henilp105 commited on
Commit
0bd42c1
·
verified ·
1 Parent(s): 3b81867

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: lmsys/vicuna-7b-v1.5
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "lmsys/vicuna-7b-v1.5",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:952627c655feac40c520fd5241d0db7150472e3bf8ef785f2fde38e8806f9b09
3
+ size 16794200
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf1e3a9d74e7cadfc6a72e908a4cb4d9b2ed24f3bc8b30625ea58925efa94519
3
+ size 33630266
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a46cda9f456b2e008148884ec51b245d3a933ee01b533515577460a24dec1aa6
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d99bad44989245a28cb0e56942c06f482725e73b38fd8980b817d76c0a375eb5
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 4096,
36
+ "pad_token": "</s>",
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }
trainer_state.json ADDED
@@ -0,0 +1,2182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 15.0,
5
+ "eval_steps": 500,
6
+ "global_step": 3075,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.04878048780487805,
13
+ "grad_norm": 0.4036892056465149,
14
+ "learning_rate": 0.00019999478113897612,
15
+ "loss": 1.0282,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.0975609756097561,
20
+ "grad_norm": 0.3629762828350067,
21
+ "learning_rate": 0.0001999791251006346,
22
+ "loss": 0.7875,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.14634146341463414,
27
+ "grad_norm": 0.4877622425556183,
28
+ "learning_rate": 0.0001999530335191093,
29
+ "loss": 0.5942,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.1951219512195122,
34
+ "grad_norm": 0.4466260075569153,
35
+ "learning_rate": 0.00019991650911776695,
36
+ "loss": 0.3866,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.24390243902439024,
41
+ "grad_norm": 0.649118959903717,
42
+ "learning_rate": 0.000199869555708923,
43
+ "loss": 0.3928,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.2926829268292683,
48
+ "grad_norm": 0.8762800097465515,
49
+ "learning_rate": 0.0001998121781934438,
50
+ "loss": 0.3258,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.34146341463414637,
55
+ "grad_norm": 0.9195622801780701,
56
+ "learning_rate": 0.0001997443825602349,
57
+ "loss": 0.2885,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.3902439024390244,
62
+ "grad_norm": 0.5856262445449829,
63
+ "learning_rate": 0.00019966617588561609,
64
+ "loss": 0.2888,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.43902439024390244,
69
+ "grad_norm": 0.5520443320274353,
70
+ "learning_rate": 0.00019957756633258265,
71
+ "loss": 0.2242,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.4878048780487805,
76
+ "grad_norm": 0.9435800909996033,
77
+ "learning_rate": 0.00019947856314995349,
78
+ "loss": 0.1629,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.5365853658536586,
83
+ "grad_norm": 0.9416623115539551,
84
+ "learning_rate": 0.00019936917667140555,
85
+ "loss": 0.1555,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.5853658536585366,
90
+ "grad_norm": 0.802065372467041,
91
+ "learning_rate": 0.0001992494183143955,
92
+ "loss": 0.1339,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.6341463414634146,
97
+ "grad_norm": 0.7007794380187988,
98
+ "learning_rate": 0.00019911930057896774,
99
+ "loss": 0.1191,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.6829268292682927,
104
+ "grad_norm": 0.6755990386009216,
105
+ "learning_rate": 0.00019897883704644983,
106
+ "loss": 0.1571,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.7317073170731707,
111
+ "grad_norm": 1.6951078176498413,
112
+ "learning_rate": 0.00019882804237803488,
113
+ "loss": 0.1309,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.7804878048780488,
118
+ "grad_norm": 0.567158579826355,
119
+ "learning_rate": 0.0001986669323132512,
120
+ "loss": 0.0766,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.8292682926829268,
125
+ "grad_norm": 0.8820038437843323,
126
+ "learning_rate": 0.0001984955236683196,
127
+ "loss": 0.0839,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.8780487804878049,
132
+ "grad_norm": 0.6520794034004211,
133
+ "learning_rate": 0.00019831383433439797,
134
+ "loss": 0.0863,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.926829268292683,
139
+ "grad_norm": 0.45519864559173584,
140
+ "learning_rate": 0.00019812188327571399,
141
+ "loss": 0.0889,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.975609756097561,
146
+ "grad_norm": 0.614235520362854,
147
+ "learning_rate": 0.00019791969052758562,
148
+ "loss": 0.0725,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 1.024390243902439,
153
+ "grad_norm": 0.2764686644077301,
154
+ "learning_rate": 0.00019770727719432994,
155
+ "loss": 0.0407,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 1.0731707317073171,
160
+ "grad_norm": 0.6082726716995239,
161
+ "learning_rate": 0.00019748466544706022,
162
+ "loss": 0.044,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 1.1219512195121952,
167
+ "grad_norm": 0.9295619130134583,
168
+ "learning_rate": 0.00019725187852137195,
169
+ "loss": 0.0675,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 1.170731707317073,
174
+ "grad_norm": 0.3758924603462219,
175
+ "learning_rate": 0.00019700894071491732,
176
+ "loss": 0.0439,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 1.2195121951219512,
181
+ "grad_norm": 0.46514585614204407,
182
+ "learning_rate": 0.00019675587738486936,
183
+ "loss": 0.0398,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 1.2682926829268293,
188
+ "grad_norm": 0.5870018005371094,
189
+ "learning_rate": 0.0001964927149452751,
190
+ "loss": 0.0406,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 1.3170731707317074,
195
+ "grad_norm": 0.30292996764183044,
196
+ "learning_rate": 0.00019621948086429844,
197
+ "loss": 0.028,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 1.3658536585365852,
202
+ "grad_norm": 0.47037121653556824,
203
+ "learning_rate": 0.00019593620366135337,
204
+ "loss": 0.0239,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 1.4146341463414633,
209
+ "grad_norm": 0.4176475405693054,
210
+ "learning_rate": 0.00019564291290412688,
211
+ "loss": 0.0281,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 1.4634146341463414,
216
+ "grad_norm": 0.3179157078266144,
217
+ "learning_rate": 0.00019533963920549306,
218
+ "loss": 0.0281,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 1.5121951219512195,
223
+ "grad_norm": 0.5817562937736511,
224
+ "learning_rate": 0.00019502641422031763,
225
+ "loss": 0.0296,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 1.5609756097560976,
230
+ "grad_norm": 0.7409655451774597,
231
+ "learning_rate": 0.00019470327064215383,
232
+ "loss": 0.029,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 1.6097560975609757,
237
+ "grad_norm": 0.4418310225009918,
238
+ "learning_rate": 0.00019437024219983028,
239
+ "loss": 0.0583,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 1.6585365853658538,
244
+ "grad_norm": 0.31637728214263916,
245
+ "learning_rate": 0.0001940273636539301,
246
+ "loss": 0.0354,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 1.7073170731707317,
251
+ "grad_norm": 0.22175493836402893,
252
+ "learning_rate": 0.00019367467079316279,
253
+ "loss": 0.0514,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 1.7560975609756098,
258
+ "grad_norm": 0.6636152267456055,
259
+ "learning_rate": 0.00019331220043062894,
260
+ "loss": 0.034,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 1.8048780487804879,
265
+ "grad_norm": 0.8424332141876221,
266
+ "learning_rate": 0.00019293999039997746,
267
+ "loss": 0.0299,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 1.8536585365853657,
272
+ "grad_norm": 0.6435155272483826,
273
+ "learning_rate": 0.00019255807955145677,
274
+ "loss": 0.0508,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 1.9024390243902438,
279
+ "grad_norm": 0.7734220027923584,
280
+ "learning_rate": 0.00019216650774785972,
281
+ "loss": 0.035,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 1.951219512195122,
286
+ "grad_norm": 0.2854250967502594,
287
+ "learning_rate": 0.0001917653158603628,
288
+ "loss": 0.0339,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 2.0,
293
+ "grad_norm": 0.6165639758110046,
294
+ "learning_rate": 0.0001913545457642601,
295
+ "loss": 0.0323,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 2.048780487804878,
300
+ "grad_norm": 0.2167205959558487,
301
+ "learning_rate": 0.00019093424033459248,
302
+ "loss": 0.026,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 2.097560975609756,
307
+ "grad_norm": 0.2723434269428253,
308
+ "learning_rate": 0.0001905044434416725,
309
+ "loss": 0.0176,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 2.1463414634146343,
314
+ "grad_norm": 0.4085879325866699,
315
+ "learning_rate": 0.00019006519994650513,
316
+ "loss": 0.0138,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 2.1951219512195124,
321
+ "grad_norm": 0.17931397259235382,
322
+ "learning_rate": 0.00018961655569610557,
323
+ "loss": 0.0358,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 2.2439024390243905,
328
+ "grad_norm": 0.3886450231075287,
329
+ "learning_rate": 0.00018915855751871363,
330
+ "loss": 0.0209,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 2.292682926829268,
335
+ "grad_norm": 0.11022531986236572,
336
+ "learning_rate": 0.0001886912532189061,
337
+ "loss": 0.0101,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 2.341463414634146,
342
+ "grad_norm": 0.14626094698905945,
343
+ "learning_rate": 0.00018821469157260685,
344
+ "loss": 0.0156,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 2.3902439024390243,
349
+ "grad_norm": 0.18015721440315247,
350
+ "learning_rate": 0.00018772892232199592,
351
+ "loss": 0.0156,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 2.4390243902439024,
356
+ "grad_norm": 0.3262254595756531,
357
+ "learning_rate": 0.00018723399617031751,
358
+ "loss": 0.0295,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 2.4878048780487805,
363
+ "grad_norm": 0.10063759982585907,
364
+ "learning_rate": 0.00018672996477658767,
365
+ "loss": 0.0164,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 2.5365853658536586,
370
+ "grad_norm": 0.11382050812244415,
371
+ "learning_rate": 0.00018621688075020227,
372
+ "loss": 0.0207,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 2.5853658536585367,
377
+ "grad_norm": 0.12307539582252502,
378
+ "learning_rate": 0.0001856947976454459,
379
+ "loss": 0.0326,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 2.6341463414634148,
384
+ "grad_norm": 0.18902955949306488,
385
+ "learning_rate": 0.00018516376995590187,
386
+ "loss": 0.0144,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 2.682926829268293,
391
+ "grad_norm": 0.18087974190711975,
392
+ "learning_rate": 0.00018462385310876443,
393
+ "loss": 0.0111,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 2.7317073170731705,
398
+ "grad_norm": 0.2894444465637207,
399
+ "learning_rate": 0.00018407510345905332,
400
+ "loss": 0.0081,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 2.7804878048780486,
405
+ "grad_norm": 0.24273361265659332,
406
+ "learning_rate": 0.0001835175782837318,
407
+ "loss": 0.0301,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 2.8292682926829267,
412
+ "grad_norm": 0.069428451359272,
413
+ "learning_rate": 0.00018295133577572799,
414
+ "loss": 0.0234,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 2.8780487804878048,
419
+ "grad_norm": 0.1845165342092514,
420
+ "learning_rate": 0.00018237643503786095,
421
+ "loss": 0.0112,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 2.926829268292683,
426
+ "grad_norm": 0.06373828649520874,
427
+ "learning_rate": 0.00018179293607667178,
428
+ "loss": 0.0241,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 2.975609756097561,
433
+ "grad_norm": 0.09466666728258133,
434
+ "learning_rate": 0.0001812008997961602,
435
+ "loss": 0.0151,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 3.024390243902439,
440
+ "grad_norm": 0.5068451762199402,
441
+ "learning_rate": 0.00018060038799142759,
442
+ "loss": 0.02,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 3.073170731707317,
447
+ "grad_norm": 0.17547158896923065,
448
+ "learning_rate": 0.00017999146334222695,
449
+ "loss": 0.0111,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 3.1219512195121952,
454
+ "grad_norm": 0.24108292162418365,
455
+ "learning_rate": 0.00017937418940642074,
456
+ "loss": 0.0095,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 3.1707317073170733,
461
+ "grad_norm": 0.24457822740077972,
462
+ "learning_rate": 0.00017874863061334657,
463
+ "loss": 0.0134,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 3.2195121951219514,
468
+ "grad_norm": 0.2185467779636383,
469
+ "learning_rate": 0.00017811485225709256,
470
+ "loss": 0.0135,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 3.2682926829268295,
475
+ "grad_norm": 0.12849357724189758,
476
+ "learning_rate": 0.00017747292048968187,
477
+ "loss": 0.0154,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 3.317073170731707,
482
+ "grad_norm": 0.09158976376056671,
483
+ "learning_rate": 0.0001768229023141682,
484
+ "loss": 0.0137,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 3.3658536585365852,
489
+ "grad_norm": 0.09520118683576584,
490
+ "learning_rate": 0.00017616486557764187,
491
+ "loss": 0.0147,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 3.4146341463414633,
496
+ "grad_norm": 0.11151307821273804,
497
+ "learning_rate": 0.00017549887896414851,
498
+ "loss": 0.0168,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 3.4634146341463414,
503
+ "grad_norm": 0.1175757572054863,
504
+ "learning_rate": 0.00017482501198751965,
505
+ "loss": 0.015,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 3.5121951219512195,
510
+ "grad_norm": 0.12314116209745407,
511
+ "learning_rate": 0.00017414333498411733,
512
+ "loss": 0.0179,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 3.5609756097560976,
517
+ "grad_norm": 0.08803991228342056,
518
+ "learning_rate": 0.00017345391910549238,
519
+ "loss": 0.0105,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 3.6097560975609757,
524
+ "grad_norm": 0.06382381916046143,
525
+ "learning_rate": 0.000172756836310958,
526
+ "loss": 0.0106,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 3.658536585365854,
531
+ "grad_norm": 0.47523975372314453,
532
+ "learning_rate": 0.0001720521593600787,
533
+ "loss": 0.0085,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 3.7073170731707314,
538
+ "grad_norm": 0.1268441379070282,
539
+ "learning_rate": 0.000171339961805076,
540
+ "loss": 0.0155,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 3.7560975609756095,
545
+ "grad_norm": 0.23719309270381927,
546
+ "learning_rate": 0.000170620317983151,
547
+ "loss": 0.015,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 3.8048780487804876,
552
+ "grad_norm": 0.0664207935333252,
553
+ "learning_rate": 0.00016989330300872576,
554
+ "loss": 0.0179,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 3.8536585365853657,
559
+ "grad_norm": 0.3121427893638611,
560
+ "learning_rate": 0.00016915899276560237,
561
+ "loss": 0.0138,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 3.902439024390244,
566
+ "grad_norm": 0.0784049853682518,
567
+ "learning_rate": 0.00016841746389904304,
568
+ "loss": 0.0114,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 3.951219512195122,
573
+ "grad_norm": 0.7239044904708862,
574
+ "learning_rate": 0.0001676687938077698,
575
+ "loss": 0.0251,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 4.0,
580
+ "grad_norm": 0.2333860546350479,
581
+ "learning_rate": 0.00016691306063588583,
582
+ "loss": 0.0135,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 4.048780487804878,
587
+ "grad_norm": 0.7087911367416382,
588
+ "learning_rate": 0.00016615034326471898,
589
+ "loss": 0.0195,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 4.097560975609756,
594
+ "grad_norm": 0.07190815359354019,
595
+ "learning_rate": 0.00016538072130458853,
596
+ "loss": 0.0095,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 4.146341463414634,
601
+ "grad_norm": 0.33951500058174133,
602
+ "learning_rate": 0.00016460427508649546,
603
+ "loss": 0.0131,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 4.195121951219512,
608
+ "grad_norm": 0.06381627917289734,
609
+ "learning_rate": 0.00016382108565373785,
610
+ "loss": 0.0119,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 4.2439024390243905,
615
+ "grad_norm": 0.44717633724212646,
616
+ "learning_rate": 0.00016303123475345182,
617
+ "loss": 0.0127,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 4.2926829268292686,
622
+ "grad_norm": 0.6674973368644714,
623
+ "learning_rate": 0.00016223480482807894,
624
+ "loss": 0.0111,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 4.341463414634147,
629
+ "grad_norm": 0.3303108215332031,
630
+ "learning_rate": 0.00016143187900676112,
631
+ "loss": 0.0159,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 4.390243902439025,
636
+ "grad_norm": 0.2972947359085083,
637
+ "learning_rate": 0.0001606225410966638,
638
+ "loss": 0.0086,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 4.439024390243903,
643
+ "grad_norm": 0.059205561876297,
644
+ "learning_rate": 0.00015980687557422854,
645
+ "loss": 0.0104,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 4.487804878048781,
650
+ "grad_norm": 0.08515360206365585,
651
+ "learning_rate": 0.00015898496757635536,
652
+ "loss": 0.0079,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 4.536585365853659,
657
+ "grad_norm": 0.14600469172000885,
658
+ "learning_rate": 0.00015815690289151658,
659
+ "loss": 0.0101,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 4.585365853658536,
664
+ "grad_norm": 0.05901546776294708,
665
+ "learning_rate": 0.0001573227679508024,
666
+ "loss": 0.0075,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 4.634146341463414,
671
+ "grad_norm": 0.3404502868652344,
672
+ "learning_rate": 0.00015648264981889934,
673
+ "loss": 0.0158,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 4.682926829268292,
678
+ "grad_norm": 0.0968211218714714,
679
+ "learning_rate": 0.00015563663618500302,
680
+ "loss": 0.0092,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 4.7317073170731705,
685
+ "grad_norm": 0.08040373027324677,
686
+ "learning_rate": 0.00015478481535366494,
687
+ "loss": 0.0088,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 4.780487804878049,
692
+ "grad_norm": 0.7208348512649536,
693
+ "learning_rate": 0.00015392727623557585,
694
+ "loss": 0.0132,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 4.829268292682927,
699
+ "grad_norm": 0.26821044087409973,
700
+ "learning_rate": 0.00015306410833828535,
701
+ "loss": 0.0113,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 4.878048780487805,
706
+ "grad_norm": 0.09240720421075821,
707
+ "learning_rate": 0.00015219540175685938,
708
+ "loss": 0.0096,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 4.926829268292683,
713
+ "grad_norm": 0.3397311270236969,
714
+ "learning_rate": 0.00015132124716447627,
715
+ "loss": 0.0072,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 4.975609756097561,
720
+ "grad_norm": 0.07910922169685364,
721
+ "learning_rate": 0.00015044173580296266,
722
+ "loss": 0.0115,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 5.024390243902439,
727
+ "grad_norm": 0.05629584938287735,
728
+ "learning_rate": 0.00014955695947326987,
729
+ "loss": 0.0066,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 5.073170731707317,
734
+ "grad_norm": 0.7522541880607605,
735
+ "learning_rate": 0.00014866701052589193,
736
+ "loss": 0.0159,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 5.121951219512195,
741
+ "grad_norm": 0.09192178398370743,
742
+ "learning_rate": 0.0001477719818512263,
743
+ "loss": 0.0085,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 5.170731707317073,
748
+ "grad_norm": 0.3984428346157074,
749
+ "learning_rate": 0.00014687196686987832,
750
+ "loss": 0.0091,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 5.219512195121951,
755
+ "grad_norm": 0.4188997149467468,
756
+ "learning_rate": 0.00014596705952291017,
757
+ "loss": 0.0083,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 5.2682926829268295,
762
+ "grad_norm": 0.07686212658882141,
763
+ "learning_rate": 0.00014505735426203543,
764
+ "loss": 0.0064,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 5.317073170731708,
769
+ "grad_norm": 0.38933801651000977,
770
+ "learning_rate": 0.00014414294603976076,
771
+ "loss": 0.0086,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 5.365853658536586,
776
+ "grad_norm": 0.0843789279460907,
777
+ "learning_rate": 0.00014322393029947468,
778
+ "loss": 0.0074,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 5.414634146341464,
783
+ "grad_norm": 0.19899946451187134,
784
+ "learning_rate": 0.0001423004029654859,
785
+ "loss": 0.0102,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 5.463414634146342,
790
+ "grad_norm": 0.06790963560342789,
791
+ "learning_rate": 0.00014137246043301042,
792
+ "loss": 0.0102,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 5.512195121951219,
797
+ "grad_norm": 0.08267515152692795,
798
+ "learning_rate": 0.00014044019955811065,
799
+ "loss": 0.009,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 5.560975609756097,
804
+ "grad_norm": 0.3616844713687897,
805
+ "learning_rate": 0.00013950371764758542,
806
+ "loss": 0.0119,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 5.609756097560975,
811
+ "grad_norm": 0.052261725068092346,
812
+ "learning_rate": 0.0001385631124488136,
813
+ "loss": 0.0078,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 5.658536585365853,
818
+ "grad_norm": 0.07086987048387527,
819
+ "learning_rate": 0.00013761848213955134,
820
+ "loss": 0.0112,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 5.7073170731707314,
825
+ "grad_norm": 0.05841855704784393,
826
+ "learning_rate": 0.00013666992531768482,
827
+ "loss": 0.0095,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 5.7560975609756095,
832
+ "grad_norm": 0.2936477065086365,
833
+ "learning_rate": 0.00013571754099093848,
834
+ "loss": 0.0082,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 5.804878048780488,
839
+ "grad_norm": 0.7195134162902832,
840
+ "learning_rate": 0.0001347614285665412,
841
+ "loss": 0.0093,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 5.853658536585366,
846
+ "grad_norm": 0.09665755927562714,
847
+ "learning_rate": 0.00013380168784085027,
848
+ "loss": 0.0125,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 5.902439024390244,
853
+ "grad_norm": 0.08146821707487106,
854
+ "learning_rate": 0.0001328384189889351,
855
+ "loss": 0.0094,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 5.951219512195122,
860
+ "grad_norm": 1.6456434726715088,
861
+ "learning_rate": 0.00013187172255412096,
862
+ "loss": 0.0104,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 6.0,
867
+ "grad_norm": 0.46437689661979675,
868
+ "learning_rate": 0.00013090169943749476,
869
+ "loss": 0.0103,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 6.048780487804878,
874
+ "grad_norm": 0.40744251012802124,
875
+ "learning_rate": 0.00012992845088737322,
876
+ "loss": 0.0105,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 6.097560975609756,
881
+ "grad_norm": 0.09202691912651062,
882
+ "learning_rate": 0.00012895207848873487,
883
+ "loss": 0.0088,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 6.146341463414634,
888
+ "grad_norm": 0.41562455892562866,
889
+ "learning_rate": 0.00012797268415261682,
890
+ "loss": 0.0105,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 6.195121951219512,
895
+ "grad_norm": 0.061398524791002274,
896
+ "learning_rate": 0.0001269903701054776,
897
+ "loss": 0.0084,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 6.2439024390243905,
902
+ "grad_norm": 0.0851488932967186,
903
+ "learning_rate": 0.00012600523887852706,
904
+ "loss": 0.0081,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 6.2926829268292686,
909
+ "grad_norm": 0.4565141201019287,
910
+ "learning_rate": 0.00012501739329702453,
911
+ "loss": 0.0122,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 6.341463414634147,
916
+ "grad_norm": 0.06614430993795395,
917
+ "learning_rate": 0.00012402693646954607,
918
+ "loss": 0.0079,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 6.390243902439025,
923
+ "grad_norm": 0.3719758987426758,
924
+ "learning_rate": 0.00012303397177722234,
925
+ "loss": 0.0096,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 6.439024390243903,
930
+ "grad_norm": 0.06896215677261353,
931
+ "learning_rate": 0.0001220386028629479,
932
+ "loss": 0.0059,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 6.487804878048781,
937
+ "grad_norm": 0.05981654301285744,
938
+ "learning_rate": 0.00012104093362056341,
939
+ "loss": 0.007,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 6.536585365853659,
944
+ "grad_norm": 0.0625968649983406,
945
+ "learning_rate": 0.00012004106818401135,
946
+ "loss": 0.0104,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 6.585365853658536,
951
+ "grad_norm": 0.04070024937391281,
952
+ "learning_rate": 0.00011903911091646684,
953
+ "loss": 0.0082,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 6.634146341463414,
958
+ "grad_norm": 0.05095053091645241,
959
+ "learning_rate": 0.00011803516639944452,
960
+ "loss": 0.008,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 6.682926829268292,
965
+ "grad_norm": 0.058545567095279694,
966
+ "learning_rate": 0.00011702933942188252,
967
+ "loss": 0.0079,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 6.7317073170731705,
972
+ "grad_norm": 0.06065903976559639,
973
+ "learning_rate": 0.0001160217349692051,
974
+ "loss": 0.0075,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 6.780487804878049,
979
+ "grad_norm": 0.13544753193855286,
980
+ "learning_rate": 0.00011501245821236439,
981
+ "loss": 0.0075,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 6.829268292682927,
986
+ "grad_norm": 0.06476018577814102,
987
+ "learning_rate": 0.00011400161449686293,
988
+ "loss": 0.0086,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 6.878048780487805,
993
+ "grad_norm": 0.0454210601747036,
994
+ "learning_rate": 0.00011298930933175804,
995
+ "loss": 0.0074,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 6.926829268292683,
1000
+ "grad_norm": 0.05906907469034195,
1001
+ "learning_rate": 0.00011197564837864922,
1002
+ "loss": 0.007,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 6.975609756097561,
1007
+ "grad_norm": 0.2888021171092987,
1008
+ "learning_rate": 0.00011096073744064919,
1009
+ "loss": 0.0076,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 7.024390243902439,
1014
+ "grad_norm": 0.05438758432865143,
1015
+ "learning_rate": 0.00010994468245134071,
1016
+ "loss": 0.008,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 7.073170731707317,
1021
+ "grad_norm": 0.04347096383571625,
1022
+ "learning_rate": 0.00010892758946371944,
1023
+ "loss": 0.006,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 7.121951219512195,
1028
+ "grad_norm": 0.06834473460912704,
1029
+ "learning_rate": 0.00010790956463912438,
1030
+ "loss": 0.0079,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 7.170731707317073,
1035
+ "grad_norm": 0.04391489177942276,
1036
+ "learning_rate": 0.00010689071423615709,
1037
+ "loss": 0.0061,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 7.219512195121951,
1042
+ "grad_norm": 0.0990622267127037,
1043
+ "learning_rate": 0.00010587114459959071,
1044
+ "loss": 0.0071,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 7.2682926829268295,
1049
+ "grad_norm": 0.048575662076473236,
1050
+ "learning_rate": 0.00010485096214927002,
1051
+ "loss": 0.0066,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 7.317073170731708,
1056
+ "grad_norm": 0.05991552770137787,
1057
+ "learning_rate": 0.00010383027336900355,
1058
+ "loss": 0.0075,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 7.365853658536586,
1063
+ "grad_norm": 0.08045367151498795,
1064
+ "learning_rate": 0.00010280918479544914,
1065
+ "loss": 0.0062,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 7.414634146341464,
1070
+ "grad_norm": 0.044166866689920425,
1071
+ "learning_rate": 0.00010178780300699395,
1072
+ "loss": 0.008,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 7.463414634146342,
1077
+ "grad_norm": 0.06291426718235016,
1078
+ "learning_rate": 0.00010076623461263018,
1079
+ "loss": 0.0066,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 7.512195121951219,
1084
+ "grad_norm": 0.056730519980192184,
1085
+ "learning_rate": 9.974458624082727e-05,
1086
+ "loss": 0.0063,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 7.560975609756097,
1091
+ "grad_norm": 0.18145255744457245,
1092
+ "learning_rate": 9.872296452840264e-05,
1093
+ "loss": 0.007,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 7.609756097560975,
1098
+ "grad_norm": 0.038042183965444565,
1099
+ "learning_rate": 9.770147610939097e-05,
1100
+ "loss": 0.0071,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 7.658536585365853,
1105
+ "grad_norm": 0.09980273991823196,
1106
+ "learning_rate": 9.668022760391418e-05,
1107
+ "loss": 0.0083,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 7.7073170731707314,
1112
+ "grad_norm": 0.04334135353565216,
1113
+ "learning_rate": 9.565932560705277e-05,
1114
+ "loss": 0.0073,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 7.7560975609756095,
1119
+ "grad_norm": 0.08293572813272476,
1120
+ "learning_rate": 9.463887667771946e-05,
1121
+ "loss": 0.007,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 7.804878048780488,
1126
+ "grad_norm": 0.06575772166252136,
1127
+ "learning_rate": 9.361898732753716e-05,
1128
+ "loss": 0.007,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 7.853658536585366,
1133
+ "grad_norm": 0.13714659214019775,
1134
+ "learning_rate": 9.259976400972147e-05,
1135
+ "loss": 0.0071,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 7.902439024390244,
1140
+ "grad_norm": 0.05362860858440399,
1141
+ "learning_rate": 9.15813131079693e-05,
1142
+ "loss": 0.0069,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 7.951219512195122,
1147
+ "grad_norm": 0.036402106285095215,
1148
+ "learning_rate": 9.056374092535504e-05,
1149
+ "loss": 0.0068,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 8.0,
1154
+ "grad_norm": 0.06819606572389603,
1155
+ "learning_rate": 8.954715367323468e-05,
1156
+ "loss": 0.0074,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 8.048780487804878,
1161
+ "grad_norm": 0.051237184554338455,
1162
+ "learning_rate": 8.853165746015997e-05,
1163
+ "loss": 0.0061,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 8.097560975609756,
1168
+ "grad_norm": 0.04173099994659424,
1169
+ "learning_rate": 8.751735828080308e-05,
1170
+ "loss": 0.0071,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 8.146341463414634,
1175
+ "grad_norm": 0.04740411415696144,
1176
+ "learning_rate": 8.650436200489303e-05,
1177
+ "loss": 0.0062,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 8.195121951219512,
1182
+ "grad_norm": 0.07791474461555481,
1183
+ "learning_rate": 8.549277436616551e-05,
1184
+ "loss": 0.0063,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 8.24390243902439,
1189
+ "grad_norm": 0.10498108714818954,
1190
+ "learning_rate": 8.448270095132652e-05,
1191
+ "loss": 0.0061,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 8.292682926829269,
1196
+ "grad_norm": 0.07452121376991272,
1197
+ "learning_rate": 8.347424718903151e-05,
1198
+ "loss": 0.0063,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 8.341463414634147,
1203
+ "grad_norm": 0.07632943242788315,
1204
+ "learning_rate": 8.246751833888122e-05,
1205
+ "loss": 0.0067,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 8.390243902439025,
1210
+ "grad_norm": 0.040240757167339325,
1211
+ "learning_rate": 8.146261948043485e-05,
1212
+ "loss": 0.0063,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 8.439024390243903,
1217
+ "grad_norm": 0.06094524264335632,
1218
+ "learning_rate": 8.0459655502242e-05,
1219
+ "loss": 0.0061,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 8.487804878048781,
1224
+ "grad_norm": 0.09173769503831863,
1225
+ "learning_rate": 7.945873109089503e-05,
1226
+ "loss": 0.0066,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 8.536585365853659,
1231
+ "grad_norm": 0.07450529932975769,
1232
+ "learning_rate": 7.845995072010188e-05,
1233
+ "loss": 0.0065,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 8.585365853658537,
1238
+ "grad_norm": 0.07175474613904953,
1239
+ "learning_rate": 7.74634186397815e-05,
1240
+ "loss": 0.0063,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 8.634146341463415,
1245
+ "grad_norm": 0.1444873958826065,
1246
+ "learning_rate": 7.646923886518264e-05,
1247
+ "loss": 0.0066,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 8.682926829268293,
1252
+ "grad_norm": 0.06203252822160721,
1253
+ "learning_rate": 7.54775151660267e-05,
1254
+ "loss": 0.0061,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 8.731707317073171,
1259
+ "grad_norm": 0.07840217649936676,
1260
+ "learning_rate": 7.448835105567696e-05,
1261
+ "loss": 0.0066,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 8.78048780487805,
1266
+ "grad_norm": 0.05611024424433708,
1267
+ "learning_rate": 7.350184978033386e-05,
1268
+ "loss": 0.0063,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 8.829268292682928,
1273
+ "grad_norm": 0.05446132645010948,
1274
+ "learning_rate": 7.251811430825846e-05,
1275
+ "loss": 0.0072,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 8.878048780487806,
1280
+ "grad_norm": 0.06147909164428711,
1281
+ "learning_rate": 7.153724731902506e-05,
1282
+ "loss": 0.0063,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 8.926829268292684,
1287
+ "grad_norm": 0.137003555893898,
1288
+ "learning_rate": 7.055935119280369e-05,
1289
+ "loss": 0.0066,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 8.975609756097562,
1294
+ "grad_norm": 0.15653973817825317,
1295
+ "learning_rate": 6.958452799967385e-05,
1296
+ "loss": 0.007,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 9.024390243902438,
1301
+ "grad_norm": 0.06786433607339859,
1302
+ "learning_rate": 6.861287948897091e-05,
1303
+ "loss": 0.0069,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 9.073170731707316,
1308
+ "grad_norm": 0.07620502263307571,
1309
+ "learning_rate": 6.764450707866576e-05,
1310
+ "loss": 0.0062,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 9.121951219512194,
1315
+ "grad_norm": 0.05350011587142944,
1316
+ "learning_rate": 6.667951184477893e-05,
1317
+ "loss": 0.0059,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 9.170731707317072,
1322
+ "grad_norm": 0.05874161049723625,
1323
+ "learning_rate": 6.57179945108307e-05,
1324
+ "loss": 0.0054,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 9.21951219512195,
1329
+ "grad_norm": 0.07297080755233765,
1330
+ "learning_rate": 6.476005543732782e-05,
1331
+ "loss": 0.0067,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 9.268292682926829,
1336
+ "grad_norm": 0.08384808897972107,
1337
+ "learning_rate": 6.380579461128819e-05,
1338
+ "loss": 0.0065,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 9.317073170731707,
1343
+ "grad_norm": 0.06501758098602295,
1344
+ "learning_rate": 6.285531163580449e-05,
1345
+ "loss": 0.0058,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 9.365853658536585,
1350
+ "grad_norm": 0.051126834005117416,
1351
+ "learning_rate": 6.190870571964774e-05,
1352
+ "loss": 0.0061,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 9.414634146341463,
1357
+ "grad_norm": 0.07436596602201462,
1358
+ "learning_rate": 6.096607566691235e-05,
1359
+ "loss": 0.0064,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 9.463414634146341,
1364
+ "grad_norm": 0.0661911889910698,
1365
+ "learning_rate": 6.002751986670323e-05,
1366
+ "loss": 0.0061,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 9.512195121951219,
1371
+ "grad_norm": 0.058736588805913925,
1372
+ "learning_rate": 5.909313628286601e-05,
1373
+ "loss": 0.0063,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 9.560975609756097,
1378
+ "grad_norm": 0.051081206649541855,
1379
+ "learning_rate": 5.816302244376206e-05,
1380
+ "loss": 0.0074,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 9.609756097560975,
1385
+ "grad_norm": 0.06269817799329758,
1386
+ "learning_rate": 5.7237275432088664e-05,
1387
+ "loss": 0.0057,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 9.658536585365853,
1392
+ "grad_norm": 0.0546838752925396,
1393
+ "learning_rate": 5.63159918747457e-05,
1394
+ "loss": 0.0063,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 9.707317073170731,
1399
+ "grad_norm": 0.09113246202468872,
1400
+ "learning_rate": 5.539926793275021e-05,
1401
+ "loss": 0.0067,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 9.75609756097561,
1406
+ "grad_norm": 0.06070900708436966,
1407
+ "learning_rate": 5.448719929119915e-05,
1408
+ "loss": 0.0065,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 9.804878048780488,
1413
+ "grad_norm": 0.06381196528673172,
1414
+ "learning_rate": 5.3579881149282204e-05,
1415
+ "loss": 0.0063,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 9.853658536585366,
1420
+ "grad_norm": 0.05914902687072754,
1421
+ "learning_rate": 5.267740821034524e-05,
1422
+ "loss": 0.0059,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 9.902439024390244,
1427
+ "grad_norm": 0.0414993092417717,
1428
+ "learning_rate": 5.177987467200504e-05,
1429
+ "loss": 0.0065,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 9.951219512195122,
1434
+ "grad_norm": 0.051615435630083084,
1435
+ "learning_rate": 5.088737421631767e-05,
1436
+ "loss": 0.0061,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 10.0,
1441
+ "grad_norm": 0.08131363987922668,
1442
+ "learning_rate": 5.000000000000002e-05,
1443
+ "loss": 0.0058,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 10.048780487804878,
1448
+ "grad_norm": 0.06244876608252525,
1449
+ "learning_rate": 4.911784464470623e-05,
1450
+ "loss": 0.0057,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 10.097560975609756,
1455
+ "grad_norm": 0.060385096818208694,
1456
+ "learning_rate": 4.8241000227360354e-05,
1457
+ "loss": 0.0062,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 10.146341463414634,
1462
+ "grad_norm": 0.052863430231809616,
1463
+ "learning_rate": 4.73695582705455e-05,
1464
+ "loss": 0.0062,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 10.195121951219512,
1469
+ "grad_norm": 0.07917828112840652,
1470
+ "learning_rate": 4.650360973295086e-05,
1471
+ "loss": 0.0061,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 10.24390243902439,
1476
+ "grad_norm": 0.054362453520298004,
1477
+ "learning_rate": 4.56432449998779e-05,
1478
+ "loss": 0.0069,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 10.292682926829269,
1483
+ "grad_norm": 0.06768287718296051,
1484
+ "learning_rate": 4.478855387380605e-05,
1485
+ "loss": 0.0062,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 10.341463414634147,
1490
+ "grad_norm": 0.06945596635341644,
1491
+ "learning_rate": 4.3939625565019416e-05,
1492
+ "loss": 0.0062,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 10.390243902439025,
1497
+ "grad_norm": 0.07058496028184891,
1498
+ "learning_rate": 4.30965486822953e-05,
1499
+ "loss": 0.0064,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 10.439024390243903,
1504
+ "grad_norm": 0.06080787256360054,
1505
+ "learning_rate": 4.225941122365529e-05,
1506
+ "loss": 0.0058,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 10.487804878048781,
1511
+ "grad_norm": 0.059627074748277664,
1512
+ "learning_rate": 4.142830056718052e-05,
1513
+ "loss": 0.0062,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 10.536585365853659,
1518
+ "grad_norm": 0.05086175352334976,
1519
+ "learning_rate": 4.0603303461891253e-05,
1520
+ "loss": 0.0056,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 10.585365853658537,
1525
+ "grad_norm": 0.1199130192399025,
1526
+ "learning_rate": 3.978450601869217e-05,
1527
+ "loss": 0.0062,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 10.634146341463415,
1532
+ "grad_norm": 0.1347583681344986,
1533
+ "learning_rate": 3.8971993701384554e-05,
1534
+ "loss": 0.0064,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 10.682926829268293,
1539
+ "grad_norm": 0.050621725618839264,
1540
+ "learning_rate": 3.816585131774571e-05,
1541
+ "loss": 0.0057,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 10.731707317073171,
1546
+ "grad_norm": 0.04940760135650635,
1547
+ "learning_rate": 3.736616301067694e-05,
1548
+ "loss": 0.0062,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 10.78048780487805,
1553
+ "grad_norm": 0.052099861204624176,
1554
+ "learning_rate": 3.657301224942098e-05,
1555
+ "loss": 0.0058,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 10.829268292682928,
1560
+ "grad_norm": 0.08436452597379684,
1561
+ "learning_rate": 3.578648182084975e-05,
1562
+ "loss": 0.0058,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 10.878048780487806,
1567
+ "grad_norm": 0.0537634901702404,
1568
+ "learning_rate": 3.5006653820823135e-05,
1569
+ "loss": 0.0056,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 10.926829268292684,
1574
+ "grad_norm": 0.06204523518681526,
1575
+ "learning_rate": 3.423360964562026e-05,
1576
+ "loss": 0.0058,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 10.975609756097562,
1581
+ "grad_norm": 0.1142859160900116,
1582
+ "learning_rate": 3.346742998344348e-05,
1583
+ "loss": 0.0062,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 11.024390243902438,
1588
+ "grad_norm": 0.06821559369564056,
1589
+ "learning_rate": 3.270819480599625e-05,
1590
+ "loss": 0.006,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 11.073170731707316,
1595
+ "grad_norm": 0.05169494450092316,
1596
+ "learning_rate": 3.195598336013615e-05,
1597
+ "loss": 0.0053,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 11.121951219512194,
1602
+ "grad_norm": 0.05910908058285713,
1603
+ "learning_rate": 3.121087415960304e-05,
1604
+ "loss": 0.0059,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 11.170731707317072,
1609
+ "grad_norm": 0.07483071833848953,
1610
+ "learning_rate": 3.0472944976824224e-05,
1611
+ "loss": 0.0058,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 11.21951219512195,
1616
+ "grad_norm": 0.0738058090209961,
1617
+ "learning_rate": 2.9742272834796813e-05,
1618
+ "loss": 0.0055,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 11.268292682926829,
1623
+ "grad_norm": 0.09469424933195114,
1624
+ "learning_rate": 2.901893399904797e-05,
1625
+ "loss": 0.0062,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 11.317073170731707,
1630
+ "grad_norm": 0.05931226164102554,
1631
+ "learning_rate": 2.830300396967487e-05,
1632
+ "loss": 0.0059,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 11.365853658536585,
1637
+ "grad_norm": 0.07385493069887161,
1638
+ "learning_rate": 2.7594557473464066e-05,
1639
+ "loss": 0.0059,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 11.414634146341463,
1644
+ "grad_norm": 0.08171911537647247,
1645
+ "learning_rate": 2.6893668456091625e-05,
1646
+ "loss": 0.0057,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 11.463414634146341,
1651
+ "grad_norm": 0.05290233716368675,
1652
+ "learning_rate": 2.620041007440508e-05,
1653
+ "loss": 0.0064,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 11.512195121951219,
1658
+ "grad_norm": 0.06285463273525238,
1659
+ "learning_rate": 2.5514854688787405e-05,
1660
+ "loss": 0.0062,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 11.560975609756097,
1665
+ "grad_norm": 0.06230178475379944,
1666
+ "learning_rate": 2.4837073855604188e-05,
1667
+ "loss": 0.0061,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 11.609756097560975,
1672
+ "grad_norm": 0.05689137428998947,
1673
+ "learning_rate": 2.4167138319734905e-05,
1674
+ "loss": 0.006,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 11.658536585365853,
1679
+ "grad_norm": 0.07083682715892792,
1680
+ "learning_rate": 2.350511800718871e-05,
1681
+ "loss": 0.0057,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 11.707317073170731,
1686
+ "grad_norm": 0.056767258793115616,
1687
+ "learning_rate": 2.2851082017805703e-05,
1688
+ "loss": 0.0056,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 11.75609756097561,
1693
+ "grad_norm": 0.06561973690986633,
1694
+ "learning_rate": 2.2205098618044583e-05,
1695
+ "loss": 0.0058,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 11.804878048780488,
1700
+ "grad_norm": 0.05094975233078003,
1701
+ "learning_rate": 2.1567235233857054e-05,
1702
+ "loss": 0.0057,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 11.853658536585366,
1707
+ "grad_norm": 0.0570388026535511,
1708
+ "learning_rate": 2.0937558443650206e-05,
1709
+ "loss": 0.006,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 11.902439024390244,
1714
+ "grad_norm": 0.06019320338964462,
1715
+ "learning_rate": 2.031613397133724e-05,
1716
+ "loss": 0.006,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 11.951219512195122,
1721
+ "grad_norm": 0.09152466058731079,
1722
+ "learning_rate": 1.9703026679477256e-05,
1723
+ "loss": 0.0059,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 12.0,
1728
+ "grad_norm": 0.06767109036445618,
1729
+ "learning_rate": 1.9098300562505266e-05,
1730
+ "loss": 0.0058,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 12.048780487804878,
1735
+ "grad_norm": 0.05434449389576912,
1736
+ "learning_rate": 1.8502018740052496e-05,
1737
+ "loss": 0.0057,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 12.097560975609756,
1742
+ "grad_norm": 0.061113059520721436,
1743
+ "learning_rate": 1.7914243450358216e-05,
1744
+ "loss": 0.0054,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 12.146341463414634,
1749
+ "grad_norm": 0.05813341587781906,
1750
+ "learning_rate": 1.73350360437734e-05,
1751
+ "loss": 0.0057,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 12.195121951219512,
1756
+ "grad_norm": 0.07934972643852234,
1757
+ "learning_rate": 1.676445697635728e-05,
1758
+ "loss": 0.0057,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 12.24390243902439,
1763
+ "grad_norm": 0.08221197873353958,
1764
+ "learning_rate": 1.6202565803566917e-05,
1765
+ "loss": 0.0056,
1766
+ "step": 2510
1767
+ },
1768
+ {
1769
+ "epoch": 12.292682926829269,
1770
+ "grad_norm": 0.07954658567905426,
1771
+ "learning_rate": 1.564942117404119e-05,
1772
+ "loss": 0.0056,
1773
+ "step": 2520
1774
+ },
1775
+ {
1776
+ "epoch": 12.341463414634147,
1777
+ "grad_norm": 0.07448497414588928,
1778
+ "learning_rate": 1.510508082347899e-05,
1779
+ "loss": 0.0058,
1780
+ "step": 2530
1781
+ },
1782
+ {
1783
+ "epoch": 12.390243902439025,
1784
+ "grad_norm": 0.06170118972659111,
1785
+ "learning_rate": 1.4569601568613144e-05,
1786
+ "loss": 0.0058,
1787
+ "step": 2540
1788
+ },
1789
+ {
1790
+ "epoch": 12.439024390243903,
1791
+ "grad_norm": 0.05958204343914986,
1792
+ "learning_rate": 1.4043039301279903e-05,
1793
+ "loss": 0.0058,
1794
+ "step": 2550
1795
+ },
1796
+ {
1797
+ "epoch": 12.487804878048781,
1798
+ "grad_norm": 0.05719635635614395,
1799
+ "learning_rate": 1.352544898258511e-05,
1800
+ "loss": 0.0056,
1801
+ "step": 2560
1802
+ },
1803
+ {
1804
+ "epoch": 12.536585365853659,
1805
+ "grad_norm": 0.056574221700429916,
1806
+ "learning_rate": 1.301688463716757e-05,
1807
+ "loss": 0.0063,
1808
+ "step": 2570
1809
+ },
1810
+ {
1811
+ "epoch": 12.585365853658537,
1812
+ "grad_norm": 0.14904461801052094,
1813
+ "learning_rate": 1.2517399347560167e-05,
1814
+ "loss": 0.0059,
1815
+ "step": 2580
1816
+ },
1817
+ {
1818
+ "epoch": 12.634146341463415,
1819
+ "grad_norm": 0.03999248892068863,
1820
+ "learning_rate": 1.2027045248649015e-05,
1821
+ "loss": 0.0057,
1822
+ "step": 2590
1823
+ },
1824
+ {
1825
+ "epoch": 12.682926829268293,
1826
+ "grad_norm": 0.05714278668165207,
1827
+ "learning_rate": 1.1545873522232053e-05,
1828
+ "loss": 0.0056,
1829
+ "step": 2600
1830
+ },
1831
+ {
1832
+ "epoch": 12.731707317073171,
1833
+ "grad_norm": 0.06596580147743225,
1834
+ "learning_rate": 1.1073934391676667e-05,
1835
+ "loss": 0.0058,
1836
+ "step": 2610
1837
+ },
1838
+ {
1839
+ "epoch": 12.78048780487805,
1840
+ "grad_norm": 0.06003756448626518,
1841
+ "learning_rate": 1.0611277116677487e-05,
1842
+ "loss": 0.0059,
1843
+ "step": 2620
1844
+ },
1845
+ {
1846
+ "epoch": 12.829268292682928,
1847
+ "grad_norm": 0.05459544062614441,
1848
+ "learning_rate": 1.0157949988114967e-05,
1849
+ "loss": 0.0059,
1850
+ "step": 2630
1851
+ },
1852
+ {
1853
+ "epoch": 12.878048780487806,
1854
+ "grad_norm": 0.061511751264333725,
1855
+ "learning_rate": 9.714000323014705e-06,
1856
+ "loss": 0.0058,
1857
+ "step": 2640
1858
+ },
1859
+ {
1860
+ "epoch": 12.926829268292684,
1861
+ "grad_norm": 0.048676956444978714,
1862
+ "learning_rate": 9.279474459608805e-06,
1863
+ "loss": 0.0059,
1864
+ "step": 2650
1865
+ },
1866
+ {
1867
+ "epoch": 12.975609756097562,
1868
+ "grad_norm": 0.05746001750230789,
1869
+ "learning_rate": 8.854417752499111e-06,
1870
+ "loss": 0.0057,
1871
+ "step": 2660
1872
+ },
1873
+ {
1874
+ "epoch": 13.024390243902438,
1875
+ "grad_norm": 0.05339556187391281,
1876
+ "learning_rate": 8.43887456792326e-06,
1877
+ "loss": 0.0057,
1878
+ "step": 2670
1879
+ },
1880
+ {
1881
+ "epoch": 13.073170731707316,
1882
+ "grad_norm": 0.06085890159010887,
1883
+ "learning_rate": 8.032888279123829e-06,
1884
+ "loss": 0.0056,
1885
+ "step": 2680
1886
+ },
1887
+ {
1888
+ "epoch": 13.121951219512194,
1889
+ "grad_norm": 0.06632421165704727,
1890
+ "learning_rate": 7.636501261821238e-06,
1891
+ "loss": 0.0057,
1892
+ "step": 2690
1893
+ },
1894
+ {
1895
+ "epoch": 13.170731707317072,
1896
+ "grad_norm": 0.07371345162391663,
1897
+ "learning_rate": 7.249754889790539e-06,
1898
+ "loss": 0.0058,
1899
+ "step": 2700
1900
+ },
1901
+ {
1902
+ "epoch": 13.21951219512195,
1903
+ "grad_norm": 0.06796526908874512,
1904
+ "learning_rate": 6.872689530543086e-06,
1905
+ "loss": 0.0059,
1906
+ "step": 2710
1907
+ },
1908
+ {
1909
+ "epoch": 13.268292682926829,
1910
+ "grad_norm": 0.05836968868970871,
1911
+ "learning_rate": 6.505344541113046e-06,
1912
+ "loss": 0.0058,
1913
+ "step": 2720
1914
+ },
1915
+ {
1916
+ "epoch": 13.317073170731707,
1917
+ "grad_norm": 0.05631383880972862,
1918
+ "learning_rate": 6.147758263949321e-06,
1919
+ "loss": 0.0055,
1920
+ "step": 2730
1921
+ },
1922
+ {
1923
+ "epoch": 13.365853658536585,
1924
+ "grad_norm": 0.057296037673950195,
1925
+ "learning_rate": 5.7999680229136375e-06,
1926
+ "loss": 0.0057,
1927
+ "step": 2740
1928
+ },
1929
+ {
1930
+ "epoch": 13.414634146341463,
1931
+ "grad_norm": 0.059217844158411026,
1932
+ "learning_rate": 5.462010119384664e-06,
1933
+ "loss": 0.0056,
1934
+ "step": 2750
1935
+ },
1936
+ {
1937
+ "epoch": 13.463414634146341,
1938
+ "grad_norm": 0.052348434925079346,
1939
+ "learning_rate": 5.1339198284689916e-06,
1940
+ "loss": 0.0057,
1941
+ "step": 2760
1942
+ },
1943
+ {
1944
+ "epoch": 13.512195121951219,
1945
+ "grad_norm": 0.04569809511303902,
1946
+ "learning_rate": 4.815731395319278e-06,
1947
+ "loss": 0.0055,
1948
+ "step": 2770
1949
+ },
1950
+ {
1951
+ "epoch": 13.560975609756097,
1952
+ "grad_norm": 0.05811962112784386,
1953
+ "learning_rate": 4.507478031559731e-06,
1954
+ "loss": 0.0057,
1955
+ "step": 2780
1956
+ },
1957
+ {
1958
+ "epoch": 13.609756097560975,
1959
+ "grad_norm": 0.04801028221845627,
1960
+ "learning_rate": 4.209191911819688e-06,
1961
+ "loss": 0.0055,
1962
+ "step": 2790
1963
+ },
1964
+ {
1965
+ "epoch": 13.658536585365853,
1966
+ "grad_norm": 0.04857472702860832,
1967
+ "learning_rate": 3.9209041703752395e-06,
1968
+ "loss": 0.0056,
1969
+ "step": 2800
1970
+ },
1971
+ {
1972
+ "epoch": 13.707317073170731,
1973
+ "grad_norm": 0.09129537642002106,
1974
+ "learning_rate": 3.6426448978995056e-06,
1975
+ "loss": 0.006,
1976
+ "step": 2810
1977
+ },
1978
+ {
1979
+ "epoch": 13.75609756097561,
1980
+ "grad_norm": 0.06310546398162842,
1981
+ "learning_rate": 3.3744431383219367e-06,
1982
+ "loss": 0.0055,
1983
+ "step": 2820
1984
+ },
1985
+ {
1986
+ "epoch": 13.804878048780488,
1987
+ "grad_norm": 0.055802859365940094,
1988
+ "learning_rate": 3.116326885796728e-06,
1989
+ "loss": 0.0056,
1990
+ "step": 2830
1991
+ },
1992
+ {
1993
+ "epoch": 13.853658536585366,
1994
+ "grad_norm": 0.0634494498372078,
1995
+ "learning_rate": 2.868323081780877e-06,
1996
+ "loss": 0.0055,
1997
+ "step": 2840
1998
+ },
1999
+ {
2000
+ "epoch": 13.902439024390244,
2001
+ "grad_norm": 0.05695090815424919,
2002
+ "learning_rate": 2.6304576122221035e-06,
2003
+ "loss": 0.0055,
2004
+ "step": 2850
2005
+ },
2006
+ {
2007
+ "epoch": 13.951219512195122,
2008
+ "grad_norm": 0.06994400918483734,
2009
+ "learning_rate": 2.402755304856974e-06,
2010
+ "loss": 0.0057,
2011
+ "step": 2860
2012
+ },
2013
+ {
2014
+ "epoch": 14.0,
2015
+ "grad_norm": 0.0930507555603981,
2016
+ "learning_rate": 2.1852399266194314e-06,
2017
+ "loss": 0.006,
2018
+ "step": 2870
2019
+ },
2020
+ {
2021
+ "epoch": 14.048780487804878,
2022
+ "grad_norm": 0.056339725852012634,
2023
+ "learning_rate": 1.9779341811600794e-06,
2024
+ "loss": 0.0056,
2025
+ "step": 2880
2026
+ },
2027
+ {
2028
+ "epoch": 14.097560975609756,
2029
+ "grad_norm": 0.05481722205877304,
2030
+ "learning_rate": 1.7808597064764009e-06,
2031
+ "loss": 0.0056,
2032
+ "step": 2890
2033
+ },
2034
+ {
2035
+ "epoch": 14.146341463414634,
2036
+ "grad_norm": 0.07605459541082382,
2037
+ "learning_rate": 1.5940370726542863e-06,
2038
+ "loss": 0.0055,
2039
+ "step": 2900
2040
+ },
2041
+ {
2042
+ "epoch": 14.195121951219512,
2043
+ "grad_norm": 0.07780090719461441,
2044
+ "learning_rate": 1.417485779720995e-06,
2045
+ "loss": 0.0055,
2046
+ "step": 2910
2047
+ },
2048
+ {
2049
+ "epoch": 14.24390243902439,
2050
+ "grad_norm": 0.06754057854413986,
2051
+ "learning_rate": 1.2512242556097398e-06,
2052
+ "loss": 0.0055,
2053
+ "step": 2920
2054
+ },
2055
+ {
2056
+ "epoch": 14.292682926829269,
2057
+ "grad_norm": 0.055912312120199203,
2058
+ "learning_rate": 1.0952698542362805e-06,
2059
+ "loss": 0.0056,
2060
+ "step": 2930
2061
+ },
2062
+ {
2063
+ "epoch": 14.341463414634147,
2064
+ "grad_norm": 0.06355050206184387,
2065
+ "learning_rate": 9.496388536875623e-07,
2066
+ "loss": 0.0058,
2067
+ "step": 2940
2068
+ },
2069
+ {
2070
+ "epoch": 14.390243902439025,
2071
+ "grad_norm": 0.05702829360961914,
2072
+ "learning_rate": 8.143464545226298e-07,
2073
+ "loss": 0.0057,
2074
+ "step": 2950
2075
+ },
2076
+ {
2077
+ "epoch": 14.439024390243903,
2078
+ "grad_norm": 0.05529710277915001,
2079
+ "learning_rate": 6.894067781860635e-07,
2080
+ "loss": 0.0057,
2081
+ "step": 2960
2082
+ },
2083
+ {
2084
+ "epoch": 14.487804878048781,
2085
+ "grad_norm": 0.073829285800457,
2086
+ "learning_rate": 5.74832865534014e-07,
2087
+ "loss": 0.0055,
2088
+ "step": 2970
2089
+ },
2090
+ {
2091
+ "epoch": 14.536585365853659,
2092
+ "grad_norm": 0.054862912744283676,
2093
+ "learning_rate": 4.7063667547301294e-07,
2094
+ "loss": 0.0058,
2095
+ "step": 2980
2096
+ },
2097
+ {
2098
+ "epoch": 14.585365853658537,
2099
+ "grad_norm": 0.07511288672685623,
2100
+ "learning_rate": 3.768290837117605e-07,
2101
+ "loss": 0.0056,
2102
+ "step": 2990
2103
+ },
2104
+ {
2105
+ "epoch": 14.634146341463415,
2106
+ "grad_norm": 0.05845462158322334,
2107
+ "learning_rate": 2.934198816259559e-07,
2108
+ "loss": 0.0055,
2109
+ "step": 3000
2110
+ },
2111
+ {
2112
+ "epoch": 14.682926829268293,
2113
+ "grad_norm": 0.0624593086540699,
2114
+ "learning_rate": 2.2041777523627017e-07,
2115
+ "loss": 0.0057,
2116
+ "step": 3010
2117
+ },
2118
+ {
2119
+ "epoch": 14.731707317073171,
2120
+ "grad_norm": 0.056128259748220444,
2121
+ "learning_rate": 1.5783038429965092e-07,
2122
+ "loss": 0.0055,
2123
+ "step": 3020
2124
+ },
2125
+ {
2126
+ "epoch": 14.78048780487805,
2127
+ "grad_norm": 0.0808698758482933,
2128
+ "learning_rate": 1.0566424151401411e-07,
2129
+ "loss": 0.0057,
2130
+ "step": 3030
2131
+ },
2132
+ {
2133
+ "epoch": 14.829268292682928,
2134
+ "grad_norm": 0.0584842748939991,
2135
+ "learning_rate": 6.392479183633394e-08,
2136
+ "loss": 0.0055,
2137
+ "step": 3040
2138
+ },
2139
+ {
2140
+ "epoch": 14.878048780487806,
2141
+ "grad_norm": 0.07366840541362762,
2142
+ "learning_rate": 3.2616391914364054e-08,
2143
+ "loss": 0.0055,
2144
+ "step": 3050
2145
+ },
2146
+ {
2147
+ "epoch": 14.926829268292684,
2148
+ "grad_norm": 0.06805972754955292,
2149
+ "learning_rate": 1.1742309631845861e-08,
2150
+ "loss": 0.0055,
2151
+ "step": 3060
2152
+ },
2153
+ {
2154
+ "epoch": 14.975609756097562,
2155
+ "grad_norm": 0.057060301303863525,
2156
+ "learning_rate": 1.304723767492355e-09,
2157
+ "loss": 0.0056,
2158
+ "step": 3070
2159
+ }
2160
+ ],
2161
+ "logging_steps": 10,
2162
+ "max_steps": 3075,
2163
+ "num_input_tokens_seen": 0,
2164
+ "num_train_epochs": 15,
2165
+ "save_steps": 500,
2166
+ "stateful_callbacks": {
2167
+ "TrainerControl": {
2168
+ "args": {
2169
+ "should_epoch_stop": false,
2170
+ "should_evaluate": false,
2171
+ "should_log": false,
2172
+ "should_save": true,
2173
+ "should_training_stop": true
2174
+ },
2175
+ "attributes": {}
2176
+ }
2177
+ },
2178
+ "total_flos": 1.23238405675008e+17,
2179
+ "train_batch_size": 1,
2180
+ "trial_name": null,
2181
+ "trial_params": null
2182
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:618d2fd08d5f40db203f14da632df01dd896f66e47028894bfc6986f0921daa4
3
+ size 5432