--- license: apache-2.0 pipeline_tag: automatic-speech-recognition base_model: - openai/whisper-large-v3 tags: - inference_endpoints - audio - transcription --- # Inference Endpoint - Multilingual Audio Transcription with Whisper models **Deploy OpenAI's Whisper Inference Endpoint to transcribe audio files to text in many languages** Resulting deployment exposes an [OpenAI Platform Transcription](https://platform.openai.com/docs/api-reference/audio/createTranscription) compatible HTTP endpoint which you can query using the `OpenAi` Libraries or directly through `cURL` for instance. ## Available Routes | path | description | |:-----------------------------|:--------------------------------------------------| | /api/v1/audio/transcriptions | Transcription endpoint to interact with the model | | /docs | Visual documentation | ## Getting started - **Getting text output from audio file** ```bash curl http://localhost:8000/api/v1/audio/transcriptions \ --request POST \ --header 'Content-Type: multipart/form-data' \ -F file=@ \ -F "response_format": "text" ``` - **Getting JSON output from audio file** ```bash curl http://localhost:8000/api/v1/audio/transcriptions \ --request POST \ --header 'Content-Type: multipart/form-data' \ -F file=@ \ -F "response_format": "json" ``` - **Getting segmented JSON output from audio file** ```bash curl http://localhost:8000/api/v1/audio/transcriptions \ --request POST \ --header 'Content-Type: multipart/form-data' \ -F file=@ \ -F "response_format": "verbose_json" ``` ## Specifications | spec | value | description | |:------------------ |:---------------------:|:-----------------------------------------------------------------------------------------------------------| | Engine | vLLM (v0.8.3) | Underlying inference engine leverages [vLLM](https://docs.vllm.ai/en/latest/) | | Hardware | GPU (Ada Lovelace) | Requires the target endpoint to run over NVIDIA GPUs with at least compute capabilities 8.9 (Ada Lovelace) | | Compute data type | `bfloat16` | Computations (matmuls, norms, etc.) are done using `bfloat16` precision | | KV cache data type | `float8` (e4m3) | Key-Value cache is stored on the GPU using `float8` (`float8_e4m3`) precision to save space | | PyTorch Compile | ✅ | Enable the use of `torch.compile` to further optimize model's execution with more optimizations | | CUDA Graphs | ✅ | Enable the use of so called "[CUDA Graphs](https://developer.nvidia.com/blog/cuda-graphs/)" to reduce overhead executing GPU computations |