541 |
+
"loss": 1.4579,
|
542 |
+
"step": 76
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.14786365818530964,
|
546 |
+
"grad_norm": 0.7882740690499183,
|
547 |
+
"learning_rate": 2.911877394636016e-06,
|
548 |
+
"loss": 1.584,
|
549 |
+
"step": 77
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.1497839654344695,
|
553 |
+
"grad_norm": 0.8028390602285591,
|
554 |
+
"learning_rate": 2.9501915708812262e-06,
|
555 |
+
"loss": 1.5799,
|
556 |
+
"step": 78
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.15170427268362938,
|
560 |
+
"grad_norm": 0.7087212262202383,
|
561 |
+
"learning_rate": 2.988505747126437e-06,
|
562 |
+
"loss": 1.3796,
|
563 |
+
"step": 79
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.15362457993278925,
|
567 |
+
"grad_norm": 0.7477246745009772,
|
568 |
+
"learning_rate": 3.026819923371648e-06,
|
569 |
+
"loss": 1.4577,
|
570 |
+
"step": 80
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.15554488718194912,
|
574 |
+
"grad_norm": 0.7362367028641865,
|
575 |
+
"learning_rate": 3.0651340996168583e-06,
|
576 |
+
"loss": 1.3986,
|
577 |
+
"step": 81
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.15746519443110898,
|
581 |
+
"grad_norm": 0.7542749931181064,
|
582 |
+
"learning_rate": 3.103448275862069e-06,
|
583 |
+
"loss": 1.3923,
|
584 |
+
"step": 82
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.15938550168026885,
|
588 |
+
"grad_norm": 0.7591236429919996,
|
589 |
+
"learning_rate": 3.14176245210728e-06,
|
590 |
+
"loss": 1.468,
|
591 |
+
"step": 83
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.1613058089294287,
|
595 |
+
"grad_norm": 0.750073455610315,
|
596 |
+
"learning_rate": 3.180076628352491e-06,
|
597 |
+
"loss": 1.5728,
|
598 |
+
"step": 84
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.16322611617858857,
|
602 |
+
"grad_norm": 0.7463483577071213,
|
603 |
+
"learning_rate": 3.2183908045977012e-06,
|
604 |
+
"loss": 1.5751,
|
605 |
+
"step": 85
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.16514642342774843,
|
609 |
+
"grad_norm": 0.7459336348523459,
|
610 |
+
"learning_rate": 3.256704980842912e-06,
|
611 |
+
"loss": 1.5821,
|
612 |
+
"step": 86
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.1670667306769083,
|
616 |
+
"grad_norm": 0.7503745075545026,
|
617 |
+
"learning_rate": 3.295019157088123e-06,
|
618 |
+
"loss": 1.3811,
|
619 |
+
"step": 87
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.16898703792606817,
|
623 |
+
"grad_norm": 0.6781019129991772,
|
624 |
+
"learning_rate": 3.3333333333333333e-06,
|
625 |
+
"loss": 1.4967,
|
626 |
+
"step": 88
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.17090734517522804,
|
630 |
+
"grad_norm": 0.6772160890677477,
|
631 |
+
"learning_rate": 3.3716475095785446e-06,
|
632 |
+
"loss": 1.4602,
|
633 |
+
"step": 89
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.1728276524243879,
|
637 |
+
"grad_norm": 0.7414559131468873,
|
638 |
+
"learning_rate": 3.409961685823755e-06,
|
639 |
+
"loss": 1.5384,
|
640 |
+
"step": 90
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.17474795967354778,
|
644 |
+
"grad_norm": 0.7339713894607118,
|
645 |
+
"learning_rate": 3.448275862068966e-06,
|
646 |
+
"loss": 1.3478,
|
647 |
+
"step": 91
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.17666826692270762,
|
651 |
+
"grad_norm": 0.6741291120903733,
|
652 |
+
"learning_rate": 3.4865900383141767e-06,
|
653 |
+
"loss": 1.3051,
|
654 |
+
"step": 92
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.1785885741718675,
|
658 |
+
"grad_norm": 0.8466746593898973,
|
659 |
+
"learning_rate": 3.524904214559387e-06,
|
660 |
+
"loss": 1.6414,
|
661 |
+
"step": 93
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.18050888142102736,
|
665 |
+
"grad_norm": 0.6235998792480368,
|
666 |
+
"learning_rate": 3.563218390804598e-06,
|
667 |
+
"loss": 1.3774,
|
668 |
+
"step": 94
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.18242918867018723,
|
672 |
+
"grad_norm": 0.7888875616341429,
|
673 |
+
"learning_rate": 3.6015325670498087e-06,
|
674 |
+
"loss": 1.2273,
|
675 |
+
"step": 95
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.1843494959193471,
|
679 |
+
"grad_norm": 0.7184060206606023,
|
680 |
+
"learning_rate": 3.6398467432950196e-06,
|
681 |
+
"loss": 1.4414,
|
682 |
+
"step": 96
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.18626980316850697,
|
686 |
+
"grad_norm": 0.6931282624303644,
|
687 |
+
"learning_rate": 3.67816091954023e-06,
|
688 |
+
"loss": 1.1996,
|
689 |
+
"step": 97
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.18819011041766684,
|
693 |
+
"grad_norm": 0.6898899817332669,
|
694 |
+
"learning_rate": 3.7164750957854412e-06,
|
695 |
+
"loss": 1.153,
|
696 |
+
"step": 98
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.19011041766682668,
|
700 |
+
"grad_norm": 0.6706065855351341,
|
701 |
+
"learning_rate": 3.7547892720306517e-06,
|
702 |
+
"loss": 1.3219,
|
703 |
+
"step": 99
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.19203072491598655,
|
707 |
+
"grad_norm": 0.6618017863324709,
|
708 |
+
"learning_rate": 3.793103448275862e-06,
|
709 |
+
"loss": 1.3694,
|
710 |
+
"step": 100
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.19395103216514642,
|
714 |
+
"grad_norm": 0.7084267342732283,
|
715 |
+
"learning_rate": 3.831417624521073e-06,
|
716 |
+
"loss": 1.5242,
|
717 |
+
"step": 101
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.1958713394143063,
|
721 |
+
"grad_norm": 0.726545416016091,
|
722 |
+
"learning_rate": 3.869731800766283e-06,
|
723 |
+
"loss": 1.4521,
|
724 |
+
"step": 102
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.19779164666346616,
|
728 |
+
"grad_norm": 0.7462891561612502,
|
729 |
+
"learning_rate": 3.908045977011495e-06,
|
730 |
+
"loss": 1.4687,
|
731 |
+
"step": 103
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.19971195391262603,
|
735 |
+
"grad_norm": 0.7186363274122183,
|
736 |
+
"learning_rate": 3.946360153256705e-06,
|
737 |
+
"loss": 1.4222,
|
738 |
+
"step": 104
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.2016322611617859,
|
742 |
+
"grad_norm": 0.6562522942973675,
|
743 |
+
"learning_rate": 3.984674329501916e-06,
|
744 |
+
"loss": 1.3302,
|
745 |
+
"step": 105
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.20355256841094574,
|
749 |
+
"grad_norm": 0.7593764693035522,
|
750 |
+
"learning_rate": 4.022988505747127e-06,
|
751 |
+
"loss": 1.4029,
|
752 |
+
"step": 106
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.2054728756601056,
|
756 |
+
"grad_norm": 0.674187794860422,
|
757 |
+
"learning_rate": 4.0613026819923375e-06,
|
758 |
+
"loss": 1.2851,
|
759 |
+
"step": 107
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.20739318290926548,
|
763 |
+
"grad_norm": 0.6771453444719904,
|
764 |
+
"learning_rate": 4.099616858237548e-06,
|
765 |
+
"loss": 1.3873,
|
766 |
+
"step": 108
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.20931349015842535,
|
770 |
+
"grad_norm": 0.6904184501885661,
|
771 |
+
"learning_rate": 4.137931034482759e-06,
|
772 |
+
"loss": 1.4671,
|
773 |
+
"step": 109
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.21123379740758522,
|
777 |
+
"grad_norm": 0.7386010515763627,
|
778 |
+
"learning_rate": 4.17624521072797e-06,
|
779 |
+
"loss": 1.4114,
|
780 |
+
"step": 110
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.21315410465674509,
|
784 |
+
"grad_norm": 0.6330108602988729,
|
785 |
+
"learning_rate": 4.214559386973181e-06,
|
786 |
+
"loss": 1.5344,
|
787 |
+
"step": 111
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.21507441190590496,
|
791 |
+
"grad_norm": 0.6476316086673372,
|
792 |
+
"learning_rate": 4.252873563218391e-06,
|
793 |
+
"loss": 1.4134,
|
794 |
+
"step": 112
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.2169947191550648,
|
798 |
+
"grad_norm": 0.7369608607793586,
|
799 |
+
"learning_rate": 4.291187739463602e-06,
|
800 |
+
"loss": 1.4656,
|
801 |
+
"step": 113
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.21891502640422467,
|
805 |
+
"grad_norm": 0.6991819737178624,
|
806 |
+
"learning_rate": 4.3295019157088125e-06,
|
807 |
+
"loss": 1.3801,
|
808 |
+
"step": 114
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.22083533365338454,
|
812 |
+
"grad_norm": 0.6670879445681203,
|
813 |
+
"learning_rate": 4.367816091954023e-06,
|
814 |
+
"loss": 1.4012,
|
815 |
+
"step": 115
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.2227556409025444,
|
819 |
+
"grad_norm": 0.7091321651558993,
|
820 |
+
"learning_rate": 4.406130268199234e-06,
|
821 |
+
"loss": 1.369,
|
822 |
+
"step": 116
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.22467594815170427,
|
826 |
+
"grad_norm": 0.6538069130880931,
|
827 |
+
"learning_rate": 4.444444444444444e-06,
|
828 |
+
"loss": 1.207,
|
829 |
+
"step": 117
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.22659625540086414,
|
833 |
+
"grad_norm": 0.7414604205506811,
|
834 |
+
"learning_rate": 4.482758620689656e-06,
|
835 |
+
"loss": 1.4466,
|
836 |
+
"step": 118
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.228516562650024,
|
840 |
+
"grad_norm": 0.6754242592483168,
|
841 |
+
"learning_rate": 4.521072796934866e-06,
|
842 |
+
"loss": 1.345,
|
843 |
+
"step": 119
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.23043686989918388,
|
847 |
+
"grad_norm": 0.7890890418316723,
|
848 |
+
"learning_rate": 4.5593869731800775e-06,
|
849 |
+
"loss": 1.4887,
|
850 |
+
"step": 120
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.23235717714834372,
|
854 |
+
"grad_norm": 0.7142672200972927,
|
855 |
+
"learning_rate": 4.5977011494252875e-06,
|
856 |
+
"loss": 1.5663,
|
857 |
+
"step": 121
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.2342774843975036,
|
861 |
+
"grad_norm": 0.6607576396465201,
|
862 |
+
"learning_rate": 4.636015325670498e-06,
|
863 |
+
"loss": 1.5097,
|
864 |
+
"step": 122
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.23619779164666346,
|
868 |
+
"grad_norm": 0.7801245141924045,
|
869 |
+
"learning_rate": 4.674329501915709e-06,
|
870 |
+
"loss": 1.5577,
|
871 |
+
"step": 123
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.23811809889582333,
|
875 |
+
"grad_norm": 0.7853237789383211,
|
876 |
+
"learning_rate": 4.71264367816092e-06,
|
877 |
+
"loss": 1.5542,
|
878 |
+
"step": 124
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.2400384061449832,
|
882 |
+
"grad_norm": 0.6731916164633106,
|
883 |
+
"learning_rate": 4.750957854406131e-06,
|
884 |
+
"loss": 1.5991,
|
885 |
+
"step": 125
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.24195871339414307,
|
889 |
+
"grad_norm": 0.7081285505123779,
|
890 |
+
"learning_rate": 4.789272030651342e-06,
|
891 |
+
"loss": 1.4219,
|
892 |
+
"step": 126
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.24387902064330294,
|
896 |
+
"grad_norm": 0.6523124091427233,
|
897 |
+
"learning_rate": 4.8275862068965525e-06,
|
898 |
+
"loss": 1.3967,
|
899 |
+
"step": 127
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.24579932789246278,
|
903 |
+
"grad_norm": 0.7010318704056578,
|
904 |
+
"learning_rate": 4.8659003831417625e-06,
|
905 |
+
"loss": 1.4079,
|
906 |
+
"step": 128
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.24771963514162265,
|
910 |
+
"grad_norm": 0.7310188880844346,
|
911 |
+
"learning_rate": 4.904214559386973e-06,
|
912 |
+
"loss": 1.5645,
|
913 |
+
"step": 129
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.24963994239078252,
|
917 |
+
"grad_norm": 0.7370196750980766,
|
918 |
+
"learning_rate": 4.942528735632184e-06,
|
919 |
+
"loss": 1.3163,
|
920 |
+
"step": 130
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.2515602496399424,
|
924 |
+
"grad_norm": 0.5988613538056734,
|
925 |
+
"learning_rate": 4.980842911877395e-06,
|
926 |
+
"loss": 1.2164,
|
927 |
+
"step": 131
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.25348055688910226,
|
931 |
+
"grad_norm": 0.6686452758995931,
|
932 |
+
"learning_rate": 5.019157088122606e-06,
|
933 |
+
"loss": 1.3216,
|
934 |
+
"step": 132
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.25540086413826213,
|
938 |
+
"grad_norm": 0.6283032311907456,
|
939 |
+
"learning_rate": 5.057471264367817e-06,
|
940 |
+
"loss": 1.3004,
|
941 |
+
"step": 133
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.257321171387422,
|
945 |
+
"grad_norm": 0.7131274515928692,
|
946 |
+
"learning_rate": 5.095785440613027e-06,
|
947 |
+
"loss": 1.3574,
|
948 |
+
"step": 134
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.25924147863658187,
|
952 |
+
"grad_norm": 0.7562023685666645,
|
953 |
+
"learning_rate": 5.134099616858238e-06,
|
954 |
+
"loss": 1.4755,
|
955 |
+
"step": 135
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.26116178588574174,
|
959 |
+
"grad_norm": 0.7260126586378673,
|
960 |
+
"learning_rate": 5.172413793103449e-06,
|
961 |
+
"loss": 1.3512,
|
962 |
+
"step": 136
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.2630820931349016,
|
966 |
+
"grad_norm": 0.7027786093003081,
|
967 |
+
"learning_rate": 5.210727969348659e-06,
|
968 |
+
"loss": 1.3988,
|
969 |
+
"step": 137
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.2650024003840615,
|
973 |
+
"grad_norm": 0.6536542941035637,
|
974 |
+
"learning_rate": 5.24904214559387e-06,
|
975 |
+
"loss": 1.3403,
|
976 |
+
"step": 138
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.2669227076332213,
|
980 |
+
"grad_norm": 0.6887374540995002,
|
981 |
+
"learning_rate": 5.287356321839081e-06,
|
982 |
+
"loss": 1.4009,
|
983 |
+
"step": 139
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.26884301488238116,
|
987 |
+
"grad_norm": 0.6904650924816887,
|
988 |
+
"learning_rate": 5.3256704980842925e-06,
|
989 |
+
"loss": 1.3674,
|
990 |
+
"step": 140
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.27076332213154103,
|
994 |
+
"grad_norm": 0.7396766783545521,
|
995 |
+
"learning_rate": 5.3639846743295025e-06,
|
996 |
+
"loss": 1.2224,
|
997 |
+
"step": 141
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.2726836293807009,
|
1001 |
+
"grad_norm": 0.6618698222762107,
|
1002 |
+
"learning_rate": 5.402298850574713e-06,
|
1003 |
+
"loss": 1.3261,
|
1004 |
+
"step": 142
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.27460393662986077,
|
1008 |
+
"grad_norm": 0.7346869512327489,
|
1009 |
+
"learning_rate": 5.440613026819924e-06,
|
1010 |
+
"loss": 1.5539,
|
1011 |
+
"step": 143
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.27652424387902064,
|
1015 |
+
"grad_norm": 0.6542272405748857,
|
1016 |
+
"learning_rate": 5.478927203065134e-06,
|
1017 |
+
"loss": 1.2301,
|
1018 |
+
"step": 144
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.2784445511281805,
|
1022 |
+
"grad_norm": 0.652844033827654,
|
1023 |
+
"learning_rate": 5.517241379310345e-06,
|
1024 |
+
"loss": 1.3203,
|
1025 |
+
"step": 145
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.2803648583773404,
|
1029 |
+
"grad_norm": 0.7093255205591261,
|
1030 |
+
"learning_rate": 5.555555555555557e-06,
|
1031 |
+
"loss": 1.4194,
|
1032 |
+
"step": 146
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.28228516562650025,
|
1036 |
+
"grad_norm": 0.7713263587807493,
|
1037 |
+
"learning_rate": 5.593869731800766e-06,
|
1038 |
+
"loss": 1.3986,
|
1039 |
+
"step": 147
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.2842054728756601,
|
1043 |
+
"grad_norm": 0.7273045777114594,
|
1044 |
+
"learning_rate": 5.6321839080459775e-06,
|
1045 |
+
"loss": 1.5226,
|
1046 |
+
"step": 148
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.28612578012482,
|
1050 |
+
"grad_norm": 0.6416135588874926,
|
1051 |
+
"learning_rate": 5.670498084291188e-06,
|
1052 |
+
"loss": 1.4148,
|
1053 |
+
"step": 149
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.28804608737397985,
|
1057 |
+
"grad_norm": 0.6767941047038493,
|
1058 |
+
"learning_rate": 5.708812260536399e-06,
|
1059 |
+
"loss": 1.4741,
|
1060 |
+
"step": 150
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.2899663946231397,
|
1064 |
+
"grad_norm": 0.7125976753134923,
|
1065 |
+
"learning_rate": 5.747126436781609e-06,
|
1066 |
+
"loss": 1.4689,
|
1067 |
+
"step": 151
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 0.2918867018722996,
|
1071 |
+
"grad_norm": 0.6848434615690435,
|
1072 |
+
"learning_rate": 5.78544061302682e-06,
|
1073 |
+
"loss": 1.3208,
|
1074 |
+
"step": 152
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.2938070091214594,
|
1078 |
+
"grad_norm": 0.7637154008633908,
|
1079 |
+
"learning_rate": 5.823754789272032e-06,
|
1080 |
+
"loss": 1.5237,
|
1081 |
+
"step": 153
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.2957273163706193,
|
1085 |
+
"grad_norm": 0.6483331857341429,
|
1086 |
+
"learning_rate": 5.862068965517242e-06,
|
1087 |
+
"loss": 1.3073,
|
1088 |
+
"step": 154
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.29764762361977914,
|
1092 |
+
"grad_norm": 0.684818235289912,
|
1093 |
+
"learning_rate": 5.9003831417624525e-06,
|
1094 |
+
"loss": 1.4076,
|
1095 |
+
"step": 155
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.299567930868939,
|
1099 |
+
"grad_norm": 0.6683114123494819,
|
1100 |
+
"learning_rate": 5.938697318007663e-06,
|
1101 |
+
"loss": 1.3518,
|
1102 |
+
"step": 156
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.3014882381180989,
|
1106 |
+
"grad_norm": 0.8301668940114854,
|
1107 |
+
"learning_rate": 5.977011494252874e-06,
|
1108 |
+
"loss": 1.5087,
|
1109 |
+
"step": 157
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.30340854536725875,
|
1113 |
+
"grad_norm": 0.7306107739349151,
|
1114 |
+
"learning_rate": 6.015325670498084e-06,
|
1115 |
+
"loss": 1.4187,
|
1116 |
+
"step": 158
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.3053288526164186,
|
1120 |
+
"grad_norm": 0.692887187718929,
|
1121 |
+
"learning_rate": 6.053639846743296e-06,
|
1122 |
+
"loss": 1.5365,
|
1123 |
+
"step": 159
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.3072491598655785,
|
1127 |
+
"grad_norm": 0.6502853635559999,
|
1128 |
+
"learning_rate": 6.091954022988507e-06,
|
1129 |
+
"loss": 1.3497,
|
1130 |
+
"step": 160
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.30916946711473836,
|
1134 |
+
"grad_norm": 0.7309674020853324,
|
1135 |
+
"learning_rate": 6.130268199233717e-06,
|
1136 |
+
"loss": 1.4965,
|
1137 |
+
"step": 161
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.31108977436389823,
|
1141 |
+
"grad_norm": 0.7124865800378807,
|
1142 |
+
"learning_rate": 6.1685823754789275e-06,
|
1143 |
+
"loss": 1.4449,
|
1144 |
+
"step": 162
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.3130100816130581,
|
1148 |
+
"grad_norm": 0.692769353628125,
|
1149 |
+
"learning_rate": 6.206896551724138e-06,
|
1150 |
+
"loss": 1.2823,
|
1151 |
+
"step": 163
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 0.31493038886221797,
|
1155 |
+
"grad_norm": 0.8120061941639997,
|
1156 |
+
"learning_rate": 6.24521072796935e-06,
|
1157 |
+
"loss": 1.5322,
|
1158 |
+
"step": 164
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 0.31685069611137784,
|
1162 |
+
"grad_norm": 0.6506906315887734,
|
1163 |
+
"learning_rate": 6.28352490421456e-06,
|
1164 |
+
"loss": 1.4138,
|
1165 |
+
"step": 165
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.3187710033605377,
|
1169 |
+
"grad_norm": 0.7021274588006857,
|
1170 |
+
"learning_rate": 6.321839080459771e-06,
|
1171 |
+
"loss": 1.5534,
|
1172 |
+
"step": 166
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.3206913106096976,
|
1176 |
+
"grad_norm": 0.6965648094070332,
|
1177 |
+
"learning_rate": 6.360153256704982e-06,
|
1178 |
+
"loss": 1.3055,
|
1179 |
+
"step": 167
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.3226116178588574,
|
1183 |
+
"grad_norm": 0.7498732720147595,
|
1184 |
+
"learning_rate": 6.398467432950192e-06,
|
1185 |
+
"loss": 1.2775,
|
1186 |
+
"step": 168
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.32453192510801726,
|
1190 |
+
"grad_norm": 0.7097564261194121,
|
1191 |
+
"learning_rate": 6.4367816091954025e-06,
|
1192 |
+
"loss": 1.3029,
|
1193 |
+
"step": 169
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 0.32645223235717713,
|
1197 |
+
"grad_norm": 0.6382917432482148,
|
1198 |
+
"learning_rate": 6.475095785440614e-06,
|
1199 |
+
"loss": 1.3569,
|
1200 |
+
"step": 170
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 0.328372539606337,
|
1204 |
+
"grad_norm": 0.6745359700702276,
|
1205 |
+
"learning_rate": 6.513409961685824e-06,
|
1206 |
+
"loss": 1.3339,
|
1207 |
+
"step": 171
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.33029284685549687,
|
1211 |
+
"grad_norm": 0.8056549461489378,
|
1212 |
+
"learning_rate": 6.551724137931035e-06,
|
1213 |
+
"loss": 1.4649,
|
1214 |
+
"step": 172
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.33221315410465674,
|
1218 |
+
"grad_norm": 0.7305964712888819,
|
1219 |
+
"learning_rate": 6.590038314176246e-06,
|
1220 |
+
"loss": 1.4451,
|
1221 |
+
"step": 173
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.3341334613538166,
|
1225 |
+
"grad_norm": 0.6201165387321146,
|
1226 |
+
"learning_rate": 6.628352490421457e-06,
|
1227 |
+
"loss": 1.3352,
|
1228 |
+
"step": 174
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.3360537686029765,
|
1232 |
+
"grad_norm": 0.8265036713279577,
|
1233 |
+
"learning_rate": 6.666666666666667e-06,
|
1234 |
+
"loss": 1.4794,
|
1235 |
+
"step": 175
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.33797407585213635,
|
1239 |
+
"grad_norm": 0.6893681404195715,
|
1240 |
+
"learning_rate": 6.7049808429118775e-06,
|
1241 |
+
"loss": 1.4419,
|
1242 |
+
"step": 176
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.3398943831012962,
|
1246 |
+
"grad_norm": 0.7509743815259918,
|
1247 |
+
"learning_rate": 6.743295019157089e-06,
|
1248 |
+
"loss": 1.3666,
|
1249 |
+
"step": 177
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.3418146903504561,
|
1253 |
+
"grad_norm": 0.7122960885573658,
|
1254 |
+
"learning_rate": 6.781609195402299e-06,
|
1255 |
+
"loss": 1.4108,
|
1256 |
+
"step": 178
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.34373499759961595,
|
1260 |
+
"grad_norm": 0.848930385570575,
|
1261 |
+
"learning_rate": 6.81992337164751e-06,
|
1262 |
+
"loss": 1.4827,
|
1263 |
+
"step": 179
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.3456553048487758,
|
1267 |
+
"grad_norm": 0.7602028733722221,
|
1268 |
+
"learning_rate": 6.858237547892721e-06,
|
1269 |
+
"loss": 1.3414,
|
1270 |
+
"step": 180
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 0.3475756120979357,
|
1274 |
+
"grad_norm": 0.8288114979771807,
|
1275 |
+
"learning_rate": 6.896551724137932e-06,
|
1276 |
+
"loss": 1.2727,
|
1277 |
+
"step": 181
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 0.34949591934709556,
|
1281 |
+
"grad_norm": 0.7693760683257455,
|
1282 |
+
"learning_rate": 6.934865900383142e-06,
|
1283 |
+
"loss": 1.3706,
|
1284 |
+
"step": 182
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 0.3514162265962554,
|
1288 |
+
"grad_norm": 0.7808563776887848,
|
1289 |
+
"learning_rate": 6.973180076628353e-06,
|
1290 |
+
"loss": 1.4723,
|
1291 |
+
"step": 183
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 0.35333653384541525,
|
1295 |
+
"grad_norm": 0.8734769267258163,
|
1296 |
+
"learning_rate": 7.011494252873564e-06,
|
1297 |
+
"loss": 1.2891,
|
1298 |
+
"step": 184
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.3552568410945751,
|
1302 |
+
"grad_norm": 0.8867229876837837,
|
1303 |
+
"learning_rate": 7.049808429118774e-06,
|
1304 |
+
"loss": 1.4359,
|
1305 |
+
"step": 185
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.357177148343735,
|
1309 |
+
"grad_norm": 0.8349083935516824,
|
1310 |
+
"learning_rate": 7.088122605363985e-06,
|
1311 |
+
"loss": 1.5565,
|
1312 |
+
"step": 186
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 0.35909745559289485,
|
1316 |
+
"grad_norm": 0.7400284977493244,
|
1317 |
+
"learning_rate": 7.126436781609196e-06,
|
1318 |
+
"loss": 1.456,
|
1319 |
+
"step": 187
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 0.3610177628420547,
|
1323 |
+
"grad_norm": 0.6439707610744461,
|
1324 |
+
"learning_rate": 7.1647509578544075e-06,
|
1325 |
+
"loss": 1.2718,
|
1326 |
+
"step": 188
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 0.3629380700912146,
|
1330 |
+
"grad_norm": 0.757428349385491,
|
1331 |
+
"learning_rate": 7.2030651340996175e-06,
|
1332 |
+
"loss": 1.3176,
|
1333 |
+
"step": 189
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 0.36485837734037446,
|
1337 |
+
"grad_norm": 0.6979336476743889,
|
1338 |
+
"learning_rate": 7.241379310344828e-06,
|
1339 |
+
"loss": 1.1578,
|
1340 |
+
"step": 190
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.36677868458953433,
|
1344 |
+
"grad_norm": 0.7318936685975646,
|
1345 |
+
"learning_rate": 7.279693486590039e-06,
|
1346 |
+
"loss": 1.5306,
|
1347 |
+
"step": 191
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.3686989918386942,
|
1351 |
+
"grad_norm": 0.6968684758048505,
|
1352 |
+
"learning_rate": 7.318007662835249e-06,
|
1353 |
+
"loss": 1.3176,
|
1354 |
+
"step": 192
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 0.37061929908785407,
|
1358 |
+
"grad_norm": 0.8360636142316585,
|
1359 |
+
"learning_rate": 7.35632183908046e-06,
|
1360 |
+
"loss": 1.6162,
|
1361 |
+
"step": 193
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 0.37253960633701394,
|
1365 |
+
"grad_norm": 0.6842163000752954,
|
1366 |
+
"learning_rate": 7.394636015325672e-06,
|
1367 |
+
"loss": 1.3775,
|
1368 |
+
"step": 194
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 0.3744599135861738,
|
1372 |
+
"grad_norm": 0.7405931672623491,
|
1373 |
+
"learning_rate": 7.4329501915708825e-06,
|
1374 |
+
"loss": 1.4155,
|
1375 |
+
"step": 195
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 0.3763802208353337,
|
1379 |
+
"grad_norm": 0.6724666872249973,
|
1380 |
+
"learning_rate": 7.4712643678160925e-06,
|
1381 |
+
"loss": 1.6041,
|
1382 |
+
"step": 196
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.3783005280844935,
|
1386 |
+
"grad_norm": 0.6600816017352631,
|
1387 |
+
"learning_rate": 7.509578544061303e-06,
|
1388 |
+
"loss": 1.3836,
|
1389 |
+
"step": 197
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.38022083533365336,
|
1393 |
+
"grad_norm": 0.7294649653837092,
|
1394 |
+
"learning_rate": 7.547892720306514e-06,
|
1395 |
+
"loss": 1.3381,
|
1396 |
+
"step": 198
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 0.38214114258281323,
|
1400 |
+
"grad_norm": 0.6849006152291969,
|
1401 |
+
"learning_rate": 7.586206896551724e-06,
|
1402 |
+
"loss": 1.3448,
|
1403 |
+
"step": 199
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 0.3840614498319731,
|
1407 |
+
"grad_norm": 0.6413698682933802,
|
1408 |
+
"learning_rate": 7.624521072796936e-06,
|
1409 |
+
"loss": 1.1691,
|
1410 |
+
"step": 200
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 0.38598175708113297,
|
1414 |
+
"grad_norm": 0.6761946714227771,
|
1415 |
+
"learning_rate": 7.662835249042147e-06,
|
1416 |
+
"loss": 1.2401,
|
1417 |
+
"step": 201
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 0.38790206433029284,
|
1421 |
+
"grad_norm": 0.6604987264007839,
|
1422 |
+
"learning_rate": 7.701149425287356e-06,
|
1423 |
+
"loss": 1.4297,
|
1424 |
+
"step": 202
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.3898223715794527,
|
1428 |
+
"grad_norm": 0.6655444711020334,
|
1429 |
+
"learning_rate": 7.739463601532567e-06,
|
1430 |
+
"loss": 1.2069,
|
1431 |
+
"step": 203
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.3917426788286126,
|
1435 |
+
"grad_norm": 0.716356344463303,
|
1436 |
+
"learning_rate": 7.77777777777778e-06,
|
1437 |
+
"loss": 1.3456,
|
1438 |
+
"step": 204
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 0.39366298607777245,
|
1442 |
+
"grad_norm": 0.7371288713977551,
|
1443 |
+
"learning_rate": 7.81609195402299e-06,
|
1444 |
+
"loss": 1.3331,
|
1445 |
+
"step": 205
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 0.3955832933269323,
|
1449 |
+
"grad_norm": 0.6679678204725035,
|
1450 |
+
"learning_rate": 7.854406130268199e-06,
|
1451 |
+
"loss": 1.4027,
|
1452 |
+
"step": 206
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 0.3975036005760922,
|
1456 |
+
"grad_norm": 0.6255494545199866,
|
1457 |
+
"learning_rate": 7.89272030651341e-06,
|
1458 |
+
"loss": 1.4204,
|
1459 |
+
"step": 207
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 0.39942390782525206,
|
1463 |
+
"grad_norm": 0.7776077277070255,
|
1464 |
+
"learning_rate": 7.93103448275862e-06,
|
1465 |
+
"loss": 1.4262,
|
1466 |
+
"step": 208
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.4013442150744119,
|
1470 |
+
"grad_norm": 0.7495735486802019,
|
1471 |
+
"learning_rate": 7.969348659003832e-06,
|
1472 |
+
"loss": 1.3803,
|
1473 |
+
"step": 209
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.4032645223235718,
|
1477 |
+
"grad_norm": 0.7359991087372613,
|
1478 |
+
"learning_rate": 8.007662835249042e-06,
|
1479 |
+
"loss": 1.3407,
|
1480 |
+
"step": 210
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 0.40518482957273166,
|
1484 |
+
"grad_norm": 0.74502169700267,
|
1485 |
+
"learning_rate": 8.045977011494253e-06,
|
1486 |
+
"loss": 1.2109,
|
1487 |
+
"step": 211
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 0.4071051368218915,
|
1491 |
+
"grad_norm": 0.672919730166899,
|
1492 |
+
"learning_rate": 8.084291187739464e-06,
|
1493 |
+
"loss": 1.4416,
|
1494 |
+
"step": 212
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 0.40902544407105135,
|
1498 |
+
"grad_norm": 0.9039099669663537,
|
1499 |
+
"learning_rate": 8.122605363984675e-06,
|
1500 |
+
"loss": 1.5869,
|
1501 |
+
"step": 213
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 0.4109457513202112,
|
1505 |
+
"grad_norm": 0.609809507238103,
|
1506 |
+
"learning_rate": 8.160919540229886e-06,
|
1507 |
+
"loss": 1.392,
|
1508 |
+
"step": 214
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 0.4128660585693711,
|
1512 |
+
"grad_norm": 0.7209905089139385,
|
1513 |
+
"learning_rate": 8.199233716475097e-06,
|
1514 |
+
"loss": 1.5286,
|
1515 |
+
"step": 215
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.41478636581853096,
|
1519 |
+
"grad_norm": 0.7641098257228572,
|
1520 |
+
"learning_rate": 8.237547892720307e-06,
|
1521 |
+
"loss": 1.4556,
|
1522 |
+
"step": 216
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 0.4167066730676908,
|
1526 |
+
"grad_norm": 0.6671329519012665,
|
1527 |
+
"learning_rate": 8.275862068965518e-06,
|
1528 |
+
"loss": 1.4011,
|
1529 |
+
"step": 217
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 0.4186269803168507,
|
1533 |
+
"grad_norm": 0.7571002797488336,
|
1534 |
+
"learning_rate": 8.31417624521073e-06,
|
1535 |
+
"loss": 1.3907,
|
1536 |
+
"step": 218
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 0.42054728756601056,
|
1540 |
+
"grad_norm": 0.6765159050714699,
|
1541 |
+
"learning_rate": 8.35249042145594e-06,
|
1542 |
+
"loss": 1.411,
|
1543 |
+
"step": 219
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"epoch": 0.42246759481517043,
|
1547 |
+
"grad_norm": 0.7631812758174655,
|
1548 |
+
"learning_rate": 8.390804597701149e-06,
|
1549 |
+
"loss": 1.4568,
|
1550 |
+
"step": 220
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.4243879020643303,
|
1554 |
+
"grad_norm": 0.819638920429698,
|
1555 |
+
"learning_rate": 8.429118773946362e-06,
|
1556 |
+
"loss": 1.2607,
|
1557 |
+
"step": 221
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.42630820931349017,
|
1561 |
+
"grad_norm": 0.6856567916211197,
|
1562 |
+
"learning_rate": 8.467432950191573e-06,
|
1563 |
+
"loss": 1.3665,
|
1564 |
+
"step": 222
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"epoch": 0.42822851656265004,
|
1568 |
+
"grad_norm": 0.756851173923122,
|
1569 |
+
"learning_rate": 8.505747126436782e-06,
|
1570 |
+
"loss": 1.4053,
|
1571 |
+
"step": 223
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 0.4301488238118099,
|
1575 |
+
"grad_norm": 0.7234111087737882,
|
1576 |
+
"learning_rate": 8.544061302681992e-06,
|
1577 |
+
"loss": 1.2986,
|
1578 |
+
"step": 224
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 0.4320691310609698,
|
1582 |
+
"grad_norm": 0.7822272702322975,
|
1583 |
+
"learning_rate": 8.582375478927203e-06,
|
1584 |
+
"loss": 1.4298,
|
1585 |
+
"step": 225
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 0.4339894383101296,
|
1589 |
+
"grad_norm": 0.6810248686630753,
|
1590 |
+
"learning_rate": 8.620689655172414e-06,
|
1591 |
+
"loss": 1.3399,
|
1592 |
+
"step": 226
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.43590974555928946,
|
1596 |
+
"grad_norm": 0.8051128970700839,
|
1597 |
+
"learning_rate": 8.659003831417625e-06,
|
1598 |
+
"loss": 1.5267,
|
1599 |
+
"step": 227
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.43783005280844933,
|
1603 |
+
"grad_norm": 0.732357170450308,
|
1604 |
+
"learning_rate": 8.697318007662836e-06,
|
1605 |
+
"loss": 1.4766,
|
1606 |
+
"step": 228
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 0.4397503600576092,
|
1610 |
+
"grad_norm": 0.8096174835706853,
|
1611 |
+
"learning_rate": 8.735632183908047e-06,
|
1612 |
+
"loss": 1.5061,
|
1613 |
+
"step": 229
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 0.44167066730676907,
|
1617 |
+
"grad_norm": 0.7498363788557091,
|
1618 |
+
"learning_rate": 8.773946360153257e-06,
|
1619 |
+
"loss": 1.5328,
|
1620 |
+
"step": 230
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 0.44359097455592894,
|
1624 |
+
"grad_norm": 0.6639308793432624,
|
1625 |
+
"learning_rate": 8.812260536398468e-06,
|
1626 |
+
"loss": 1.5014,
|
1627 |
+
"step": 231
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 0.4455112818050888,
|
1631 |
+
"grad_norm": 0.7955581619122697,
|
1632 |
+
"learning_rate": 8.85057471264368e-06,
|
1633 |
+
"loss": 1.4619,
|
1634 |
+
"step": 232
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.4474315890542487,
|
1638 |
+
"grad_norm": 0.6665415125116451,
|
1639 |
+
"learning_rate": 8.888888888888888e-06,
|
1640 |
+
"loss": 1.4401,
|
1641 |
+
"step": 233
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.44935189630340855,
|
1645 |
+
"grad_norm": 0.7497106975893845,
|
1646 |
+
"learning_rate": 8.9272030651341e-06,
|
1647 |
+
"loss": 1.4444,
|
1648 |
+
"step": 234
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 0.4512722035525684,
|
1652 |
+
"grad_norm": 0.7655250611774667,
|
1653 |
+
"learning_rate": 8.965517241379312e-06,
|
1654 |
+
"loss": 1.4183,
|
1655 |
+
"step": 235
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 0.4531925108017283,
|
1659 |
+
"grad_norm": 0.7069725743129521,
|
1660 |
+
"learning_rate": 9.003831417624522e-06,
|
1661 |
+
"loss": 1.4695,
|
1662 |
+
"step": 236
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 0.45511281805088816,
|
1666 |
+
"grad_norm": 0.7033810098540295,
|
1667 |
+
"learning_rate": 9.042145593869732e-06,
|
1668 |
+
"loss": 1.432,
|
1669 |
+
"step": 237
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 0.457033125300048,
|
1673 |
+
"grad_norm": 0.7657511117560273,
|
1674 |
+
"learning_rate": 9.080459770114942e-06,
|
1675 |
+
"loss": 1.3106,
|
1676 |
+
"step": 238
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.4589534325492079,
|
1680 |
+
"grad_norm": 0.6734934664683107,
|
1681 |
+
"learning_rate": 9.118773946360155e-06,
|
1682 |
+
"loss": 1.2657,
|
1683 |
+
"step": 239
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.46087373979836777,
|
1687 |
+
"grad_norm": 0.6793414583903499,
|
1688 |
+
"learning_rate": 9.157088122605364e-06,
|
1689 |
+
"loss": 1.2823,
|
1690 |
+
"step": 240
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 0.4627940470475276,
|
1694 |
+
"grad_norm": 0.6868551209136969,
|
1695 |
+
"learning_rate": 9.195402298850575e-06,
|
1696 |
+
"loss": 1.1981,
|
1697 |
+
"step": 241
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 0.46471435429668745,
|
1701 |
+
"grad_norm": 0.7999498220323118,
|
1702 |
+
"learning_rate": 9.233716475095786e-06,
|
1703 |
+
"loss": 1.3222,
|
1704 |
+
"step": 242
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 0.4666346615458473,
|
1708 |
+
"grad_norm": 0.6765218175071678,
|
1709 |
+
"learning_rate": 9.272030651340997e-06,
|
1710 |
+
"loss": 1.3159,
|
1711 |
+
"step": 243
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 0.4685549687950072,
|
1715 |
+
"grad_norm": 0.7633174577339077,
|
1716 |
+
"learning_rate": 9.310344827586207e-06,
|
1717 |
+
"loss": 1.4493,
|
1718 |
+
"step": 244
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.47047527604416706,
|
1722 |
+
"grad_norm": 0.7434731700432043,
|
1723 |
+
"learning_rate": 9.348659003831418e-06,
|
1724 |
+
"loss": 1.3771,
|
1725 |
+
"step": 245
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.4723955832933269,
|
1729 |
+
"grad_norm": 0.7887594763056447,
|
1730 |
+
"learning_rate": 9.386973180076629e-06,
|
1731 |
+
"loss": 1.2978,
|
1732 |
+
"step": 246
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 0.4743158905424868,
|
1736 |
+
"grad_norm": 0.6816410513843812,
|
1737 |
+
"learning_rate": 9.42528735632184e-06,
|
1738 |
+
"loss": 1.3221,
|
1739 |
+
"step": 247
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 0.47623619779164666,
|
1743 |
+
"grad_norm": 0.6726044542699641,
|
1744 |
+
"learning_rate": 9.46360153256705e-06,
|
1745 |
+
"loss": 1.3954,
|
1746 |
+
"step": 248
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 0.47815650504080653,
|
1750 |
+
"grad_norm": 0.8209401718350966,
|
1751 |
+
"learning_rate": 9.501915708812262e-06,
|
1752 |
+
"loss": 1.2964,
|
1753 |
+
"step": 249
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 0.4800768122899664,
|
1757 |
+
"grad_norm": 0.7150467022402414,
|
1758 |
+
"learning_rate": 9.54022988505747e-06,
|
1759 |
+
"loss": 1.2462,
|
1760 |
+
"step": 250
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 0.4819971195391263,
|
1764 |
+
"grad_norm": 0.7473286809494867,
|
1765 |
+
"learning_rate": 9.578544061302683e-06,
|
1766 |
+
"loss": 1.3987,
|
1767 |
+
"step": 251
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.48391742678828614,
|
1771 |
+
"grad_norm": 0.8919512518954593,
|
1772 |
+
"learning_rate": 9.616858237547894e-06,
|
1773 |
+
"loss": 1.3271,
|
1774 |
+
"step": 252
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 0.485837734037446,
|
1778 |
+
"grad_norm": 0.7235436092130889,
|
1779 |
+
"learning_rate": 9.655172413793105e-06,
|
1780 |
+
"loss": 1.4006,
|
1781 |
+
"step": 253
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 0.4877580412866059,
|
1785 |
+
"grad_norm": 0.7496985395380509,
|
1786 |
+
"learning_rate": 9.693486590038314e-06,
|
1787 |
+
"loss": 1.3485,
|
1788 |
+
"step": 254
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 0.4896783485357657,
|
1792 |
+
"grad_norm": 0.7558104853132458,
|
1793 |
+
"learning_rate": 9.731800766283525e-06,
|
1794 |
+
"loss": 1.4354,
|
1795 |
+
"step": 255
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 0.49159865578492556,
|
1799 |
+
"grad_norm": 0.8026084646949407,
|
1800 |
+
"learning_rate": 9.770114942528738e-06,
|
1801 |
+
"loss": 1.3458,
|
1802 |
+
"step": 256
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 0.49351896303408543,
|
1806 |
+
"grad_norm": 0.6871351528584623,
|
1807 |
+
"learning_rate": 9.808429118773947e-06,
|
1808 |
+
"loss": 1.2849,
|
1809 |
+
"step": 257
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.4954392702832453,
|
1813 |
+
"grad_norm": 0.6733156882936058,
|
1814 |
+
"learning_rate": 9.846743295019157e-06,
|
1815 |
+
"loss": 1.3416,
|
1816 |
+
"step": 258
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"epoch": 0.4973595775324052,
|
1820 |
+
"grad_norm": 0.8040078483269378,
|
1821 |
+
"learning_rate": 9.885057471264368e-06,
|
1822 |
+
"loss": 1.3933,
|
1823 |
+
"step": 259
|
1824 |
+
},
|
1825 |
+
{
|
1826 |
+
"epoch": 0.49927988478156504,
|
1827 |
+
"grad_norm": 0.7019620968242437,
|
1828 |
+
"learning_rate": 9.923371647509579e-06,
|
1829 |
+
"loss": 1.4092,
|
1830 |
+
"step": 260
|
1831 |
+
},
|
1832 |
+
{
|
1833 |
+
"epoch": 0.501200192030725,
|
1834 |
+
"grad_norm": 0.7993119421084648,
|
1835 |
+
"learning_rate": 9.96168582375479e-06,
|
1836 |
+
"loss": 1.4496,
|
1837 |
+
"step": 261
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 0.5031204992798848,
|
1841 |
+
"grad_norm": 0.7500420731214819,
|
1842 |
+
"learning_rate": 1e-05,
|
1843 |
+
"loss": 1.275,
|
1844 |
+
"step": 262
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 0.5050408065290446,
|
1848 |
+
"grad_norm": 0.7096092331830312,
|
1849 |
+
"learning_rate": 9.999995509192137e-06,
|
1850 |
+
"loss": 1.4075,
|
1851 |
+
"step": 263
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 0.5069611137782045,
|
1855 |
+
"grad_norm": 0.6880277184241935,
|
1856 |
+
"learning_rate": 9.999982036776617e-06,
|
1857 |
+
"loss": 1.3853,
|
1858 |
+
"step": 264
|
1859 |
+
},
|
1860 |
+
{
|
1861 |
+
"epoch": 0.5088814210273643,
|
1862 |
+
"grad_norm": 0.6887794428820988,
|
1863 |
+
"learning_rate": 9.999959582777638e-06,
|
1864 |
+
"loss": 1.2526,
|
1865 |
+
"step": 265
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"epoch": 0.5108017282765243,
|
1869 |
+
"grad_norm": 0.6962486538004352,
|
1870 |
+
"learning_rate": 9.999928147235536e-06,
|
1871 |
+
"loss": 1.385,
|
1872 |
+
"step": 266
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"epoch": 0.5127220355256841,
|
1876 |
+
"grad_norm": 0.7314717827625464,
|
1877 |
+
"learning_rate": 9.99988773020678e-06,
|
1878 |
+
"loss": 1.5364,
|
1879 |
+
"step": 267
|
1880 |
+
},
|
1881 |
+
{
|
1882 |
+
"epoch": 0.514642342774844,
|
1883 |
+
"grad_norm": 0.6755436676174023,
|
1884 |
+
"learning_rate": 9.99983833176397e-06,
|
1885 |
+
"loss": 1.1625,
|
1886 |
+
"step": 268
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 0.5165626500240038,
|
1890 |
+
"grad_norm": 0.6799257698916303,
|
1891 |
+
"learning_rate": 9.999779951995845e-06,
|
1892 |
+
"loss": 1.3743,
|
1893 |
+
"step": 269
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.5184829572731637,
|
1897 |
+
"grad_norm": 0.6967760972692357,
|
1898 |
+
"learning_rate": 9.99971259100727e-06,
|
1899 |
+
"loss": 1.4619,
|
1900 |
+
"step": 270
|
1901 |
+
},
|
1902 |
+
{
|
1903 |
+
"epoch": 0.5204032645223235,
|
1904 |
+
"grad_norm": 0.6876004824004736,
|
1905 |
+
"learning_rate": 9.99963624891925e-06,
|
1906 |
+
"loss": 1.2302,
|
1907 |
+
"step": 271
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"epoch": 0.5223235717714835,
|
1911 |
+
"grad_norm": 0.741525025016876,
|
1912 |
+
"learning_rate": 9.999550925868919e-06,
|
1913 |
+
"loss": 1.4944,
|
1914 |
+
"step": 272
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"epoch": 0.5242438790206433,
|
1918 |
+
"grad_norm": 0.7044462970993084,
|
1919 |
+
"learning_rate": 9.999456622009545e-06,
|
1920 |
+
"loss": 1.3233,
|
1921 |
+
"step": 273
|
1922 |
+
},
|
1923 |
+
{
|
1924 |
+
"epoch": 0.5261641862698032,
|
1925 |
+
"grad_norm": 0.7147463675731596,
|
1926 |
+
"learning_rate": 9.999353337510526e-06,
|
1927 |
+
"loss": 1.4728,
|
1928 |
+
"step": 274
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 0.528084493518963,
|
1932 |
+
"grad_norm": 0.7580689885973482,
|
1933 |
+
"learning_rate": 9.9992410725574e-06,
|
1934 |
+
"loss": 1.3894,
|
1935 |
+
"step": 275
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.530004800768123,
|
1939 |
+
"grad_norm": 0.627159916011877,
|
1940 |
+
"learning_rate": 9.999119827351824e-06,
|
1941 |
+
"loss": 1.1499,
|
1942 |
+
"step": 276
|
1943 |
+
},
|
1944 |
+
{
|
1945 |
+
"epoch": 0.5319251080172828,
|
1946 |
+
"grad_norm": 0.7347721430138173,
|
1947 |
+
"learning_rate": 9.998989602111599e-06,
|
1948 |
+
"loss": 1.3863,
|
1949 |
+
"step": 277
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 0.5338454152664426,
|
1953 |
+
"grad_norm": 0.7561542947388183,
|
1954 |
+
"learning_rate": 9.99885039707065e-06,
|
1955 |
+
"loss": 1.4094,
|
1956 |
+
"step": 278
|
1957 |
+
},
|
1958 |
+
{
|
1959 |
+
"epoch": 0.5357657225156025,
|
1960 |
+
"grad_norm": 0.7257428578657052,
|
1961 |
+
"learning_rate": 9.998702212479031e-06,
|
1962 |
+
"loss": 1.3558,
|
1963 |
+
"step": 279
|
1964 |
+
},
|
1965 |
+
{
|
1966 |
+
"epoch": 0.5376860297647623,
|
1967 |
+
"grad_norm": 0.7156710718415759,
|
1968 |
+
"learning_rate": 9.998545048602938e-06,
|
1969 |
+
"loss": 1.3932,
|
1970 |
+
"step": 280
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 0.5396063370139222,
|
1974 |
+
"grad_norm": 0.8324536861856755,
|
1975 |
+
"learning_rate": 9.998378905724677e-06,
|
1976 |
+
"loss": 1.4631,
|
1977 |
+
"step": 281
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 0.5415266442630821,
|
1981 |
+
"grad_norm": 0.769865333129953,
|
1982 |
+
"learning_rate": 9.998203784142701e-06,
|
1983 |
+
"loss": 1.4778,
|
1984 |
+
"step": 282
|
1985 |
+
},
|
1986 |
+
{
|
1987 |
+
"epoch": 0.543446951512242,
|
1988 |
+
"grad_norm": 0.7558894226395197,
|
1989 |
+
"learning_rate": 9.998019684171585e-06,
|
1990 |
+
"loss": 1.3401,
|
1991 |
+
"step": 283
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 0.5453672587614018,
|
1995 |
+
"grad_norm": 0.745453902467428,
|
1996 |
+
"learning_rate": 9.997826606142031e-06,
|
1997 |
+
"loss": 1.376,
|
1998 |
+
"step": 284
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"epoch": 0.5472875660105617,
|
2002 |
+
"grad_norm": 0.8525307677948906,
|
2003 |
+
"learning_rate": 9.997624550400869e-06,
|
2004 |
+
"loss": 1.3269,
|
2005 |
+
"step": 285
|
2006 |
+
},
|
2007 |
+
{
|
2008 |
+
"epoch": 0.5492078732597215,
|
2009 |
+
"grad_norm": 0.8993675673573773,
|
2010 |
+
"learning_rate": 9.997413517311055e-06,
|
2011 |
+
"loss": 1.3973,
|
2012 |
+
"step": 286
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 0.5511281805088815,
|
2016 |
+
"grad_norm": 0.7637767723846134,
|
2017 |
+
"learning_rate": 9.997193507251676e-06,
|
2018 |
+
"loss": 1.4107,
|
2019 |
+
"step": 287
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 0.5530484877580413,
|
2023 |
+
"grad_norm": 0.7334145684503066,
|
2024 |
+
"learning_rate": 9.996964520617938e-06,
|
2025 |
+
"loss": 1.2548,
|
2026 |
+
"step": 288
|
2027 |
+
},
|
2028 |
+
{
|
2029 |
+
"epoch": 0.5549687950072012,
|
2030 |
+
"grad_norm": 0.8286763467838726,
|
2031 |
+
"learning_rate": 9.996726557821177e-06,
|
2032 |
+
"loss": 1.3915,
|
2033 |
+
"step": 289
|
2034 |
+
},
|
2035 |
+
{
|
2036 |
+
"epoch": 0.556889102256361,
|
2037 |
+
"grad_norm": 0.786223417485439,
|
2038 |
+
"learning_rate": 9.996479619288853e-06,
|
2039 |
+
"loss": 1.2113,
|
2040 |
+
"step": 290
|
2041 |
+
},
|
2042 |
+
{
|
2043 |
+
"epoch": 0.5588094095055209,
|
2044 |
+
"grad_norm": 0.6629161249458739,
|
2045 |
+
"learning_rate": 9.996223705464542e-06,
|
2046 |
+
"loss": 1.383,
|
2047 |
+
"step": 291
|
2048 |
+
},
|
2049 |
+
{
|
2050 |
+
"epoch": 0.5607297167546808,
|
2051 |
+
"grad_norm": 0.7763568743151492,
|
2052 |
+
"learning_rate": 9.995958816807951e-06,
|
2053 |
+
"loss": 1.511,
|
2054 |
+
"step": 292
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 0.5626500240038406,
|
2058 |
+
"grad_norm": 0.8706771128343518,
|
2059 |
+
"learning_rate": 9.995684953794905e-06,
|
2060 |
+
"loss": 1.301,
|
2061 |
+
"step": 293
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 0.5645703312530005,
|
2065 |
+
"grad_norm": 0.7186979734065922,
|
2066 |
+
"learning_rate": 9.995402116917353e-06,
|
2067 |
+
"loss": 1.3137,
|
2068 |
+
"step": 294
|
2069 |
+
},
|
2070 |
+
{
|
2071 |
+
"epoch": 0.5664906385021603,
|
2072 |
+
"grad_norm": 0.7197477949946243,
|
2073 |
+
"learning_rate": 9.995110306683358e-06,
|
2074 |
+
"loss": 1.3924,
|
2075 |
+
"step": 295
|
2076 |
+
},
|
2077 |
+
{
|
2078 |
+
"epoch": 0.5684109457513202,
|
2079 |
+
"grad_norm": 0.7990094094001562,
|
2080 |
+
"learning_rate": 9.994809523617109e-06,
|
2081 |
+
"loss": 1.3595,
|
2082 |
+
"step": 296
|
2083 |
+
},
|
2084 |
+
{
|
2085 |
+
"epoch": 0.57033125300048,
|
2086 |
+
"grad_norm": 0.7548256910113419,
|
2087 |
+
"learning_rate": 9.994499768258905e-06,
|
2088 |
+
"loss": 1.2627,
|
2089 |
+
"step": 297
|
2090 |
+
},
|
2091 |
+
{
|
2092 |
+
"epoch": 0.57225156024964,
|
2093 |
+
"grad_norm": 0.6080847660246027,
|
2094 |
+
"learning_rate": 9.994181041165169e-06,
|
2095 |
+
"loss": 1.233,
|
2096 |
+
"step": 298
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 0.5741718674987998,
|
2100 |
+
"grad_norm": 0.7522747291038051,
|
2101 |
+
"learning_rate": 9.99385334290844e-06,
|
2102 |
+
"loss": 1.4473,
|
2103 |
+
"step": 299
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 0.5760921747479597,
|
2107 |
+
"grad_norm": 0.693071662167599,
|
2108 |
+
"learning_rate": 9.993516674077367e-06,
|
2109 |
+
"loss": 1.3112,
|
2110 |
+
"step": 300
|
2111 |
+
},
|
2112 |
+
{
|
2113 |
+
"epoch": 0.5780124819971195,
|
2114 |
+
"grad_norm": 0.7289575683988432,
|
2115 |
+
"learning_rate": 9.993171035276717e-06,
|
2116 |
+
"loss": 1.4447,
|
2117 |
+
"step": 301
|
2118 |
+
},
|
2119 |
+
{
|
2120 |
+
"epoch": 0.5799327892462794,
|
2121 |
+
"grad_norm": 0.7219332107019164,
|
2122 |
+
"learning_rate": 9.992816427127367e-06,
|
2123 |
+
"loss": 1.3059,
|
2124 |
+
"step": 302
|
2125 |
+
},
|
2126 |
+
{
|
2127 |
+
"epoch": 0.5818530964954393,
|
2128 |
+
"grad_norm": 0.7884436507160677,
|
2129 |
+
"learning_rate": 9.992452850266313e-06,
|
2130 |
+
"loss": 1.4828,
|
2131 |
+
"step": 303
|
2132 |
+
},
|
2133 |
+
{
|
2134 |
+
"epoch": 0.5837734037445992,
|
2135 |
+
"grad_norm": 0.6835750513473184,
|
2136 |
+
"learning_rate": 9.992080305346652e-06,
|
2137 |
+
"loss": 1.3351,
|
2138 |
+
"step": 304
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 0.585693710993759,
|
2142 |
+
"grad_norm": 0.7455682427352298,
|
2143 |
+
"learning_rate": 9.991698793037596e-06,
|
2144 |
+
"loss": 1.3393,
|
2145 |
+
"step": 305
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 0.5876140182429188,
|
2149 |
+
"grad_norm": 0.6344234674402865,
|
2150 |
+
"learning_rate": 9.991308314024466e-06,
|
2151 |
+
"loss": 1.1186,
|
2152 |
+
"step": 306
|
2153 |
+
},
|
2154 |
+
{
|
2155 |
+
"epoch": 0.5895343254920787,
|
2156 |
+
"grad_norm": 0.6463680302231726,
|
2157 |
+
"learning_rate": 9.990908869008685e-06,
|
2158 |
+
"loss": 1.3536,
|
2159 |
+
"step": 307
|
2160 |
+
},
|
2161 |
+
{
|
2162 |
+
"epoch": 0.5914546327412386,
|
2163 |
+
"grad_norm": 0.7763640180054763,
|
2164 |
+
"learning_rate": 9.99050045870779e-06,
|
2165 |
+
"loss": 1.4034,
|
2166 |
+
"step": 308
|
2167 |
+
},
|
2168 |
+
{
|
2169 |
+
"epoch": 0.5933749399903985,
|
2170 |
+
"grad_norm": 0.7729679972786335,
|
2171 |
+
"learning_rate": 9.990083083855413e-06,
|
2172 |
+
"loss": 1.518,
|
2173 |
+
"step": 309
|
2174 |
+
},
|
2175 |
+
{
|
2176 |
+
"epoch": 0.5952952472395583,
|
2177 |
+
"grad_norm": 0.7293910429882318,
|
2178 |
+
"learning_rate": 9.9896567452013e-06,
|
2179 |
+
"loss": 1.4168,
|
2180 |
+
"step": 310
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 0.5972155544887182,
|
2184 |
+
"grad_norm": 0.6938721572185663,
|
2185 |
+
"learning_rate": 9.989221443511286e-06,
|
2186 |
+
"loss": 1.5813,
|
2187 |
+
"step": 311
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 0.599135861737878,
|
2191 |
+
"grad_norm": 0.6823348506968784,
|
2192 |
+
"learning_rate": 9.98877717956732e-06,
|
2193 |
+
"loss": 1.396,
|
2194 |
+
"step": 312
|
2195 |
+
},
|
2196 |
+
{
|
2197 |
+
"epoch": 0.601056168987038,
|
2198 |
+
"grad_norm": 0.6470598419144085,
|
2199 |
+
"learning_rate": 9.988323954167438e-06,
|
2200 |
+
"loss": 1.3138,
|
2201 |
+
"step": 313
|
2202 |
+
},
|
2203 |
+
{
|
2204 |
+
"epoch": 0.6029764762361978,
|
2205 |
+
"grad_norm": 0.6955870872672735,
|
2206 |
+
"learning_rate": 9.987861768125783e-06,
|
2207 |
+
"loss": 1.4043,
|
2208 |
+
"step": 314
|
2209 |
+
},
|
2210 |
+
{
|
2211 |
+
"epoch": 0.6048967834853577,
|
2212 |
+
"grad_norm": 0.7788214111440995,
|
2213 |
+
"learning_rate": 9.98739062227259e-06,
|
2214 |
+
"loss": 1.5305,
|
2215 |
+
"step": 315
|
2216 |
+
},
|
2217 |
+
{
|
2218 |
+
"epoch": 0.6068170907345175,
|
2219 |
+
"grad_norm": 0.6598071275711943,
|
2220 |
+
"learning_rate": 9.986910517454188e-06,
|
2221 |
+
"loss": 1.185,
|
2222 |
+
"step": 316
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 0.6087373979836774,
|
2226 |
+
"grad_norm": 0.7478469808999688,
|
2227 |
+
"learning_rate": 9.986421454533001e-06,
|
2228 |
+
"loss": 1.2875,
|
2229 |
+
"step": 317
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 0.6106577052328372,
|
2233 |
+
"grad_norm": 0.7102386979345604,
|
2234 |
+
"learning_rate": 9.985923434387545e-06,
|
2235 |
+
"loss": 1.2623,
|
2236 |
+
"step": 318
|
2237 |
+
},
|
2238 |
+
{
|
2239 |
+
"epoch": 0.6125780124819972,
|
2240 |
+
"grad_norm": 0.8159684281974479,
|
2241 |
+
"learning_rate": 9.985416457912423e-06,
|
2242 |
+
"loss": 1.3859,
|
2243 |
+
"step": 319
|
2244 |
+
},
|
2245 |
+
{
|
2246 |
+
"epoch": 0.614498319731157,
|
2247 |
+
"grad_norm": 0.7359831696017346,
|
2248 |
+
"learning_rate": 9.984900526018331e-06,
|
2249 |
+
"loss": 1.3127,
|
2250 |
+
"step": 320
|
2251 |
+
},
|
2252 |
+
{
|
2253 |
+
"epoch": 0.6164186269803168,
|
2254 |
+
"grad_norm": 0.7406050107164467,
|
2255 |
+
"learning_rate": 9.984375639632047e-06,
|
2256 |
+
"loss": 1.3526,
|
2257 |
+
"step": 321
|
2258 |
+
},
|
2259 |
+
{
|
2260 |
+
"epoch": 0.6183389342294767,
|
2261 |
+
"grad_norm": 0.7171563092825125,
|
2262 |
+
"learning_rate": 9.98384179969644e-06,
|
2263 |
+
"loss": 1.3718,
|
2264 |
+
"step": 322
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 0.6202592414786365,
|
2268 |
+
"grad_norm": 0.7444992833186831,
|
2269 |
+
"learning_rate": 9.983299007170454e-06,
|
2270 |
+
"loss": 1.2605,
|
2271 |
+
"step": 323
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 0.6221795487277965,
|
2275 |
+
"grad_norm": 0.6718703991955216,
|
2276 |
+
"learning_rate": 9.982747263029123e-06,
|
2277 |
+
"loss": 1.2696,
|
2278 |
+
"step": 324
|
2279 |
+
},
|
2280 |
+
{
|
2281 |
+
"epoch": 0.6240998559769563,
|
2282 |
+
"grad_norm": 0.6953480856589247,
|
2283 |
+
"learning_rate": 9.982186568263558e-06,
|
2284 |
+
"loss": 1.402,
|
2285 |
+
"step": 325
|
2286 |
+
},
|
2287 |
+
{
|
2288 |
+
"epoch": 0.6260201632261162,
|
2289 |
+
"grad_norm": 0.6814410132323387,
|
2290 |
+
"learning_rate": 9.981616923880948e-06,
|
2291 |
+
"loss": 1.357,
|
2292 |
+
"step": 326
|
2293 |
+
},
|
2294 |
+
{
|
2295 |
+
"epoch": 0.627940470475276,
|
2296 |
+
"grad_norm": 0.6789399695802566,
|
2297 |
+
"learning_rate": 9.981038330904556e-06,
|
2298 |
+
"loss": 1.3563,
|
2299 |
+
"step": 327
|
2300 |
+
},
|
2301 |
+
{
|
2302 |
+
"epoch": 0.6298607777244359,
|
2303 |
+
"grad_norm": 0.7084278817620212,
|
2304 |
+
"learning_rate": 9.980450790373724e-06,
|
2305 |
+
"loss": 1.3983,
|
2306 |
+
"step": 328
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 0.6317810849735958,
|
2310 |
+
"grad_norm": 0.7561797459599714,
|
2311 |
+
"learning_rate": 9.979854303343866e-06,
|
2312 |
+
"loss": 1.3998,
|
2313 |
+
"step": 329
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 0.6337013922227557,
|
2317 |
+
"grad_norm": 0.7063013474407709,
|
2318 |
+
"learning_rate": 9.979248870886463e-06,
|
2319 |
+
"loss": 1.4128,
|
2320 |
+
"step": 330
|
2321 |
+
},
|
2322 |
+
{
|
2323 |
+
"epoch": 0.6356216994719155,
|
2324 |
+
"grad_norm": 0.7285839877290075,
|
2325 |
+
"learning_rate": 9.978634494089066e-06,
|
2326 |
+
"loss": 1.5026,
|
2327 |
+
"step": 331
|
2328 |
+
},
|
2329 |
+
{
|
2330 |
+
"epoch": 0.6375420067210754,
|
2331 |
+
"grad_norm": 0.7631063764422019,
|
2332 |
+
"learning_rate": 9.9780111740553e-06,
|
2333 |
+
"loss": 1.3353,
|
2334 |
+
"step": 332
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 0.6394623139702352,
|
2338 |
+
"grad_norm": 0.8022733412976211,
|
2339 |
+
"learning_rate": 9.977378911904843e-06,
|
2340 |
+
"loss": 1.3017,
|
2341 |
+
"step": 333
|
2342 |
+
},
|
2343 |
+
{
|
2344 |
+
"epoch": 0.6413826212193952,
|
2345 |
+
"grad_norm": 0.7397584519382538,
|
2346 |
+
"learning_rate": 9.976737708773445e-06,
|
2347 |
+
"loss": 1.4274,
|
2348 |
+
"step": 334
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 0.643302928468555,
|
2352 |
+
"grad_norm": 0.7498254808267637,
|
2353 |
+
"learning_rate": 9.976087565812913e-06,
|
2354 |
+
"loss": 1.2821,
|
2355 |
+
"step": 335
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 0.6452232357177148,
|
2359 |
+
"grad_norm": 0.8440233129581642,
|
2360 |
+
"learning_rate": 9.975428484191117e-06,
|
2361 |
+
"loss": 1.507,
|
2362 |
+
"step": 336
|
2363 |
+
},
|
2364 |
+
{
|
2365 |
+
"epoch": 0.6471435429668747,
|
2366 |
+
"grad_norm": 0.7140420729824992,
|
2367 |
+
"learning_rate": 9.974760465091975e-06,
|
2368 |
+
"loss": 1.3541,
|
2369 |
+
"step": 337
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"epoch": 0.6490638502160345,
|
2373 |
+
"grad_norm": 0.7935959679049022,
|
2374 |
+
"learning_rate": 9.974083509715471e-06,
|
2375 |
+
"loss": 1.3704,
|
2376 |
+
"step": 338
|
2377 |
+
},
|
2378 |
+
{
|
2379 |
+
"epoch": 0.6509841574651944,
|
2380 |
+
"grad_norm": 0.8128531878052235,
|
2381 |
+
"learning_rate": 9.973397619277631e-06,
|
2382 |
+
"loss": 1.3941,
|
2383 |
+
"step": 339
|
2384 |
+
},
|
2385 |
+
{
|
2386 |
+
"epoch": 0.6529044647143543,
|
2387 |
+
"grad_norm": 0.7087809281812139,
|
2388 |
+
"learning_rate": 9.972702795010539e-06,
|
2389 |
+
"loss": 1.3024,
|
2390 |
+
"step": 340
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 0.6548247719635142,
|
2394 |
+
"grad_norm": 0.8779292688681924,
|
2395 |
+
"learning_rate": 9.971999038162322e-06,
|
2396 |
+
"loss": 1.275,
|
2397 |
+
"step": 341
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 0.656745079212674,
|
2401 |
+
"grad_norm": 0.8321554450658822,
|
2402 |
+
"learning_rate": 9.971286349997155e-06,
|
2403 |
+
"loss": 1.4001,
|
2404 |
+
"step": 342
|
2405 |
+
},
|
2406 |
+
{
|
2407 |
+
"epoch": 0.6586653864618339,
|
2408 |
+
"grad_norm": 0.6785835670278665,
|
2409 |
+
"learning_rate": 9.970564731795259e-06,
|
2410 |
+
"loss": 1.3563,
|
2411 |
+
"step": 343
|
2412 |
+
},
|
2413 |
+
{
|
2414 |
+
"epoch": 0.6605856937109937,
|
2415 |
+
"grad_norm": 0.8154880274231641,
|
2416 |
+
"learning_rate": 9.96983418485289e-06,
|
2417 |
+
"loss": 1.2015,
|
2418 |
+
"step": 344
|
2419 |
+
},
|
2420 |
+
{
|
2421 |
+
"epoch": 0.6625060009601537,
|
2422 |
+
"grad_norm": 0.7877809686842095,
|
2423 |
+
"learning_rate": 9.969094710482345e-06,
|
2424 |
+
"loss": 1.3176,
|
2425 |
+
"step": 345
|
2426 |
+
},
|
2427 |
+
{
|
2428 |
+
"epoch": 0.6644263082093135,
|
2429 |
+
"grad_norm": 0.737869545031943,
|
2430 |
+
"learning_rate": 9.968346310011965e-06,
|
2431 |
+
"loss": 1.2681,
|
2432 |
+
"step": 346
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 0.6663466154584734,
|
2436 |
+
"grad_norm": 0.8367016706595558,
|
2437 |
+
"learning_rate": 9.967588984786113e-06,
|
2438 |
+
"loss": 1.3146,
|
2439 |
+
"step": 347
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 0.6682669227076332,
|
2443 |
+
"grad_norm": 0.7157484065111132,
|
2444 |
+
"learning_rate": 9.966822736165194e-06,
|
2445 |
+
"loss": 1.2279,
|
2446 |
+
"step": 348
|
2447 |
+
},
|
2448 |
+
{
|
2449 |
+
"epoch": 0.6701872299567931,
|
2450 |
+
"grad_norm": 0.8340115611171157,
|
2451 |
+
"learning_rate": 9.966047565525636e-06,
|
2452 |
+
"loss": 1.346,
|
2453 |
+
"step": 349
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"epoch": 0.672107537205953,
|
2457 |
+
"grad_norm": 0.7964501684625079,
|
2458 |
+
"learning_rate": 9.965263474259896e-06,
|
2459 |
+
"loss": 1.2604,
|
2460 |
+
"step": 350
|
2461 |
+
},
|
2462 |
+
{
|
2463 |
+
"epoch": 0.6740278444551128,
|
2464 |
+
"grad_norm": 0.7644952492186728,
|
2465 |
+
"learning_rate": 9.964470463776457e-06,
|
2466 |
+
"loss": 1.2808,
|
2467 |
+
"step": 351
|
2468 |
+
},
|
2469 |
+
{
|
2470 |
+
"epoch": 0.6759481517042727,
|
2471 |
+
"grad_norm": 0.715875104396104,
|
2472 |
+
"learning_rate": 9.96366853549982e-06,
|
2473 |
+
"loss": 1.3779,
|
2474 |
+
"step": 352
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 0.6778684589534325,
|
2478 |
+
"grad_norm": 0.6658897567313692,
|
2479 |
+
"learning_rate": 9.962857690870507e-06,
|
2480 |
+
"loss": 1.3005,
|
2481 |
+
"step": 353
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 0.6797887662025924,
|
2485 |
+
"grad_norm": 0.7869576623216241,
|
2486 |
+
"learning_rate": 9.962037931345058e-06,
|
2487 |
+
"loss": 1.3772,
|
2488 |
+
"step": 354
|
2489 |
+
},
|
2490 |
+
{
|
2491 |
+
"epoch": 0.6817090734517522,
|
2492 |
+
"grad_norm": 0.9271972422960602,
|
2493 |
+
"learning_rate": 9.96120925839603e-06,
|
2494 |
+
"loss": 1.346,
|
2495 |
+
"step": 355
|
2496 |
+
},
|
2497 |
+
{
|
2498 |
+
"epoch": 0.6836293807009122,
|
2499 |
+
"grad_norm": 0.7660166493856924,
|
2500 |
+
"learning_rate": 9.96037167351198e-06,
|
2501 |
+
"loss": 1.2745,
|
2502 |
+
"step": 356
|
2503 |
+
},
|
2504 |
+
{
|
2505 |
+
"epoch": 0.685549687950072,
|
2506 |
+
"grad_norm": 0.6278698318719681,
|
2507 |
+
"learning_rate": 9.959525178197484e-06,
|
2508 |
+
"loss": 1.1849,
|
2509 |
+
"step": 357
|
2510 |
+
},
|
2511 |
+
{
|
2512 |
+
"epoch": 0.6874699951992319,
|
2513 |
+
"grad_norm": 0.8957448047534449,
|
2514 |
+
"learning_rate": 9.958669773973124e-06,
|
2515 |
+
"loss": 1.47,
|
2516 |
+
"step": 358
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 0.6893903024483917,
|
2520 |
+
"grad_norm": 0.7893290798004599,
|
2521 |
+
"learning_rate": 9.95780546237548e-06,
|
2522 |
+
"loss": 1.4411,
|
2523 |
+
"step": 359
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 0.6913106096975516,
|
2527 |
+
"grad_norm": 0.6674442252477479,
|
2528 |
+
"learning_rate": 9.956932244957135e-06,
|
2529 |
+
"loss": 1.3468,
|
2530 |
+
"step": 360
|
2531 |
+
},
|
2532 |
+
{
|
2533 |
+
"epoch": 0.6932309169467115,
|
2534 |
+
"grad_norm": 0.8637622685527974,
|
2535 |
+
"learning_rate": 9.95605012328667e-06,
|
2536 |
+
"loss": 1.4951,
|
2537 |
+
"step": 361
|
2538 |
+
},
|
2539 |
+
{
|
2540 |
+
"epoch": 0.6951512241958714,
|
2541 |
+
"grad_norm": 0.7032170307148827,
|
2542 |
+
"learning_rate": 9.95515909894866e-06,
|
2543 |
+
"loss": 1.2168,
|
2544 |
+
"step": 362
|
2545 |
+
},
|
2546 |
+
{
|
2547 |
+
"epoch": 0.6970715314450312,
|
2548 |
+
"grad_norm": 0.7604809716338964,
|
2549 |
+
"learning_rate": 9.954259173543671e-06,
|
2550 |
+
"loss": 1.3405,
|
2551 |
+
"step": 363
|
2552 |
+
},
|
2553 |
+
{
|
2554 |
+
"epoch": 0.6989918386941911,
|
2555 |
+
"grad_norm": 0.7356596357988364,
|
2556 |
+
"learning_rate": 9.953350348688264e-06,
|
2557 |
+
"loss": 1.4851,
|
2558 |
+
"step": 364
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 0.7009121459433509,
|
2562 |
+
"grad_norm": 0.7106099387583814,
|
2563 |
+
"learning_rate": 9.952432626014979e-06,
|
2564 |
+
"loss": 1.4105,
|
2565 |
+
"step": 365
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 0.7028324531925108,
|
2569 |
+
"grad_norm": 0.7680103674421779,
|
2570 |
+
"learning_rate": 9.951506007172344e-06,
|
2571 |
+
"loss": 1.3767,
|
2572 |
+
"step": 366
|
2573 |
+
},
|
2574 |
+
{
|
2575 |
+
"epoch": 0.7047527604416707,
|
2576 |
+
"grad_norm": 0.7045547217675817,
|
2577 |
+
"learning_rate": 9.950570493824864e-06,
|
2578 |
+
"loss": 1.3534,
|
2579 |
+
"step": 367
|
2580 |
+
},
|
2581 |
+
{
|
2582 |
+
"epoch": 0.7066730676908305,
|
2583 |
+
"grad_norm": 0.8618867023288301,
|
2584 |
+
"learning_rate": 9.949626087653026e-06,
|
2585 |
+
"loss": 1.5932,
|
2586 |
+
"step": 368
|
2587 |
+
},
|
2588 |
+
{
|
2589 |
+
"epoch": 0.7085933749399904,
|
2590 |
+
"grad_norm": 0.7514120877501722,
|
2591 |
+
"learning_rate": 9.948672790353287e-06,
|
2592 |
+
"loss": 1.4226,
|
2593 |
+
"step": 369
|
2594 |
+
},
|
2595 |
+
{
|
2596 |
+
"epoch": 0.7105136821891502,
|
2597 |
+
"grad_norm": 0.7707655494026907,
|
2598 |
+
"learning_rate": 9.947710603638078e-06,
|
2599 |
+
"loss": 1.3086,
|
2600 |
+
"step": 370
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 0.7124339894383102,
|
2604 |
+
"grad_norm": 0.7353314917000675,
|
2605 |
+
"learning_rate": 9.946739529235797e-06,
|
2606 |
+
"loss": 1.3498,
|
2607 |
+
"step": 371
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 0.71435429668747,
|
2611 |
+
"grad_norm": 0.7677899312066072,
|
2612 |
+
"learning_rate": 9.945759568890804e-06,
|
2613 |
+
"loss": 1.337,
|
2614 |
+
"step": 372
|
2615 |
+
},
|
2616 |
+
{
|
2617 |
+
"epoch": 0.7162746039366299,
|
2618 |
+
"grad_norm": 0.7323170602281932,
|
2619 |
+
"learning_rate": 9.944770724363428e-06,
|
2620 |
+
"loss": 1.2262,
|
2621 |
+
"step": 373
|
2622 |
+
},
|
2623 |
+
{
|
2624 |
+
"epoch": 0.7181949111857897,
|
2625 |
+
"grad_norm": 0.7030503301748048,
|
2626 |
+
"learning_rate": 9.943772997429955e-06,
|
2627 |
+
"loss": 1.2604,
|
2628 |
+
"step": 374
|
2629 |
+
},
|
2630 |
+
{
|
2631 |
+
"epoch": 0.7201152184349496,
|
2632 |
+
"grad_norm": 0.8803804845996765,
|
2633 |
+
"learning_rate": 9.942766389882621e-06,
|
2634 |
+
"loss": 1.3465,
|
2635 |
+
"step": 375
|
2636 |
+
},
|
2637 |
+
{
|
2638 |
+
"epoch": 0.7220355256841094,
|
2639 |
+
"grad_norm": 0.765754153505594,
|
2640 |
+
"learning_rate": 9.94175090352962e-06,
|
2641 |
+
"loss": 1.4785,
|
2642 |
+
"step": 376
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 0.7239558329332694,
|
2646 |
+
"grad_norm": 0.7412100725496786,
|
2647 |
+
"learning_rate": 9.940726540195093e-06,
|
2648 |
+
"loss": 1.3886,
|
2649 |
+
"step": 377
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 0.7258761401824292,
|
2653 |
+
"grad_norm": 0.7352092180670398,
|
2654 |
+
"learning_rate": 9.939693301719131e-06,
|
2655 |
+
"loss": 1.3787,
|
2656 |
+
"step": 378
|
2657 |
+
},
|
2658 |
+
{
|
2659 |
+
"epoch": 0.727796447431589,
|
2660 |
+
"grad_norm": 0.7081810984489154,
|
2661 |
+
"learning_rate": 9.93865118995776e-06,
|
2662 |
+
"loss": 1.2855,
|
2663 |
+
"step": 379
|
2664 |
+
},
|
2665 |
+
{
|
2666 |
+
"epoch": 0.7297167546807489,
|
2667 |
+
"grad_norm": 0.721692280601312,
|
2668 |
+
"learning_rate": 9.937600206782951e-06,
|
2669 |
+
"loss": 1.2581,
|
2670 |
+
"step": 380
|
2671 |
+
},
|
2672 |
+
{
|
2673 |
+
"epoch": 0.7316370619299087,
|
2674 |
+
"grad_norm": 0.7219716174107607,
|
2675 |
+
"learning_rate": 9.93654035408261e-06,
|
2676 |
+
"loss": 1.3989,
|
2677 |
+
"step": 381
|
2678 |
+
},
|
2679 |
+
{
|
2680 |
+
"epoch": 0.7335573691790687,
|
2681 |
+
"grad_norm": 0.808844014227327,
|
2682 |
+
"learning_rate": 9.935471633760572e-06,
|
2683 |
+
"loss": 1.489,
|
2684 |
+
"step": 382
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 0.7354776764282285,
|
2688 |
+
"grad_norm": 0.6931394591191726,
|
2689 |
+
"learning_rate": 9.934394047736608e-06,
|
2690 |
+
"loss": 1.3596,
|
2691 |
+
"step": 383
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 0.7373979836773884,
|
2695 |
+
"grad_norm": 0.7255320444997646,
|
2696 |
+
"learning_rate": 9.93330759794641e-06,
|
2697 |
+
"loss": 1.2593,
|
2698 |
+
"step": 384
|
2699 |
+
},
|
2700 |
+
{
|
2701 |
+
"epoch": 0.7393182909265482,
|
2702 |
+
"grad_norm": 0.6469865776133421,
|
2703 |
+
"learning_rate": 9.932212286341591e-06,
|
2704 |
+
"loss": 1.4305,
|
2705 |
+
"step": 385
|
2706 |
+
},
|
2707 |
+
{
|
2708 |
+
"epoch": 0.7412385981757081,
|
2709 |
+
"grad_norm": 0.7276641692049547,
|
2710 |
+
"learning_rate": 9.931108114889685e-06,
|
2711 |
+
"loss": 1.531,
|
2712 |
+
"step": 386
|
2713 |
+
},
|
2714 |
+
{
|
2715 |
+
"epoch": 0.743158905424868,
|
2716 |
+
"grad_norm": 0.7064363862608019,
|
2717 |
+
"learning_rate": 9.929995085574142e-06,
|
2718 |
+
"loss": 1.3905,
|
2719 |
+
"step": 387
|
2720 |
+
},
|
2721 |
+
{
|
2722 |
+
"epoch": 0.7450792126740279,
|
2723 |
+
"grad_norm": 0.7331138015593877,
|
2724 |
+
"learning_rate": 9.928873200394323e-06,
|
2725 |
+
"loss": 1.3649,
|
2726 |
+
"step": 388
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 0.7469995199231877,
|
2730 |
+
"grad_norm": 0.7324112634125343,
|
2731 |
+
"learning_rate": 9.927742461365493e-06,
|
2732 |
+
"loss": 1.4049,
|
2733 |
+
"step": 389
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 0.7489198271723476,
|
2737 |
+
"grad_norm": 0.7448582260656762,
|
2738 |
+
"learning_rate": 9.926602870518826e-06,
|
2739 |
+
"loss": 1.3451,
|
2740 |
+
"step": 390
|
2741 |
+
},
|
2742 |
+
{
|
2743 |
+
"epoch": 0.7508401344215074,
|
2744 |
+
"grad_norm": 0.7290925508892867,
|
2745 |
+
"learning_rate": 9.925454429901397e-06,
|
2746 |
+
"loss": 1.265,
|
2747 |
+
"step": 391
|
2748 |
+
},
|
2749 |
+
{
|
2750 |
+
"epoch": 0.7527604416706674,
|
2751 |
+
"grad_norm": 0.8652107575311744,
|
2752 |
+
"learning_rate": 9.924297141576176e-06,
|
2753 |
+
"loss": 1.2601,
|
2754 |
+
"step": 392
|
2755 |
+
},
|
2756 |
+
{
|
2757 |
+
"epoch": 0.7546807489198272,
|
2758 |
+
"grad_norm": 0.8112589543786329,
|
2759 |
+
"learning_rate": 9.923131007622027e-06,
|
2760 |
+
"loss": 1.3949,
|
2761 |
+
"step": 393
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"epoch": 0.756601056168987,
|
2765 |
+
"grad_norm": 0.7564370059278668,
|
2766 |
+
"learning_rate": 9.9219560301337e-06,
|
2767 |
+
"loss": 1.5582,
|
2768 |
+
"step": 394
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 0.7585213634181469,
|
2772 |
+
"grad_norm": 0.7217323314506744,
|
2773 |
+
"learning_rate": 9.920772211221841e-06,
|
2774 |
+
"loss": 1.3385,
|
2775 |
+
"step": 395
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 0.7604416706673067,
|
2779 |
+
"grad_norm": 0.7276996906484348,
|
2780 |
+
"learning_rate": 9.919579553012964e-06,
|
2781 |
+
"loss": 1.3778,
|
2782 |
+
"step": 396
|
2783 |
+
},
|
2784 |
+
{
|
2785 |
+
"epoch": 0.7623619779164666,
|
2786 |
+
"grad_norm": 0.7823149650395126,
|
2787 |
+
"learning_rate": 9.918378057649474e-06,
|
2788 |
+
"loss": 1.3767,
|
2789 |
+
"step": 397
|
2790 |
+
},
|
2791 |
+
{
|
2792 |
+
"epoch": 0.7642822851656265,
|
2793 |
+
"grad_norm": 0.6630175095699308,
|
2794 |
+
"learning_rate": 9.917167727289641e-06,
|
2795 |
+
"loss": 1.4844,
|
2796 |
+
"step": 398
|
2797 |
+
},
|
2798 |
+
{
|
2799 |
+
"epoch": 0.7662025924147864,
|
2800 |
+
"grad_norm": 0.7344567983746931,
|
2801 |
+
"learning_rate": 9.915948564107611e-06,
|
2802 |
+
"loss": 1.3379,
|
2803 |
+
"step": 399
|
2804 |
+
},
|
2805 |
+
{
|
2806 |
+
"epoch": 0.7681228996639462,
|
2807 |
+
"grad_norm": 0.7466071399468908,
|
2808 |
+
"learning_rate": 9.914720570293397e-06,
|
2809 |
+
"loss": 1.3972,
|
2810 |
+
"step": 400
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 0.7700432069131061,
|
2814 |
+
"grad_norm": 0.6949526386517407,
|
2815 |
+
"learning_rate": 9.913483748052871e-06,
|
2816 |
+
"loss": 1.4014,
|
2817 |
+
"step": 401
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 0.7719635141622659,
|
2821 |
+
"grad_norm": 0.6613334975361209,
|
2822 |
+
"learning_rate": 9.912238099607763e-06,
|
2823 |
+
"loss": 1.2069,
|
2824 |
+
"step": 402
|
2825 |
+
},
|
2826 |
+
{
|
2827 |
+
"epoch": 0.7738838214114259,
|
2828 |
+
"grad_norm": 0.6632714829710001,
|
2829 |
+
"learning_rate": 9.910983627195665e-06,
|
2830 |
+
"loss": 1.2427,
|
2831 |
+
"step": 403
|
2832 |
+
},
|
2833 |
+
{
|
2834 |
+
"epoch": 0.7758041286605857,
|
2835 |
+
"grad_norm": 0.6899922310091848,
|
2836 |
+
"learning_rate": 9.90972033307001e-06,
|
2837 |
+
"loss": 1.4041,
|
2838 |
+
"step": 404
|
2839 |
+
},
|
2840 |
+
{
|
2841 |
+
"epoch": 0.7777244359097456,
|
2842 |
+
"grad_norm": 0.6259530173512385,
|
2843 |
+
"learning_rate": 9.908448219500087e-06,
|
2844 |
+
"loss": 1.0889,
|
2845 |
+
"step": 405
|
2846 |
+
},
|
2847 |
+
{
|
2848 |
+
"epoch": 0.7796447431589054,
|
2849 |
+
"grad_norm": 0.7856357851084043,
|
2850 |
+
"learning_rate": 9.90716728877102e-06,
|
2851 |
+
"loss": 1.4446,
|
2852 |
+
"step": 406
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 0.7815650504080653,
|
2856 |
+
"grad_norm": 0.6391414313005859,
|
2857 |
+
"learning_rate": 9.905877543183776e-06,
|
2858 |
+
"loss": 1.3569,
|
2859 |
+
"step": 407
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 0.7834853576572252,
|
2863 |
+
"grad_norm": 0.7168868905941123,
|
2864 |
+
"learning_rate": 9.904578985055151e-06,
|
2865 |
+
"loss": 1.3422,
|
2866 |
+
"step": 408
|
2867 |
+
},
|
2868 |
+
{
|
2869 |
+
"epoch": 0.785405664906385,
|
2870 |
+
"grad_norm": 0.7244557046923163,
|
2871 |
+
"learning_rate": 9.903271616717782e-06,
|
2872 |
+
"loss": 1.4439,
|
2873 |
+
"step": 409
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"epoch": 0.7873259721555449,
|
2877 |
+
"grad_norm": 0.7135679454347851,
|
2878 |
+
"learning_rate": 9.901955440520121e-06,
|
2879 |
+
"loss": 1.417,
|
2880 |
+
"step": 410
|
2881 |
+
},
|
2882 |
+
{
|
2883 |
+
"epoch": 0.7892462794047047,
|
2884 |
+
"grad_norm": 0.6975305523738247,
|
2885 |
+
"learning_rate": 9.900630458826443e-06,
|
2886 |
+
"loss": 1.2732,
|
2887 |
+
"step": 411
|
2888 |
+
},
|
2889 |
+
{
|
2890 |
+
"epoch": 0.7911665866538646,
|
2891 |
+
"grad_norm": 0.6844791536520864,
|
2892 |
+
"learning_rate": 9.89929667401685e-06,
|
2893 |
+
"loss": 1.1994,
|
2894 |
+
"step": 412
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 0.7930868939030244,
|
2898 |
+
"grad_norm": 0.6995208409953875,
|
2899 |
+
"learning_rate": 9.897954088487245e-06,
|
2900 |
+
"loss": 1.44,
|
2901 |
+
"step": 413
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 0.7950072011521844,
|
2905 |
+
"grad_norm": 0.6664160171541003,
|
2906 |
+
"learning_rate": 9.896602704649348e-06,
|
2907 |
+
"loss": 1.3604,
|
2908 |
+
"step": 414
|
2909 |
+
},
|
2910 |
+
{
|
2911 |
+
"epoch": 0.7969275084013442,
|
2912 |
+
"grad_norm": 0.6554390013099766,
|
2913 |
+
"learning_rate": 9.89524252493068e-06,
|
2914 |
+
"loss": 1.3002,
|
2915 |
+
"step": 415
|
2916 |
+
},
|
2917 |
+
{
|
2918 |
+
"epoch": 0.7988478156505041,
|
2919 |
+
"grad_norm": 0.7714848495681179,
|
2920 |
+
"learning_rate": 9.893873551774561e-06,
|
2921 |
+
"loss": 1.4559,
|
2922 |
+
"step": 416
|
2923 |
+
},
|
2924 |
+
{
|
2925 |
+
"epoch": 0.8007681228996639,
|
2926 |
+
"grad_norm": 0.684531285979124,
|
2927 |
+
"learning_rate": 9.892495787640117e-06,
|
2928 |
+
"loss": 1.4116,
|
2929 |
+
"step": 417
|
2930 |
+
},
|
2931 |
+
{
|
2932 |
+
"epoch": 0.8026884301488239,
|
2933 |
+
"grad_norm": 0.625351185162249,
|
2934 |
+
"learning_rate": 9.891109235002248e-06,
|
2935 |
+
"loss": 1.2968,
|
2936 |
+
"step": 418
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 0.8046087373979837,
|
2940 |
+
"grad_norm": 0.6072425157093212,
|
2941 |
+
"learning_rate": 9.889713896351658e-06,
|
2942 |
+
"loss": 1.2834,
|
2943 |
+
"step": 419
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 0.8065290446471436,
|
2947 |
+
"grad_norm": 0.7557266979543664,
|
2948 |
+
"learning_rate": 9.888309774194822e-06,
|
2949 |
+
"loss": 1.2581,
|
2950 |
+
"step": 420
|
2951 |
+
},
|
2952 |
+
{
|
2953 |
+
"epoch": 0.8084493518963034,
|
2954 |
+
"grad_norm": 0.6948893024278046,
|
2955 |
+
"learning_rate": 9.886896871053996e-06,
|
2956 |
+
"loss": 1.3472,
|
2957 |
+
"step": 421
|
2958 |
+
},
|
2959 |
+
{
|
2960 |
+
"epoch": 0.8103696591454633,
|
2961 |
+
"grad_norm": 0.782279217584078,
|
2962 |
+
"learning_rate": 9.885475189467217e-06,
|
2963 |
+
"loss": 1.3546,
|
2964 |
+
"step": 422
|
2965 |
+
},
|
2966 |
+
{
|
2967 |
+
"epoch": 0.8122899663946231,
|
2968 |
+
"grad_norm": 0.7188760215338773,
|
2969 |
+
"learning_rate": 9.884044731988278e-06,
|
2970 |
+
"loss": 1.3683,
|
2971 |
+
"step": 423
|
2972 |
+
},
|
2973 |
+
{
|
2974 |
+
"epoch": 0.814210273643783,
|
2975 |
+
"grad_norm": 0.7215722020243497,
|
2976 |
+
"learning_rate": 9.882605501186747e-06,
|
2977 |
+
"loss": 1.2629,
|
2978 |
+
"step": 424
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 0.8161305808929429,
|
2982 |
+
"grad_norm": 0.699083447265363,
|
2983 |
+
"learning_rate": 9.881157499647944e-06,
|
2984 |
+
"loss": 1.3218,
|
2985 |
+
"step": 425
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 0.8180508881421027,
|
2989 |
+
"grad_norm": 0.724984065762376,
|
2990 |
+
"learning_rate": 9.87970072997295e-06,
|
2991 |
+
"loss": 1.3034,
|
2992 |
+
"step": 426
|
2993 |
+
},
|
2994 |
+
{
|
2995 |
+
"epoch": 0.8199711953912626,
|
2996 |
+
"grad_norm": 0.7049961948332424,
|
2997 |
+
"learning_rate": 9.878235194778594e-06,
|
2998 |
+
"loss": 1.4015,
|
2999 |
+
"step": 427
|
3000 |
+
},
|
3001 |
+
{
|
3002 |
+
"epoch": 0.8218915026404224,
|
3003 |
+
"grad_norm": 0.6961558656551843,
|
3004 |
+
"learning_rate": 9.87676089669745e-06,
|
3005 |
+
"loss": 1.3292,
|
3006 |
+
"step": 428
|
3007 |
+
},
|
3008 |
+
{
|
3009 |
+
"epoch": 0.8238118098895824,
|
3010 |
+
"grad_norm": 0.6755568609982437,
|
3011 |
+
"learning_rate": 9.875277838377835e-06,
|
3012 |
+
"loss": 1.2485,
|
3013 |
+
"step": 429
|
3014 |
+
},
|
3015 |
+
{
|
3016 |
+
"epoch": 0.8257321171387422,
|
3017 |
+
"grad_norm": 0.731506928442002,
|
3018 |
+
"learning_rate": 9.8737860224838e-06,
|
3019 |
+
"loss": 1.371,
|
3020 |
+
"step": 430
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 0.8276524243879021,
|
3024 |
+
"grad_norm": 0.8321982922227138,
|
3025 |
+
"learning_rate": 9.872285451695128e-06,
|
3026 |
+
"loss": 1.3981,
|
3027 |
+
"step": 431
|
3028 |
+
},
|
3029 |
+
{
|
3030 |
+
"epoch": 0.8295727316370619,
|
3031 |
+
"grad_norm": 0.7315030508325402,
|
3032 |
+
"learning_rate": 9.87077612870733e-06,
|
3033 |
+
"loss": 1.3311,
|
3034 |
+
"step": 432
|
3035 |
+
},
|
3036 |
+
{
|
3037 |
+
"epoch": 0.8314930388862218,
|
3038 |
+
"grad_norm": 0.798773303498576,
|
3039 |
+
"learning_rate": 9.869258056231638e-06,
|
3040 |
+
"loss": 1.3727,
|
3041 |
+
"step": 433
|
3042 |
+
},
|
3043 |
+
{
|
3044 |
+
"epoch": 0.8334133461353816,
|
3045 |
+
"grad_norm": 0.651844540018506,
|
3046 |
+
"learning_rate": 9.867731236995e-06,
|
3047 |
+
"loss": 1.3471,
|
3048 |
+
"step": 434
|
3049 |
+
},
|
3050 |
+
{
|
3051 |
+
"epoch": 0.8353336533845416,
|
3052 |
+
"grad_norm": 0.6771670988304741,
|
3053 |
+
"learning_rate": 9.866195673740076e-06,
|
3054 |
+
"loss": 1.3032,
|
3055 |
+
"step": 435
|
3056 |
+
},
|
3057 |
+
{
|
3058 |
+
"epoch": 0.8372539606337014,
|
3059 |
+
"grad_norm": 0.8611651792236157,
|
3060 |
+
"learning_rate": 9.864651369225236e-06,
|
3061 |
+
"loss": 1.2559,
|
3062 |
+
"step": 436
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 0.8391742678828612,
|
3066 |
+
"grad_norm": 0.7436061953882284,
|
3067 |
+
"learning_rate": 9.863098326224546e-06,
|
3068 |
+
"loss": 1.3166,
|
3069 |
+
"step": 437
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 0.8410945751320211,
|
3073 |
+
"grad_norm": 0.7409544469403813,
|
3074 |
+
"learning_rate": 9.86153654752778e-06,
|
3075 |
+
"loss": 1.4249,
|
3076 |
+
"step": 438
|
3077 |
+
},
|
3078 |
+
{
|
3079 |
+
"epoch": 0.8430148823811809,
|
3080 |
+
"grad_norm": 0.7184845856939001,
|
3081 |
+
"learning_rate": 9.859966035940391e-06,
|
3082 |
+
"loss": 1.3899,
|
3083 |
+
"step": 439
|
3084 |
+
},
|
3085 |
+
{
|
3086 |
+
"epoch": 0.8449351896303409,
|
3087 |
+
"grad_norm": 0.7569549756216626,
|
3088 |
+
"learning_rate": 9.858386794283527e-06,
|
3089 |
+
"loss": 1.4622,
|
3090 |
+
"step": 440
|
3091 |
+
},
|
3092 |
+
{
|
3093 |
+
"epoch": 0.8468554968795007,
|
3094 |
+
"grad_norm": 0.7230751877755235,
|
3095 |
+
"learning_rate": 9.856798825394017e-06,
|
3096 |
+
"loss": 1.3834,
|
3097 |
+
"step": 441
|
3098 |
+
},
|
3099 |
+
{
|
3100 |
+
"epoch": 0.8487758041286606,
|
3101 |
+
"grad_norm": 0.7861385241652444,
|
3102 |
+
"learning_rate": 9.855202132124367e-06,
|
3103 |
+
"loss": 1.4005,
|
3104 |
+
"step": 442
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 0.8506961113778204,
|
3108 |
+
"grad_norm": 0.654961628331442,
|
3109 |
+
"learning_rate": 9.853596717342751e-06,
|
3110 |
+
"loss": 1.2536,
|
3111 |
+
"step": 443
|
3112 |
+
},
|
3113 |
+
{
|
3114 |
+
"epoch": 0.8526164186269803,
|
3115 |
+
"grad_norm": 0.7338664793979522,
|
3116 |
+
"learning_rate": 9.851982583933015e-06,
|
3117 |
+
"loss": 1.4289,
|
3118 |
+
"step": 444
|
3119 |
+
},
|
3120 |
+
{
|
3121 |
+
"epoch": 0.8545367258761402,
|
3122 |
+
"grad_norm": 0.647102767057043,
|
3123 |
+
"learning_rate": 9.850359734794664e-06,
|
3124 |
+
"loss": 1.3167,
|
3125 |
+
"step": 445
|
3126 |
+
},
|
3127 |
+
{
|
3128 |
+
"epoch": 0.8564570331253001,
|
3129 |
+
"grad_norm": 0.7940838292459027,
|
3130 |
+
"learning_rate": 9.84872817284286e-06,
|
3131 |
+
"loss": 1.4604,
|
3132 |
+
"step": 446
|
3133 |
+
},
|
3134 |
+
{
|
3135 |
+
"epoch": 0.8583773403744599,
|
3136 |
+
"grad_norm": 0.7447428727236874,
|
3137 |
+
"learning_rate": 9.847087901008415e-06,
|
3138 |
+
"loss": 1.392,
|
3139 |
+
"step": 447
|
3140 |
+
},
|
3141 |
+
{
|
3142 |
+
"epoch": 0.8602976476236198,
|
3143 |
+
"grad_norm": 0.7643508165383381,
|
3144 |
+
"learning_rate": 9.845438922237787e-06,
|
3145 |
+
"loss": 1.3017,
|
3146 |
+
"step": 448
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 0.8622179548727796,
|
3150 |
+
"grad_norm": 0.7617962346454569,
|
3151 |
+
"learning_rate": 9.843781239493076e-06,
|
3152 |
+
"loss": 1.6087,
|
3153 |
+
"step": 449
|
3154 |
+
},
|
3155 |
+
{
|
3156 |
+
"epoch": 0.8641382621219396,
|
3157 |
+
"grad_norm": 0.7385042271210234,
|
3158 |
+
"learning_rate": 9.842114855752013e-06,
|
3159 |
+
"loss": 1.287,
|
3160 |
+
"step": 450
|
3161 |
+
},
|
3162 |
+
{
|
3163 |
+
"epoch": 0.8660585693710994,
|
3164 |
+
"grad_norm": 0.7904769194673538,
|
3165 |
+
"learning_rate": 9.840439774007963e-06,
|
3166 |
+
"loss": 1.3847,
|
3167 |
+
"step": 451
|
3168 |
+
},
|
3169 |
+
{
|
3170 |
+
"epoch": 0.8679788766202592,
|
3171 |
+
"grad_norm": 0.7796917727237478,
|
3172 |
+
"learning_rate": 9.838755997269917e-06,
|
3173 |
+
"loss": 1.4052,
|
3174 |
+
"step": 452
|
3175 |
+
},
|
3176 |
+
{
|
3177 |
+
"epoch": 0.8698991838694191,
|
3178 |
+
"grad_norm": 0.6685557701211076,
|
3179 |
+
"learning_rate": 9.837063528562479e-06,
|
3180 |
+
"loss": 1.2191,
|
3181 |
+
"step": 453
|
3182 |
+
},
|
3183 |
+
{
|
3184 |
+
"epoch": 0.8718194911185789,
|
3185 |
+
"grad_norm": 0.682007015556512,
|
3186 |
+
"learning_rate": 9.835362370925868e-06,
|
3187 |
+
"loss": 1.4041,
|
3188 |
+
"step": 454
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 0.8737397983677389,
|
3192 |
+
"grad_norm": 0.6809420760471568,
|
3193 |
+
"learning_rate": 9.833652527415918e-06,
|
3194 |
+
"loss": 1.1179,
|
3195 |
+
"step": 455
|
3196 |
+
},
|
3197 |
+
{
|
3198 |
+
"epoch": 0.8756601056168987,
|
3199 |
+
"grad_norm": 0.7496451496119366,
|
3200 |
+
"learning_rate": 9.831934001104056e-06,
|
3201 |
+
"loss": 1.1863,
|
3202 |
+
"step": 456
|
3203 |
+
},
|
3204 |
+
{
|
3205 |
+
"epoch": 0.8775804128660586,
|
3206 |
+
"grad_norm": 0.7958820882337777,
|
3207 |
+
"learning_rate": 9.830206795077313e-06,
|
3208 |
+
"loss": 1.4097,
|
3209 |
+
"step": 457
|
3210 |
+
},
|
3211 |
+
{
|
3212 |
+
"epoch": 0.8795007201152184,
|
3213 |
+
"grad_norm": 0.7760893359826682,
|
3214 |
+
"learning_rate": 9.828470912438308e-06,
|
3215 |
+
"loss": 1.4765,
|
3216 |
+
"step": 458
|
3217 |
+
},
|
3218 |
+
{
|
3219 |
+
"epoch": 0.8814210273643783,
|
3220 |
+
"grad_norm": 0.7181251163054755,
|
3221 |
+
"learning_rate": 9.826726356305248e-06,
|
3222 |
+
"loss": 1.2336,
|
3223 |
+
"step": 459
|
3224 |
+
},
|
3225 |
+
{
|
3226 |
+
"epoch": 0.8833413346135381,
|
3227 |
+
"grad_norm": 0.7130113363618711,
|
3228 |
+
"learning_rate": 9.824973129811919e-06,
|
3229 |
+
"loss": 1.3356,
|
3230 |
+
"step": 460
|
3231 |
+
},
|
3232 |
+
{
|
3233 |
+
"epoch": 0.8852616418626981,
|
3234 |
+
"grad_norm": 0.6976783021258673,
|
3235 |
+
"learning_rate": 9.823211236107684e-06,
|
3236 |
+
"loss": 1.5375,
|
3237 |
+
"step": 461
|
3238 |
+
},
|
3239 |
+
{
|
3240 |
+
"epoch": 0.8871819491118579,
|
3241 |
+
"grad_norm": 0.6494482314881563,
|
3242 |
+
"learning_rate": 9.82144067835747e-06,
|
3243 |
+
"loss": 1.4216,
|
3244 |
+
"step": 462
|
3245 |
+
},
|
3246 |
+
{
|
3247 |
+
"epoch": 0.8891022563610178,
|
3248 |
+
"grad_norm": 0.6799368531582445,
|
3249 |
+
"learning_rate": 9.819661459741774e-06,
|
3250 |
+
"loss": 1.2607,
|
3251 |
+
"step": 463
|
3252 |
+
},
|
3253 |
+
{
|
3254 |
+
"epoch": 0.8910225636101776,
|
3255 |
+
"grad_norm": 0.7200924252996468,
|
3256 |
+
"learning_rate": 9.817873583456646e-06,
|
3257 |
+
"loss": 1.3954,
|
3258 |
+
"step": 464
|
3259 |
+
},
|
3260 |
+
{
|
3261 |
+
"epoch": 0.8929428708593375,
|
3262 |
+
"grad_norm": 0.723830426362561,
|
3263 |
+
"learning_rate": 9.816077052713689e-06,
|
3264 |
+
"loss": 1.2634,
|
3265 |
+
"step": 465
|
3266 |
+
},
|
3267 |
+
{
|
3268 |
+
"epoch": 0.8948631781084974,
|
3269 |
+
"grad_norm": 0.6795402172591166,
|
3270 |
+
"learning_rate": 9.814271870740054e-06,
|
3271 |
+
"loss": 1.288,
|
3272 |
+
"step": 466
|
3273 |
+
},
|
3274 |
+
{
|
3275 |
+
"epoch": 0.8967834853576572,
|
3276 |
+
"grad_norm": 0.7798610485610813,
|
3277 |
+
"learning_rate": 9.812458040778433e-06,
|
3278 |
+
"loss": 1.3816,
|
3279 |
+
"step": 467
|
3280 |
+
},
|
3281 |
+
{
|
3282 |
+
"epoch": 0.8987037926068171,
|
3283 |
+
"grad_norm": 0.6598552167407624,
|
3284 |
+
"learning_rate": 9.810635566087046e-06,
|
3285 |
+
"loss": 1.3142,
|
3286 |
+
"step": 468
|
3287 |
+
},
|
3288 |
+
{
|
3289 |
+
"epoch": 0.9006240998559769,
|
3290 |
+
"grad_norm": 0.8267440234447042,
|
3291 |
+
"learning_rate": 9.808804449939649e-06,
|
3292 |
+
"loss": 1.3952,
|
3293 |
+
"step": 469
|
3294 |
+
},
|
3295 |
+
{
|
3296 |
+
"epoch": 0.9025444071051368,
|
3297 |
+
"grad_norm": 0.6831251782753334,
|
3298 |
+
"learning_rate": 9.806964695625521e-06,
|
3299 |
+
"loss": 1.3507,
|
3300 |
+
"step": 470
|
3301 |
+
},
|
3302 |
+
{
|
3303 |
+
"epoch": 0.9044647143542967,
|
3304 |
+
"grad_norm": 0.6913550521559437,
|
3305 |
+
"learning_rate": 9.80511630644945e-06,
|
3306 |
+
"loss": 1.3858,
|
3307 |
+
"step": 471
|
3308 |
+
},
|
3309 |
+
{
|
3310 |
+
"epoch": 0.9063850216034566,
|
3311 |
+
"grad_norm": 0.651357091385134,
|
3312 |
+
"learning_rate": 9.803259285731744e-06,
|
3313 |
+
"loss": 1.3119,
|
3314 |
+
"step": 472
|
3315 |
+
},
|
3316 |
+
{
|
3317 |
+
"epoch": 0.9083053288526164,
|
3318 |
+
"grad_norm": 0.6876771805281661,
|
3319 |
+
"learning_rate": 9.801393636808213e-06,
|
3320 |
+
"loss": 1.405,
|
3321 |
+
"step": 473
|
3322 |
+
},
|
3323 |
+
{
|
3324 |
+
"epoch": 0.9102256361017763,
|
3325 |
+
"grad_norm": 0.6704161705700665,
|
3326 |
+
"learning_rate": 9.79951936303016e-06,
|
3327 |
+
"loss": 1.1645,
|
3328 |
+
"step": 474
|
3329 |
+
},
|
3330 |
+
{
|
3331 |
+
"epoch": 0.9121459433509361,
|
3332 |
+
"grad_norm": 0.8403757549868232,
|
3333 |
+
"learning_rate": 9.797636467764392e-06,
|
3334 |
+
"loss": 1.3374,
|
3335 |
+
"step": 475
|
3336 |
+
},
|
3337 |
+
{
|
3338 |
+
"epoch": 0.914066250600096,
|
3339 |
+
"grad_norm": 0.6976996239643926,
|
3340 |
+
"learning_rate": 9.795744954393193e-06,
|
3341 |
+
"loss": 1.2789,
|
3342 |
+
"step": 476
|
3343 |
+
},
|
3344 |
+
{
|
3345 |
+
"epoch": 0.9159865578492559,
|
3346 |
+
"grad_norm": 0.7007105159698541,
|
3347 |
+
"learning_rate": 9.793844826314338e-06,
|
3348 |
+
"loss": 1.2513,
|
3349 |
+
"step": 477
|
3350 |
+
},
|
3351 |
+
{
|
3352 |
+
"epoch": 0.9179068650984158,
|
3353 |
+
"grad_norm": 0.8046443692914484,
|
3354 |
+
"learning_rate": 9.791936086941065e-06,
|
3355 |
+
"loss": 1.4276,
|
3356 |
+
"step": 478
|
3357 |
+
},
|
3358 |
+
{
|
3359 |
+
"epoch": 0.9198271723475756,
|
3360 |
+
"grad_norm": 0.6689604084398844,
|
3361 |
+
"learning_rate": 9.790018739702091e-06,
|
3362 |
+
"loss": 1.1329,
|
3363 |
+
"step": 479
|
3364 |
+
},
|
3365 |
+
{
|
3366 |
+
"epoch": 0.9217474795967355,
|
3367 |
+
"grad_norm": 0.7418530237185074,
|
3368 |
+
"learning_rate": 9.788092788041589e-06,
|
3369 |
+
"loss": 1.2312,
|
3370 |
+
"step": 480
|
3371 |
+
},
|
3372 |
+
{
|
3373 |
+
"epoch": 0.9236677868458953,
|
3374 |
+
"grad_norm": 0.7344158824384261,
|
3375 |
+
"learning_rate": 9.78615823541919e-06,
|
3376 |
+
"loss": 1.5327,
|
3377 |
+
"step": 481
|
3378 |
+
},
|
3379 |
+
{
|
3380 |
+
"epoch": 0.9255880940950552,
|
3381 |
+
"grad_norm": 0.7029451657520306,
|
3382 |
+
"learning_rate": 9.784215085309977e-06,
|
3383 |
+
"loss": 1.3297,
|
3384 |
+
"step": 482
|
3385 |
+
},
|
3386 |
+
{
|
3387 |
+
"epoch": 0.9275084013442151,
|
3388 |
+
"grad_norm": 0.8107964882673727,
|
3389 |
+
"learning_rate": 9.782263341204477e-06,
|
3390 |
+
"loss": 1.2561,
|
3391 |
+
"step": 483
|
3392 |
+
},
|
3393 |
+
{
|
3394 |
+
"epoch": 0.9294287085933749,
|
3395 |
+
"grad_norm": 0.7114545290156662,
|
3396 |
+
"learning_rate": 9.78030300660865e-06,
|
3397 |
+
"loss": 1.3645,
|
3398 |
+
"step": 484
|
3399 |
+
},
|
3400 |
+
{
|
3401 |
+
"epoch": 0.9313490158425348,
|
3402 |
+
"grad_norm": 0.7402003366232237,
|
3403 |
+
"learning_rate": 9.77833408504389e-06,
|
3404 |
+
"loss": 1.3642,
|
3405 |
+
"step": 485
|
3406 |
+
},
|
3407 |
+
{
|
3408 |
+
"epoch": 0.9332693230916946,
|
3409 |
+
"grad_norm": 0.7109408774118504,
|
3410 |
+
"learning_rate": 9.77635658004702e-06,
|
3411 |
+
"loss": 1.3221,
|
3412 |
+
"step": 486
|
3413 |
+
},
|
3414 |
+
{
|
3415 |
+
"epoch": 0.9351896303408546,
|
3416 |
+
"grad_norm": 0.7433358040489166,
|
3417 |
+
"learning_rate": 9.774370495170276e-06,
|
3418 |
+
"loss": 1.4449,
|
3419 |
+
"step": 487
|
3420 |
+
},
|
3421 |
+
{
|
3422 |
+
"epoch": 0.9371099375900144,
|
3423 |
+
"grad_norm": 0.6785055655567391,
|
3424 |
+
"learning_rate": 9.772375833981306e-06,
|
3425 |
+
"loss": 1.3555,
|
3426 |
+
"step": 488
|
3427 |
+
},
|
3428 |
+
{
|
3429 |
+
"epoch": 0.9390302448391743,
|
3430 |
+
"grad_norm": 0.76870851128488,
|
3431 |
+
"learning_rate": 9.770372600063172e-06,
|
3432 |
+
"loss": 1.284,
|
3433 |
+
"step": 489
|
3434 |
+
},
|
3435 |
+
{
|
3436 |
+
"epoch": 0.9409505520883341,
|
3437 |
+
"grad_norm": 0.7344357851176699,
|
3438 |
+
"learning_rate": 9.768360797014325e-06,
|
3439 |
+
"loss": 1.2853,
|
3440 |
+
"step": 490
|
3441 |
+
},
|
3442 |
+
{
|
3443 |
+
"epoch": 0.942870859337494,
|
3444 |
+
"grad_norm": 0.8470942465410728,
|
3445 |
+
"learning_rate": 9.766340428448614e-06,
|
3446 |
+
"loss": 1.3829,
|
3447 |
+
"step": 491
|
3448 |
+
},
|
3449 |
+
{
|
3450 |
+
"epoch": 0.9447911665866539,
|
3451 |
+
"grad_norm": 0.7211389944931649,
|
3452 |
+
"learning_rate": 9.764311497995272e-06,
|
3453 |
+
"loss": 1.2677,
|
3454 |
+
"step": 492
|
3455 |
+
},
|
3456 |
+
{
|
3457 |
+
"epoch": 0.9467114738358138,
|
3458 |
+
"grad_norm": 0.7084359929065828,
|
3459 |
+
"learning_rate": 9.762274009298918e-06,
|
3460 |
+
"loss": 1.2434,
|
3461 |
+
"step": 493
|
3462 |
+
},
|
3463 |
+
{
|
3464 |
+
"epoch": 0.9486317810849736,
|
3465 |
+
"grad_norm": 0.7689934246592068,
|
3466 |
+
"learning_rate": 9.760227966019537e-06,
|
3467 |
+
"loss": 1.4095,
|
3468 |
+
"step": 494
|
3469 |
+
},
|
3470 |
+
{
|
3471 |
+
"epoch": 0.9505520883341335,
|
3472 |
+
"grad_norm": 0.7773642092371199,
|
3473 |
+
"learning_rate": 9.758173371832485e-06,
|
3474 |
+
"loss": 1.3244,
|
3475 |
+
"step": 495
|
3476 |
+
},
|
3477 |
+
{
|
3478 |
+
"epoch": 0.9524723955832933,
|
3479 |
+
"grad_norm": 0.6978701658115153,
|
3480 |
+
"learning_rate": 9.756110230428476e-06,
|
3481 |
+
"loss": 1.2787,
|
3482 |
+
"step": 496
|
3483 |
+
},
|
3484 |
+
{
|
3485 |
+
"epoch": 0.9543927028324531,
|
3486 |
+
"grad_norm": 0.6910966359494893,
|
3487 |
+
"learning_rate": 9.75403854551358e-06,
|
3488 |
+
"loss": 1.3348,
|
3489 |
+
"step": 497
|
3490 |
+
},
|
3491 |
+
{
|
3492 |
+
"epoch": 0.9563130100816131,
|
3493 |
+
"grad_norm": 0.732636720833676,
|
3494 |
+
"learning_rate": 9.751958320809213e-06,
|
3495 |
+
"loss": 1.2403,
|
3496 |
+
"step": 498
|
3497 |
+
},
|
3498 |
+
{
|
3499 |
+
"epoch": 0.9582333173307729,
|
3500 |
+
"grad_norm": 0.7804889809056719,
|
3501 |
+
"learning_rate": 9.749869560052128e-06,
|
3502 |
+
"loss": 1.1905,
|
3503 |
+
"step": 499
|
3504 |
+
},
|
3505 |
+
{
|
3506 |
+
"epoch": 0.9601536245799328,
|
3507 |
+
"grad_norm": 0.7286628977028098,
|
3508 |
+
"learning_rate": 9.747772266994418e-06,
|
3509 |
+
"loss": 1.3252,
|
3510 |
+
"step": 500
|
3511 |
+
},
|
3512 |
+
{
|
3513 |
+
"epoch": 0.9620739318290926,
|
3514 |
+
"grad_norm": 0.730360159535326,
|
3515 |
+
"learning_rate": 9.745666445403496e-06,
|
3516 |
+
"loss": 1.4712,
|
3517 |
+
"step": 501
|
3518 |
+
},
|
3519 |
+
{
|
3520 |
+
"epoch": 0.9639942390782525,
|
3521 |
+
"grad_norm": 0.6650898577066633,
|
3522 |
+
"learning_rate": 9.7435520990621e-06,
|
3523 |
+
"loss": 1.2945,
|
3524 |
+
"step": 502
|
3525 |
+
},
|
3526 |
+
{
|
3527 |
+
"epoch": 0.9659145463274124,
|
3528 |
+
"grad_norm": 0.6813965501305161,
|
3529 |
+
"learning_rate": 9.741429231768278e-06,
|
3530 |
+
"loss": 1.3214,
|
3531 |
+
"step": 503
|
3532 |
+
},
|
3533 |
+
{
|
3534 |
+
"epoch": 0.9678348535765723,
|
3535 |
+
"grad_norm": 0.8240692929170976,
|
3536 |
+
"learning_rate": 9.739297847335387e-06,
|
3537 |
+
"loss": 1.4367,
|
3538 |
+
"step": 504
|
3539 |
+
},
|
3540 |
+
{
|
3541 |
+
"epoch": 0.9697551608257321,
|
3542 |
+
"grad_norm": 0.7664659172540482,
|
3543 |
+
"learning_rate": 9.73715794959208e-06,
|
3544 |
+
"loss": 1.2429,
|
3545 |
+
"step": 505
|
3546 |
+
},
|
3547 |
+
{
|
3548 |
+
"epoch": 0.971675468074892,
|
3549 |
+
"grad_norm": 0.663273604561841,
|
3550 |
+
"learning_rate": 9.735009542382308e-06,
|
3551 |
+
"loss": 1.2678,
|
3552 |
+
"step": 506
|
3553 |
+
},
|
3554 |
+
{
|
3555 |
+
"epoch": 0.9735957753240518,
|
3556 |
+
"grad_norm": 0.7286317666999398,
|
3557 |
+
"learning_rate": 9.732852629565302e-06,
|
3558 |
+
"loss": 1.351,
|
3559 |
+
"step": 507
|
3560 |
+
},
|
3561 |
+
{
|
3562 |
+
"epoch": 0.9755160825732118,
|
3563 |
+
"grad_norm": 0.7222364516570275,
|
3564 |
+
"learning_rate": 9.730687215015576e-06,
|
3565 |
+
"loss": 1.3875,
|
3566 |
+
"step": 508
|
3567 |
+
},
|
3568 |
+
{
|
3569 |
+
"epoch": 0.9774363898223716,
|
3570 |
+
"grad_norm": 0.792789498600007,
|
3571 |
+
"learning_rate": 9.728513302622911e-06,
|
3572 |
+
"loss": 1.4158,
|
3573 |
+
"step": 509
|
3574 |
+
},
|
3575 |
+
{
|
3576 |
+
"epoch": 0.9793566970715314,
|
3577 |
+
"grad_norm": 0.6898048543889689,
|
3578 |
+
"learning_rate": 9.72633089629236e-06,
|
3579 |
+
"loss": 1.3018,
|
3580 |
+
"step": 510
|
3581 |
+
},
|
3582 |
+
{
|
3583 |
+
"epoch": 0.9812770043206913,
|
3584 |
+
"grad_norm": 0.7080789810250435,
|
3585 |
+
"learning_rate": 9.72413999994423e-06,
|
3586 |
+
"loss": 1.2951,
|
3587 |
+
"step": 511
|
3588 |
+
},
|
3589 |
+
{
|
3590 |
+
"epoch": 0.9831973115698511,
|
3591 |
+
"grad_norm": 0.6471793883594157,
|
3592 |
+
"learning_rate": 9.721940617514076e-06,
|
3593 |
+
"loss": 1.1768,
|
3594 |
+
"step": 512
|
3595 |
+
},
|
3596 |
+
{
|
3597 |
+
"epoch": 0.985117618819011,
|
3598 |
+
"grad_norm": 0.6848848680839071,
|
3599 |
+
"learning_rate": 9.719732752952702e-06,
|
3600 |
+
"loss": 1.262,
|
3601 |
+
"step": 513
|
3602 |
+
},
|
3603 |
+
{
|
3604 |
+
"epoch": 0.9870379260681709,
|
3605 |
+
"grad_norm": 0.7903965882462866,
|
3606 |
+
"learning_rate": 9.717516410226144e-06,
|
3607 |
+
"loss": 1.4717,
|
3608 |
+
"step": 514
|
3609 |
+
},
|
3610 |
+
{
|
3611 |
+
"epoch": 0.9889582333173308,
|
3612 |
+
"grad_norm": 0.7404310033314039,
|
3613 |
+
"learning_rate": 9.715291593315672e-06,
|
3614 |
+
"loss": 1.3879,
|
3615 |
+
"step": 515
|
3616 |
+
},
|
3617 |
+
{
|
3618 |
+
"epoch": 0.9908785405664906,
|
3619 |
+
"grad_norm": 0.735452133325044,
|
3620 |
+
"learning_rate": 9.713058306217776e-06,
|
3621 |
+
"loss": 1.3079,
|
3622 |
+
"step": 516
|
3623 |
+
},
|
3624 |
+
{
|
3625 |
+
"epoch": 0.9927988478156505,
|
3626 |
+
"grad_norm": 0.8130352152653534,
|
3627 |
+
"learning_rate": 9.710816552944157e-06,
|
3628 |
+
"loss": 1.434,
|
3629 |
+
"step": 517
|
3630 |
+
},
|
3631 |
+
{
|
3632 |
+
"epoch": 0.9947191550648103,
|
3633 |
+
"grad_norm": 0.7502971580652452,
|
3634 |
+
"learning_rate": 9.708566337521736e-06,
|
3635 |
+
"loss": 1.3013,
|
3636 |
+
"step": 518
|
3637 |
+
},
|
3638 |
+
{
|
3639 |
+
"epoch": 0.9966394623139703,
|
3640 |
+
"grad_norm": 0.6582057806093718,
|
3641 |
+
"learning_rate": 9.70630766399262e-06,
|
3642 |
+
"loss": 1.2994,
|
3643 |
+
"step": 519
|
3644 |
+
},
|
3645 |
+
{
|
3646 |
+
"epoch": 0.9985597695631301,
|
3647 |
+
"grad_norm": 0.7398007707770013,
|
3648 |
+
"learning_rate": 9.70404053641412e-06,
|
3649 |
+
"loss": 1.3135,
|
3650 |
+
"step": 520
|
3651 |
+
},
|
3652 |
+
{
|
3653 |
+
"epoch": 1.0,
|
3654 |
+
"grad_norm": 0.7398007707770013,
|
3655 |
+
"learning_rate": 9.701764958858729e-06,
|
3656 |
+
"loss": 1.1265,
|
3657 |
+
"step": 521
|
3658 |
+
}
|
3659 |
+
],
|
3660 |
+
"logging_steps": 1,
|
3661 |
+
"max_steps": 2605,
|
3662 |
+
"num_input_tokens_seen": 0,
|
3663 |
+
"num_train_epochs": 5,
|
3664 |
+
"save_steps": 500,
|
3665 |
+
"stateful_callbacks": {
|
3666 |
+
"TrainerControl": {
|
3667 |
+
"args": {
|
3668 |
+
"should_epoch_stop": false,
|
3669 |
+
"should_evaluate": false,
|
3670 |
+
"should_log": false,
|
3671 |
+
"should_save": true,
|
3672 |
+
"should_training_stop": false
|
3673 |
+
},
|
3674 |
+
"attributes": {}
|
3675 |
+
}
|
3676 |
+
},
|
3677 |
+
"total_flos": 90367657066496.0,
|
3678 |
+
"train_batch_size": 1,
|
3679 |
+
"trial_name": null,
|
3680 |
+
"trial_params": null
|
3681 |
+
}
|
checkpoint-521/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-521/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 1536,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 8960,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 21,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": 32768,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.52.4",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.52.4"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"clean_up_tokenization_spaces": false,
|
199 |
+
"eos_token": "<|im_end|>",
|
200 |
+
"errors": "replace",
|
201 |
+
"extra_special_tokens": {},
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"padding_side": "right",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"total_flos": 451881746563072.0,
|
4 |
+
"train_loss": 1.2663256504714147,
|
5 |
+
"train_runtime": 105590.0324,
|
6 |
+
"train_samples_per_second": 0.394,
|
7 |
+
"train_steps_per_second": 0.025
|
8 |
+
}
|
trainer_log.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_loss.png
ADDED
![]() |
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|