Update handler.py
Browse files- handler.py +68 -61
handler.py
CHANGED
@@ -1,72 +1,79 @@
|
|
1 |
from typing import Dict, List
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from peft import PeftModel
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
class EndpointHandler:
|
7 |
def __init__(self, path: str):
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
35 |
|
36 |
def __call__(self, data: Dict) -> List[str]:
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
70 |
|
71 |
def preprocess(self, request):
|
72 |
"""Pre-process request for API compatibility"""
|
|
|
1 |
from typing import Dict, List
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from peft import PeftModel
|
5 |
+
import os
|
6 |
+
import logging
|
7 |
+
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
|
11 |
class EndpointHandler:
|
12 |
def __init__(self, path: str):
|
13 |
+
try:
|
14 |
+
logger.info("Loading base model...")
|
15 |
+
# Load base model with 8-bit quantization
|
16 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
"EleutherAI/gpt-j-6B",
|
18 |
+
load_in_8bit=True,
|
19 |
+
device_map="auto",
|
20 |
+
torch_dtype=torch.float16
|
21 |
+
)
|
22 |
+
|
23 |
+
logger.info("Loading adapter weights...")
|
24 |
+
# Load the adapter weights
|
25 |
+
self.model = PeftModel.from_pretrained(
|
26 |
+
base_model,
|
27 |
+
path
|
28 |
+
)
|
29 |
+
|
30 |
+
# Set up tokenizer
|
31 |
+
self.tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
|
32 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
33 |
+
|
34 |
+
logger.info("Model loaded successfully!")
|
35 |
+
|
36 |
+
except Exception as e:
|
37 |
+
logger.error(f"Error initializing model: {str(e)}")
|
38 |
+
raise
|
|
|
39 |
|
40 |
def __call__(self, data: Dict) -> List[str]:
|
41 |
+
try:
|
42 |
+
# Get the question from the input
|
43 |
+
question = data.pop("inputs", data)
|
44 |
+
if isinstance(question, list):
|
45 |
+
question = question[0]
|
46 |
+
|
47 |
+
# Format prompt exactly as in your test file
|
48 |
+
prompt = f"Question: {question}\nAnswer:"
|
49 |
+
|
50 |
+
# Tokenize exactly as in your test file
|
51 |
+
inputs = self.tokenizer(
|
52 |
+
prompt,
|
53 |
+
return_tensors="pt",
|
54 |
+
truncation=True,
|
55 |
+
max_length=512
|
56 |
+
).to(self.model.device)
|
57 |
+
|
58 |
+
# Generate with exact same parameters as your test file
|
59 |
+
with torch.inference_mode(), torch.cuda.amp.autocast():
|
60 |
+
outputs = self.model.generate(
|
61 |
+
**inputs,
|
62 |
+
max_length=512,
|
63 |
+
num_return_sequences=1,
|
64 |
+
temperature=0.7,
|
65 |
+
do_sample=True,
|
66 |
+
use_cache=True
|
67 |
+
)
|
68 |
+
|
69 |
+
# Decode exactly as in your test file
|
70 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
71 |
+
|
72 |
+
return [response]
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
logger.error(f"Error generating response: {str(e)}")
|
76 |
+
return [f"Error generating response: {str(e)}"]
|
77 |
|
78 |
def preprocess(self, request):
|
79 |
"""Pre-process request for API compatibility"""
|