hflserdaniel commited on
Commit
59ea442
·
verified ·
1 Parent(s): 79720d8

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/paratera5-data/public/chai_models/phase2_winner_13b2",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 13824,
14
+ "max_position_embeddings": 4096,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 40,
17
+ "num_hidden_layers": 40,
18
+ "num_key_value_heads": 40,
19
+ "pad_token_id": 0,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 10000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.37.0.dev0",
27
+ "use_cache": false,
28
+ "vocab_size": 32000
29
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step600
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66ffb8d1d341d9c1273fc07b026f703fb4da25f169fa46d309eb8faec194e6c1
3
+ size 4978265800
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:310375d29fe16203ab88f4f16927dd83f6cd3f9c00828876459ab84cdb44af09
3
+ size 4970422232
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f262efeabbc558c4548f446b8a79d62741f4f40f75d3ea0a7a2c496542a65eb
3
+ size 4970422256
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d13d42545ce444841c28869646f39fbe57a7c3ffe669cc333b66e9ba530844b
3
+ size 4933701504
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82ad7a6569d0f299d76f1d18c07bdf731bbde971b1fa6cf357f49a8e2a8a741e
3
+ size 4933722216
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:851ac04d9042b614aafff4ba6a4aadc6b0e845a5b249a8af746addb9fc4fd1f9
3
+ size 1245236920
model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26031728640
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
368
+ "model.norm.weight": "model-00006-of-00006.safetensors"
369
+ }
370
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9917f57cf6db9ff973eea259725600ee48691f1a311a86c35d7ddf8e83d23e8f
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cc4f70c70839703ce970c1ee45417022e0e83b20bfb2f7333a736bc535e8ea2
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:538d096ef85541a907692e7ea5870361f3c33d47d2ae36cc8d80fcbee6d6ba67
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d89a04b316fca29777647ac11482d222694dc8c9b7f28dd628a2a2b636f93048
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0984343f1736954604090ffc2da611b7513bda5a8c67f3c5f4fef651f2645f48
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85c4361c193c2496c66013365189651bdfde23b29e0b3ff425414826ff253d97
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dc54ccbf26a6adc177b6b75ed0989fccb1dc837719258579975ddb0a14c1a3e
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f0cc3f27f578251164d5f20b22210ec59eee8ce74548c0b21bfd06c1cd01224
3
+ size 15984
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "</s>",
33
+ "legacy": false,
34
+ "model_max_length": 1000000000000000019884624838656,
35
+ "pad_token": "</s>",
36
+ "padding_side": "right",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "split_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }
trainer_state.json ADDED
@@ -0,0 +1,3717 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9127316198445905,
5
+ "eval_steps": 50,
6
+ "global_step": 600,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2.5e-07,
14
+ "loss": 1.171,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 5e-07,
20
+ "loss": 1.1933,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 7.5e-07,
26
+ "loss": 1.1931,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 1e-06,
32
+ "loss": 1.2064,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 1.2499999999999999e-06,
38
+ "loss": 1.2553,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 1.5e-06,
44
+ "loss": 1.1993,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 1.75e-06,
50
+ "loss": 1.169,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.03,
55
+ "learning_rate": 2e-06,
56
+ "loss": 1.136,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 2.25e-06,
62
+ "loss": 1.0732,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 2.4999999999999998e-06,
68
+ "loss": 1.0262,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.04,
73
+ "learning_rate": 2.75e-06,
74
+ "loss": 0.9988,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 3e-06,
80
+ "loss": 1.0119,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 3.25e-06,
86
+ "loss": 0.9621,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 3.5e-06,
92
+ "loss": 0.9128,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.05,
97
+ "learning_rate": 3.7499999999999997e-06,
98
+ "loss": 0.8979,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 4e-06,
104
+ "loss": 0.8497,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 4.25e-06,
110
+ "loss": 0.8423,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.06,
115
+ "learning_rate": 4.5e-06,
116
+ "loss": 0.8535,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 4.749999999999999e-06,
122
+ "loss": 0.8679,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 4.9999999999999996e-06,
128
+ "loss": 0.8042,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.07,
133
+ "learning_rate": 5.25e-06,
134
+ "loss": 0.8447,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.07,
139
+ "learning_rate": 5.5e-06,
140
+ "loss": 0.8084,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.07,
145
+ "learning_rate": 5.75e-06,
146
+ "loss": 0.7878,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.08,
151
+ "learning_rate": 6e-06,
152
+ "loss": 0.8129,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.08,
157
+ "learning_rate": 6.2499999999999995e-06,
158
+ "loss": 0.7616,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.08,
163
+ "learning_rate": 6.5e-06,
164
+ "loss": 0.7954,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.09,
169
+ "learning_rate": 6.75e-06,
170
+ "loss": 0.776,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.09,
175
+ "learning_rate": 7e-06,
176
+ "loss": 0.7494,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.09,
181
+ "learning_rate": 7.25e-06,
182
+ "loss": 0.7211,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.1,
187
+ "learning_rate": 7.499999999999999e-06,
188
+ "loss": 0.7321,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.1,
193
+ "learning_rate": 7.75e-06,
194
+ "loss": 0.7115,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.1,
199
+ "learning_rate": 8e-06,
200
+ "loss": 0.7295,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.11,
205
+ "learning_rate": 7.999944055700695e-06,
206
+ "loss": 0.7143,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.11,
211
+ "learning_rate": 7.999776224367659e-06,
212
+ "loss": 0.7092,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.11,
217
+ "learning_rate": 7.999496510695501e-06,
218
+ "loss": 0.7071,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.11,
223
+ "learning_rate": 7.999104922508408e-06,
224
+ "loss": 0.7302,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.12,
229
+ "learning_rate": 7.998601470759944e-06,
230
+ "loss": 0.7338,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.12,
235
+ "learning_rate": 7.99798616953274e-06,
236
+ "loss": 0.7018,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.12,
241
+ "learning_rate": 7.997259036038092e-06,
242
+ "loss": 0.7041,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.13,
247
+ "learning_rate": 7.996420090615486e-06,
248
+ "loss": 0.7133,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.13,
253
+ "learning_rate": 7.995469356732032e-06,
254
+ "loss": 0.7142,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.13,
259
+ "learning_rate": 7.994406860981797e-06,
260
+ "loss": 0.7124,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.14,
265
+ "learning_rate": 7.993232633085074e-06,
266
+ "loss": 0.6892,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.14,
271
+ "learning_rate": 7.991946705887537e-06,
272
+ "loss": 0.6985,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.14,
277
+ "learning_rate": 7.99054911535934e-06,
278
+ "loss": 0.6861,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.15,
283
+ "learning_rate": 7.989039900594089e-06,
284
+ "loss": 0.7207,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.15,
289
+ "learning_rate": 7.98741910380777e-06,
290
+ "loss": 0.698,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.15,
295
+ "learning_rate": 7.98568677033755e-06,
296
+ "loss": 0.7224,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.16,
301
+ "learning_rate": 7.98384294864052e-06,
302
+ "loss": 0.6799,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.16,
307
+ "learning_rate": 7.981887690292338e-06,
308
+ "loss": 0.6708,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.16,
313
+ "eval_loss": 0.6769059300422668,
314
+ "eval_runtime": 20.2812,
315
+ "eval_samples_per_second": 40.037,
316
+ "eval_steps_per_second": 2.515,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 0.16,
321
+ "learning_rate": 7.979821049985783e-06,
322
+ "loss": 0.687,
323
+ "step": 51
324
+ },
325
+ {
326
+ "epoch": 0.17,
327
+ "learning_rate": 7.977643085529227e-06,
328
+ "loss": 0.6902,
329
+ "step": 52
330
+ },
331
+ {
332
+ "epoch": 0.17,
333
+ "learning_rate": 7.975353857845016e-06,
334
+ "loss": 0.708,
335
+ "step": 53
336
+ },
337
+ {
338
+ "epoch": 0.17,
339
+ "learning_rate": 7.972953430967771e-06,
340
+ "loss": 0.6835,
341
+ "step": 54
342
+ },
343
+ {
344
+ "epoch": 0.18,
345
+ "learning_rate": 7.970441872042592e-06,
346
+ "loss": 0.6909,
347
+ "step": 55
348
+ },
349
+ {
350
+ "epoch": 0.18,
351
+ "learning_rate": 7.96781925132318e-06,
352
+ "loss": 0.6696,
353
+ "step": 56
354
+ },
355
+ {
356
+ "epoch": 0.18,
357
+ "learning_rate": 7.965085642169875e-06,
358
+ "loss": 0.681,
359
+ "step": 57
360
+ },
361
+ {
362
+ "epoch": 0.18,
363
+ "learning_rate": 7.962241121047602e-06,
364
+ "loss": 0.6629,
365
+ "step": 58
366
+ },
367
+ {
368
+ "epoch": 0.19,
369
+ "learning_rate": 7.95928576752373e-06,
370
+ "loss": 0.6938,
371
+ "step": 59
372
+ },
373
+ {
374
+ "epoch": 0.19,
375
+ "learning_rate": 7.956219664265852e-06,
376
+ "loss": 0.6173,
377
+ "step": 60
378
+ },
379
+ {
380
+ "epoch": 0.19,
381
+ "learning_rate": 7.953042897039465e-06,
382
+ "loss": 0.6545,
383
+ "step": 61
384
+ },
385
+ {
386
+ "epoch": 0.2,
387
+ "learning_rate": 7.949755554705577e-06,
388
+ "loss": 0.6837,
389
+ "step": 62
390
+ },
391
+ {
392
+ "epoch": 0.2,
393
+ "learning_rate": 7.946357729218223e-06,
394
+ "loss": 0.663,
395
+ "step": 63
396
+ },
397
+ {
398
+ "epoch": 0.2,
399
+ "learning_rate": 7.942849515621881e-06,
400
+ "loss": 0.6456,
401
+ "step": 64
402
+ },
403
+ {
404
+ "epoch": 0.21,
405
+ "learning_rate": 7.939231012048832e-06,
406
+ "loss": 0.6521,
407
+ "step": 65
408
+ },
409
+ {
410
+ "epoch": 0.21,
411
+ "learning_rate": 7.935502319716397e-06,
412
+ "loss": 0.631,
413
+ "step": 66
414
+ },
415
+ {
416
+ "epoch": 0.21,
417
+ "learning_rate": 7.931663542924115e-06,
418
+ "loss": 0.6769,
419
+ "step": 67
420
+ },
421
+ {
422
+ "epoch": 0.22,
423
+ "learning_rate": 7.927714789050827e-06,
424
+ "loss": 0.6821,
425
+ "step": 68
426
+ },
427
+ {
428
+ "epoch": 0.22,
429
+ "learning_rate": 7.923656168551665e-06,
430
+ "loss": 0.6559,
431
+ "step": 69
432
+ },
433
+ {
434
+ "epoch": 0.22,
435
+ "learning_rate": 7.919487794954972e-06,
436
+ "loss": 0.669,
437
+ "step": 70
438
+ },
439
+ {
440
+ "epoch": 0.23,
441
+ "learning_rate": 7.915209784859116e-06,
442
+ "loss": 0.6716,
443
+ "step": 71
444
+ },
445
+ {
446
+ "epoch": 0.23,
447
+ "learning_rate": 7.910822257929234e-06,
448
+ "loss": 0.6727,
449
+ "step": 72
450
+ },
451
+ {
452
+ "epoch": 0.23,
453
+ "learning_rate": 7.90632533689389e-06,
454
+ "loss": 0.68,
455
+ "step": 73
456
+ },
457
+ {
458
+ "epoch": 0.24,
459
+ "learning_rate": 7.901719147541628e-06,
460
+ "loss": 0.649,
461
+ "step": 74
462
+ },
463
+ {
464
+ "epoch": 0.24,
465
+ "learning_rate": 7.897003818717468e-06,
466
+ "loss": 0.6428,
467
+ "step": 75
468
+ },
469
+ {
470
+ "epoch": 0.24,
471
+ "learning_rate": 7.892179482319294e-06,
472
+ "loss": 0.6429,
473
+ "step": 76
474
+ },
475
+ {
476
+ "epoch": 0.25,
477
+ "learning_rate": 7.887246273294166e-06,
478
+ "loss": 0.6429,
479
+ "step": 77
480
+ },
481
+ {
482
+ "epoch": 0.25,
483
+ "learning_rate": 7.882204329634543e-06,
484
+ "loss": 0.6439,
485
+ "step": 78
486
+ },
487
+ {
488
+ "epoch": 0.25,
489
+ "learning_rate": 7.87705379237443e-06,
490
+ "loss": 0.6288,
491
+ "step": 79
492
+ },
493
+ {
494
+ "epoch": 0.26,
495
+ "learning_rate": 7.871794805585425e-06,
496
+ "loss": 0.6525,
497
+ "step": 80
498
+ },
499
+ {
500
+ "epoch": 0.26,
501
+ "learning_rate": 7.866427516372693e-06,
502
+ "loss": 0.6498,
503
+ "step": 81
504
+ },
505
+ {
506
+ "epoch": 0.26,
507
+ "learning_rate": 7.86095207487085e-06,
508
+ "loss": 0.6366,
509
+ "step": 82
510
+ },
511
+ {
512
+ "epoch": 0.26,
513
+ "learning_rate": 7.855368634239768e-06,
514
+ "loss": 0.6402,
515
+ "step": 83
516
+ },
517
+ {
518
+ "epoch": 0.27,
519
+ "learning_rate": 7.849677350660282e-06,
520
+ "loss": 0.6704,
521
+ "step": 84
522
+ },
523
+ {
524
+ "epoch": 0.27,
525
+ "learning_rate": 7.843878383329828e-06,
526
+ "loss": 0.6417,
527
+ "step": 85
528
+ },
529
+ {
530
+ "epoch": 0.27,
531
+ "learning_rate": 7.837971894457989e-06,
532
+ "loss": 0.6146,
533
+ "step": 86
534
+ },
535
+ {
536
+ "epoch": 0.28,
537
+ "learning_rate": 7.831958049261955e-06,
538
+ "loss": 0.6307,
539
+ "step": 87
540
+ },
541
+ {
542
+ "epoch": 0.28,
543
+ "learning_rate": 7.825837015961904e-06,
544
+ "loss": 0.6371,
545
+ "step": 88
546
+ },
547
+ {
548
+ "epoch": 0.28,
549
+ "learning_rate": 7.819608965776295e-06,
550
+ "loss": 0.6155,
551
+ "step": 89
552
+ },
553
+ {
554
+ "epoch": 0.29,
555
+ "learning_rate": 7.813274072917081e-06,
556
+ "loss": 0.6316,
557
+ "step": 90
558
+ },
559
+ {
560
+ "epoch": 0.29,
561
+ "learning_rate": 7.806832514584832e-06,
562
+ "loss": 0.627,
563
+ "step": 91
564
+ },
565
+ {
566
+ "epoch": 0.29,
567
+ "learning_rate": 7.800284470963781e-06,
568
+ "loss": 0.6345,
569
+ "step": 92
570
+ },
571
+ {
572
+ "epoch": 0.3,
573
+ "learning_rate": 7.793630125216786e-06,
574
+ "loss": 0.6448,
575
+ "step": 93
576
+ },
577
+ {
578
+ "epoch": 0.3,
579
+ "learning_rate": 7.786869663480201e-06,
580
+ "loss": 0.6185,
581
+ "step": 94
582
+ },
583
+ {
584
+ "epoch": 0.3,
585
+ "learning_rate": 7.780003274858673e-06,
586
+ "loss": 0.6294,
587
+ "step": 95
588
+ },
589
+ {
590
+ "epoch": 0.31,
591
+ "learning_rate": 7.773031151419853e-06,
592
+ "loss": 0.6362,
593
+ "step": 96
594
+ },
595
+ {
596
+ "epoch": 0.31,
597
+ "learning_rate": 7.765953488189021e-06,
598
+ "loss": 0.6586,
599
+ "step": 97
600
+ },
601
+ {
602
+ "epoch": 0.31,
603
+ "learning_rate": 7.758770483143633e-06,
604
+ "loss": 0.627,
605
+ "step": 98
606
+ },
607
+ {
608
+ "epoch": 0.32,
609
+ "learning_rate": 7.75148233720778e-06,
610
+ "loss": 0.6331,
611
+ "step": 99
612
+ },
613
+ {
614
+ "epoch": 0.32,
615
+ "learning_rate": 7.744089254246569e-06,
616
+ "loss": 0.6041,
617
+ "step": 100
618
+ },
619
+ {
620
+ "epoch": 0.32,
621
+ "eval_loss": 0.616474986076355,
622
+ "eval_runtime": 20.2693,
623
+ "eval_samples_per_second": 40.061,
624
+ "eval_steps_per_second": 2.516,
625
+ "step": 100
626
+ },
627
+ {
628
+ "epoch": 0.32,
629
+ "learning_rate": 7.736591441060427e-06,
630
+ "loss": 0.6055,
631
+ "step": 101
632
+ },
633
+ {
634
+ "epoch": 0.33,
635
+ "learning_rate": 7.728989107379303e-06,
636
+ "loss": 0.607,
637
+ "step": 102
638
+ },
639
+ {
640
+ "epoch": 0.33,
641
+ "learning_rate": 7.721282465856814e-06,
642
+ "loss": 0.6246,
643
+ "step": 103
644
+ },
645
+ {
646
+ "epoch": 0.33,
647
+ "learning_rate": 7.71347173206429e-06,
648
+ "loss": 0.5974,
649
+ "step": 104
650
+ },
651
+ {
652
+ "epoch": 0.33,
653
+ "learning_rate": 7.705557124484746e-06,
654
+ "loss": 0.5991,
655
+ "step": 105
656
+ },
657
+ {
658
+ "epoch": 0.34,
659
+ "learning_rate": 7.697538864506767e-06,
660
+ "loss": 0.612,
661
+ "step": 106
662
+ },
663
+ {
664
+ "epoch": 0.34,
665
+ "learning_rate": 7.689417176418326e-06,
666
+ "loss": 0.6069,
667
+ "step": 107
668
+ },
669
+ {
670
+ "epoch": 0.34,
671
+ "learning_rate": 7.681192287400491e-06,
672
+ "loss": 0.6163,
673
+ "step": 108
674
+ },
675
+ {
676
+ "epoch": 0.35,
677
+ "learning_rate": 7.672864427521097e-06,
678
+ "loss": 0.588,
679
+ "step": 109
680
+ },
681
+ {
682
+ "epoch": 0.35,
683
+ "learning_rate": 7.664433829728277e-06,
684
+ "loss": 0.622,
685
+ "step": 110
686
+ },
687
+ {
688
+ "epoch": 0.35,
689
+ "learning_rate": 7.655900729843983e-06,
690
+ "loss": 0.6169,
691
+ "step": 111
692
+ },
693
+ {
694
+ "epoch": 0.36,
695
+ "learning_rate": 7.647265366557355e-06,
696
+ "loss": 0.6326,
697
+ "step": 112
698
+ },
699
+ {
700
+ "epoch": 0.36,
701
+ "learning_rate": 7.638527981418074e-06,
702
+ "loss": 0.6054,
703
+ "step": 113
704
+ },
705
+ {
706
+ "epoch": 0.36,
707
+ "learning_rate": 7.629688818829577e-06,
708
+ "loss": 0.577,
709
+ "step": 114
710
+ },
711
+ {
712
+ "epoch": 0.37,
713
+ "learning_rate": 7.620748126042249e-06,
714
+ "loss": 0.624,
715
+ "step": 115
716
+ },
717
+ {
718
+ "epoch": 0.37,
719
+ "learning_rate": 7.611706153146485e-06,
720
+ "loss": 0.6018,
721
+ "step": 116
722
+ },
723
+ {
724
+ "epoch": 0.37,
725
+ "learning_rate": 7.602563153065702e-06,
726
+ "loss": 0.5857,
727
+ "step": 117
728
+ },
729
+ {
730
+ "epoch": 0.38,
731
+ "learning_rate": 7.5933193815492675e-06,
732
+ "loss": 0.5735,
733
+ "step": 118
734
+ },
735
+ {
736
+ "epoch": 0.38,
737
+ "learning_rate": 7.583975097165343e-06,
738
+ "loss": 0.5837,
739
+ "step": 119
740
+ },
741
+ {
742
+ "epoch": 0.38,
743
+ "learning_rate": 7.574530561293649e-06,
744
+ "loss": 0.5696,
745
+ "step": 120
746
+ },
747
+ {
748
+ "epoch": 0.39,
749
+ "learning_rate": 7.564986038118155e-06,
750
+ "loss": 0.5989,
751
+ "step": 121
752
+ },
753
+ {
754
+ "epoch": 0.39,
755
+ "learning_rate": 7.555341794619694e-06,
756
+ "loss": 0.6055,
757
+ "step": 122
758
+ },
759
+ {
760
+ "epoch": 0.39,
761
+ "learning_rate": 7.545598100568487e-06,
762
+ "loss": 0.6071,
763
+ "step": 123
764
+ },
765
+ {
766
+ "epoch": 0.4,
767
+ "learning_rate": 7.535755228516601e-06,
768
+ "loss": 0.5903,
769
+ "step": 124
770
+ },
771
+ {
772
+ "epoch": 0.4,
773
+ "learning_rate": 7.525813453790328e-06,
774
+ "loss": 0.6042,
775
+ "step": 125
776
+ },
777
+ {
778
+ "epoch": 0.4,
779
+ "learning_rate": 7.515773054482478e-06,
780
+ "loss": 0.6211,
781
+ "step": 126
782
+ },
783
+ {
784
+ "epoch": 0.4,
785
+ "learning_rate": 7.505634311444602e-06,
786
+ "loss": 0.5919,
787
+ "step": 127
788
+ },
789
+ {
790
+ "epoch": 0.41,
791
+ "learning_rate": 7.49539750827914e-06,
792
+ "loss": 0.5752,
793
+ "step": 128
794
+ },
795
+ {
796
+ "epoch": 0.41,
797
+ "learning_rate": 7.48506293133148e-06,
798
+ "loss": 0.5936,
799
+ "step": 129
800
+ },
801
+ {
802
+ "epoch": 0.41,
803
+ "learning_rate": 7.474630869681954e-06,
804
+ "loss": 0.6023,
805
+ "step": 130
806
+ },
807
+ {
808
+ "epoch": 0.42,
809
+ "learning_rate": 7.4641016151377545e-06,
810
+ "loss": 0.5851,
811
+ "step": 131
812
+ },
813
+ {
814
+ "epoch": 0.42,
815
+ "learning_rate": 7.453475462224763e-06,
816
+ "loss": 0.5902,
817
+ "step": 132
818
+ },
819
+ {
820
+ "epoch": 0.42,
821
+ "learning_rate": 7.44275270817932e-06,
822
+ "loss": 0.5633,
823
+ "step": 133
824
+ },
825
+ {
826
+ "epoch": 0.43,
827
+ "learning_rate": 7.431933652939908e-06,
828
+ "loss": 0.5855,
829
+ "step": 134
830
+ },
831
+ {
832
+ "epoch": 0.43,
833
+ "learning_rate": 7.421018599138756e-06,
834
+ "loss": 0.5862,
835
+ "step": 135
836
+ },
837
+ {
838
+ "epoch": 0.43,
839
+ "learning_rate": 7.410007852093384e-06,
840
+ "loss": 0.5414,
841
+ "step": 136
842
+ },
843
+ {
844
+ "epoch": 0.44,
845
+ "learning_rate": 7.398901719798058e-06,
846
+ "loss": 0.572,
847
+ "step": 137
848
+ },
849
+ {
850
+ "epoch": 0.44,
851
+ "learning_rate": 7.387700512915168e-06,
852
+ "loss": 0.5721,
853
+ "step": 138
854
+ },
855
+ {
856
+ "epoch": 0.44,
857
+ "learning_rate": 7.376404544766554e-06,
858
+ "loss": 0.5717,
859
+ "step": 139
860
+ },
861
+ {
862
+ "epoch": 0.45,
863
+ "learning_rate": 7.365014131324725e-06,
864
+ "loss": 0.5958,
865
+ "step": 140
866
+ },
867
+ {
868
+ "epoch": 0.45,
869
+ "learning_rate": 7.353529591204029e-06,
870
+ "loss": 0.5773,
871
+ "step": 141
872
+ },
873
+ {
874
+ "epoch": 0.45,
875
+ "learning_rate": 7.3419512456517455e-06,
876
+ "loss": 0.5705,
877
+ "step": 142
878
+ },
879
+ {
880
+ "epoch": 0.46,
881
+ "learning_rate": 7.330279418539084e-06,
882
+ "loss": 0.5706,
883
+ "step": 143
884
+ },
885
+ {
886
+ "epoch": 0.46,
887
+ "learning_rate": 7.3185144363521435e-06,
888
+ "loss": 0.6,
889
+ "step": 144
890
+ },
891
+ {
892
+ "epoch": 0.46,
893
+ "learning_rate": 7.306656628182765e-06,
894
+ "loss": 0.5863,
895
+ "step": 145
896
+ },
897
+ {
898
+ "epoch": 0.47,
899
+ "learning_rate": 7.294706325719331e-06,
900
+ "loss": 0.5591,
901
+ "step": 146
902
+ },
903
+ {
904
+ "epoch": 0.47,
905
+ "learning_rate": 7.2826638632374924e-06,
906
+ "loss": 0.5788,
907
+ "step": 147
908
+ },
909
+ {
910
+ "epoch": 0.47,
911
+ "learning_rate": 7.270529577590812e-06,
912
+ "loss": 0.6078,
913
+ "step": 148
914
+ },
915
+ {
916
+ "epoch": 0.47,
917
+ "learning_rate": 7.258303808201343e-06,
918
+ "loss": 0.5722,
919
+ "step": 149
920
+ },
921
+ {
922
+ "epoch": 0.48,
923
+ "learning_rate": 7.245986897050137e-06,
924
+ "loss": 0.5855,
925
+ "step": 150
926
+ },
927
+ {
928
+ "epoch": 0.48,
929
+ "eval_loss": 0.5726646780967712,
930
+ "eval_runtime": 20.2436,
931
+ "eval_samples_per_second": 40.111,
932
+ "eval_steps_per_second": 2.519,
933
+ "step": 150
934
+ },
935
+ {
936
+ "epoch": 0.48,
937
+ "learning_rate": 7.233579188667675e-06,
938
+ "loss": 0.5824,
939
+ "step": 151
940
+ },
941
+ {
942
+ "epoch": 0.48,
943
+ "learning_rate": 7.2210810301242345e-06,
944
+ "loss": 0.5419,
945
+ "step": 152
946
+ },
947
+ {
948
+ "epoch": 0.49,
949
+ "learning_rate": 7.208492771020175e-06,
950
+ "loss": 0.5475,
951
+ "step": 153
952
+ },
953
+ {
954
+ "epoch": 0.49,
955
+ "learning_rate": 7.195814763476164e-06,
956
+ "loss": 0.5657,
957
+ "step": 154
958
+ },
959
+ {
960
+ "epoch": 0.49,
961
+ "learning_rate": 7.183047362123328e-06,
962
+ "loss": 0.5649,
963
+ "step": 155
964
+ },
965
+ {
966
+ "epoch": 0.5,
967
+ "learning_rate": 7.170190924093326e-06,
968
+ "loss": 0.5452,
969
+ "step": 156
970
+ },
971
+ {
972
+ "epoch": 0.5,
973
+ "learning_rate": 7.157245809008368e-06,
974
+ "loss": 0.5774,
975
+ "step": 157
976
+ },
977
+ {
978
+ "epoch": 0.5,
979
+ "learning_rate": 7.1442123789711495e-06,
980
+ "loss": 0.5858,
981
+ "step": 158
982
+ },
983
+ {
984
+ "epoch": 0.51,
985
+ "learning_rate": 7.131090998554727e-06,
986
+ "loss": 0.5623,
987
+ "step": 159
988
+ },
989
+ {
990
+ "epoch": 0.51,
991
+ "learning_rate": 7.117882034792315e-06,
992
+ "loss": 0.6064,
993
+ "step": 160
994
+ },
995
+ {
996
+ "epoch": 0.51,
997
+ "learning_rate": 7.104585857167027e-06,
998
+ "loss": 0.5734,
999
+ "step": 161
1000
+ },
1001
+ {
1002
+ "epoch": 0.52,
1003
+ "learning_rate": 7.0912028376015315e-06,
1004
+ "loss": 0.5386,
1005
+ "step": 162
1006
+ },
1007
+ {
1008
+ "epoch": 0.52,
1009
+ "learning_rate": 7.077733350447657e-06,
1010
+ "loss": 0.5603,
1011
+ "step": 163
1012
+ },
1013
+ {
1014
+ "epoch": 0.52,
1015
+ "learning_rate": 7.064177772475912e-06,
1016
+ "loss": 0.5448,
1017
+ "step": 164
1018
+ },
1019
+ {
1020
+ "epoch": 0.53,
1021
+ "learning_rate": 7.0505364828649524e-06,
1022
+ "loss": 0.5496,
1023
+ "step": 165
1024
+ },
1025
+ {
1026
+ "epoch": 0.53,
1027
+ "learning_rate": 7.036809863190972e-06,
1028
+ "loss": 0.5467,
1029
+ "step": 166
1030
+ },
1031
+ {
1032
+ "epoch": 0.53,
1033
+ "learning_rate": 7.022998297417033e-06,
1034
+ "loss": 0.5632,
1035
+ "step": 167
1036
+ },
1037
+ {
1038
+ "epoch": 0.54,
1039
+ "learning_rate": 7.0091021718823185e-06,
1040
+ "loss": 0.5699,
1041
+ "step": 168
1042
+ },
1043
+ {
1044
+ "epoch": 0.54,
1045
+ "learning_rate": 6.99512187529133e-06,
1046
+ "loss": 0.5606,
1047
+ "step": 169
1048
+ },
1049
+ {
1050
+ "epoch": 0.54,
1051
+ "learning_rate": 6.981057798703019e-06,
1052
+ "loss": 0.5626,
1053
+ "step": 170
1054
+ },
1055
+ {
1056
+ "epoch": 0.55,
1057
+ "learning_rate": 6.966910335519838e-06,
1058
+ "loss": 0.5388,
1059
+ "step": 171
1060
+ },
1061
+ {
1062
+ "epoch": 0.55,
1063
+ "learning_rate": 6.952679881476746e-06,
1064
+ "loss": 0.5598,
1065
+ "step": 172
1066
+ },
1067
+ {
1068
+ "epoch": 0.55,
1069
+ "learning_rate": 6.9383668346301325e-06,
1070
+ "loss": 0.5981,
1071
+ "step": 173
1072
+ },
1073
+ {
1074
+ "epoch": 0.55,
1075
+ "learning_rate": 6.923971595346686e-06,
1076
+ "loss": 0.5408,
1077
+ "step": 174
1078
+ },
1079
+ {
1080
+ "epoch": 0.56,
1081
+ "learning_rate": 6.909494566292195e-06,
1082
+ "loss": 0.5157,
1083
+ "step": 175
1084
+ },
1085
+ {
1086
+ "epoch": 0.56,
1087
+ "learning_rate": 6.89493615242028e-06,
1088
+ "loss": 0.5568,
1089
+ "step": 176
1090
+ },
1091
+ {
1092
+ "epoch": 0.56,
1093
+ "learning_rate": 6.880296760961076e-06,
1094
+ "loss": 0.5713,
1095
+ "step": 177
1096
+ },
1097
+ {
1098
+ "epoch": 0.57,
1099
+ "learning_rate": 6.865576801409828e-06,
1100
+ "loss": 0.5853,
1101
+ "step": 178
1102
+ },
1103
+ {
1104
+ "epoch": 0.57,
1105
+ "learning_rate": 6.8507766855154515e-06,
1106
+ "loss": 0.5758,
1107
+ "step": 179
1108
+ },
1109
+ {
1110
+ "epoch": 0.57,
1111
+ "learning_rate": 6.8358968272689995e-06,
1112
+ "loss": 0.546,
1113
+ "step": 180
1114
+ },
1115
+ {
1116
+ "epoch": 0.58,
1117
+ "learning_rate": 6.820937642892096e-06,
1118
+ "loss": 0.5275,
1119
+ "step": 181
1120
+ },
1121
+ {
1122
+ "epoch": 0.58,
1123
+ "learning_rate": 6.805899550825285e-06,
1124
+ "loss": 0.5285,
1125
+ "step": 182
1126
+ },
1127
+ {
1128
+ "epoch": 0.58,
1129
+ "learning_rate": 6.790782971716327e-06,
1130
+ "loss": 0.5554,
1131
+ "step": 183
1132
+ },
1133
+ {
1134
+ "epoch": 0.59,
1135
+ "learning_rate": 6.775588328408435e-06,
1136
+ "loss": 0.534,
1137
+ "step": 184
1138
+ },
1139
+ {
1140
+ "epoch": 0.59,
1141
+ "learning_rate": 6.760316045928448e-06,
1142
+ "loss": 0.5305,
1143
+ "step": 185
1144
+ },
1145
+ {
1146
+ "epoch": 0.59,
1147
+ "learning_rate": 6.744966551474935e-06,
1148
+ "loss": 0.5357,
1149
+ "step": 186
1150
+ },
1151
+ {
1152
+ "epoch": 0.6,
1153
+ "learning_rate": 6.7295402744062504e-06,
1154
+ "loss": 0.5448,
1155
+ "step": 187
1156
+ },
1157
+ {
1158
+ "epoch": 0.6,
1159
+ "learning_rate": 6.714037646228529e-06,
1160
+ "loss": 0.5503,
1161
+ "step": 188
1162
+ },
1163
+ {
1164
+ "epoch": 0.6,
1165
+ "learning_rate": 6.698459100583603e-06,
1166
+ "loss": 0.5637,
1167
+ "step": 189
1168
+ },
1169
+ {
1170
+ "epoch": 0.61,
1171
+ "learning_rate": 6.682805073236883e-06,
1172
+ "loss": 0.5868,
1173
+ "step": 190
1174
+ },
1175
+ {
1176
+ "epoch": 0.61,
1177
+ "learning_rate": 6.6670760020651665e-06,
1178
+ "loss": 0.5531,
1179
+ "step": 191
1180
+ },
1181
+ {
1182
+ "epoch": 0.61,
1183
+ "learning_rate": 6.651272327044385e-06,
1184
+ "loss": 0.5439,
1185
+ "step": 192
1186
+ },
1187
+ {
1188
+ "epoch": 0.62,
1189
+ "learning_rate": 6.635394490237299e-06,
1190
+ "loss": 0.5799,
1191
+ "step": 193
1192
+ },
1193
+ {
1194
+ "epoch": 0.62,
1195
+ "learning_rate": 6.619442935781141e-06,
1196
+ "loss": 0.5535,
1197
+ "step": 194
1198
+ },
1199
+ {
1200
+ "epoch": 0.62,
1201
+ "learning_rate": 6.603418109875174e-06,
1202
+ "loss": 0.5494,
1203
+ "step": 195
1204
+ },
1205
+ {
1206
+ "epoch": 0.62,
1207
+ "learning_rate": 6.58732046076823e-06,
1208
+ "loss": 0.5546,
1209
+ "step": 196
1210
+ },
1211
+ {
1212
+ "epoch": 0.63,
1213
+ "learning_rate": 6.571150438746157e-06,
1214
+ "loss": 0.5761,
1215
+ "step": 197
1216
+ },
1217
+ {
1218
+ "epoch": 0.63,
1219
+ "learning_rate": 6.554908496119232e-06,
1220
+ "loss": 0.5544,
1221
+ "step": 198
1222
+ },
1223
+ {
1224
+ "epoch": 0.63,
1225
+ "learning_rate": 6.538595087209504e-06,
1226
+ "loss": 0.5644,
1227
+ "step": 199
1228
+ },
1229
+ {
1230
+ "epoch": 0.64,
1231
+ "learning_rate": 6.52221066833809e-06,
1232
+ "loss": 0.5519,
1233
+ "step": 200
1234
+ },
1235
+ {
1236
+ "epoch": 0.64,
1237
+ "eval_loss": 0.5564766526222229,
1238
+ "eval_runtime": 20.2313,
1239
+ "eval_samples_per_second": 40.136,
1240
+ "eval_steps_per_second": 2.521,
1241
+ "step": 200
1242
+ },
1243
+ {
1244
+ "epoch": 0.64,
1245
+ "learning_rate": 6.505755697812405e-06,
1246
+ "loss": 0.5609,
1247
+ "step": 201
1248
+ },
1249
+ {
1250
+ "epoch": 0.64,
1251
+ "learning_rate": 6.489230635913346e-06,
1252
+ "loss": 0.5404,
1253
+ "step": 202
1254
+ },
1255
+ {
1256
+ "epoch": 0.65,
1257
+ "learning_rate": 6.472635944882421e-06,
1258
+ "loss": 0.5063,
1259
+ "step": 203
1260
+ },
1261
+ {
1262
+ "epoch": 0.65,
1263
+ "learning_rate": 6.455972088908807e-06,
1264
+ "loss": 0.5667,
1265
+ "step": 204
1266
+ },
1267
+ {
1268
+ "epoch": 0.65,
1269
+ "learning_rate": 6.43923953411638e-06,
1270
+ "loss": 0.5303,
1271
+ "step": 205
1272
+ },
1273
+ {
1274
+ "epoch": 0.66,
1275
+ "learning_rate": 6.422438748550666e-06,
1276
+ "loss": 0.5529,
1277
+ "step": 206
1278
+ },
1279
+ {
1280
+ "epoch": 0.66,
1281
+ "learning_rate": 6.405570202165754e-06,
1282
+ "loss": 0.5481,
1283
+ "step": 207
1284
+ },
1285
+ {
1286
+ "epoch": 0.66,
1287
+ "learning_rate": 6.388634366811145e-06,
1288
+ "loss": 0.5639,
1289
+ "step": 208
1290
+ },
1291
+ {
1292
+ "epoch": 0.67,
1293
+ "learning_rate": 6.371631716218562e-06,
1294
+ "loss": 0.5285,
1295
+ "step": 209
1296
+ },
1297
+ {
1298
+ "epoch": 0.67,
1299
+ "learning_rate": 6.354562725988691e-06,
1300
+ "loss": 0.5846,
1301
+ "step": 210
1302
+ },
1303
+ {
1304
+ "epoch": 0.67,
1305
+ "learning_rate": 6.3374278735778834e-06,
1306
+ "loss": 0.5814,
1307
+ "step": 211
1308
+ },
1309
+ {
1310
+ "epoch": 0.68,
1311
+ "learning_rate": 6.3202276382847925e-06,
1312
+ "loss": 0.525,
1313
+ "step": 212
1314
+ },
1315
+ {
1316
+ "epoch": 0.68,
1317
+ "learning_rate": 6.302962501236975e-06,
1318
+ "loss": 0.5504,
1319
+ "step": 213
1320
+ },
1321
+ {
1322
+ "epoch": 0.68,
1323
+ "learning_rate": 6.285632945377429e-06,
1324
+ "loss": 0.5549,
1325
+ "step": 214
1326
+ },
1327
+ {
1328
+ "epoch": 0.69,
1329
+ "learning_rate": 6.268239455451082e-06,
1330
+ "loss": 0.5411,
1331
+ "step": 215
1332
+ },
1333
+ {
1334
+ "epoch": 0.69,
1335
+ "learning_rate": 6.250782517991241e-06,
1336
+ "loss": 0.5251,
1337
+ "step": 216
1338
+ },
1339
+ {
1340
+ "epoch": 0.69,
1341
+ "learning_rate": 6.2332626213059686e-06,
1342
+ "loss": 0.5376,
1343
+ "step": 217
1344
+ },
1345
+ {
1346
+ "epoch": 0.69,
1347
+ "learning_rate": 6.215680255464441e-06,
1348
+ "loss": 0.5573,
1349
+ "step": 218
1350
+ },
1351
+ {
1352
+ "epoch": 0.7,
1353
+ "learning_rate": 6.198035912283224e-06,
1354
+ "loss": 0.5427,
1355
+ "step": 219
1356
+ },
1357
+ {
1358
+ "epoch": 0.7,
1359
+ "learning_rate": 6.180330085312526e-06,
1360
+ "loss": 0.561,
1361
+ "step": 220
1362
+ },
1363
+ {
1364
+ "epoch": 0.7,
1365
+ "learning_rate": 6.162563269822391e-06,
1366
+ "loss": 0.5625,
1367
+ "step": 221
1368
+ },
1369
+ {
1370
+ "epoch": 0.71,
1371
+ "learning_rate": 6.144735962788837e-06,
1372
+ "loss": 0.5555,
1373
+ "step": 222
1374
+ },
1375
+ {
1376
+ "epoch": 0.71,
1377
+ "learning_rate": 6.126848662879967e-06,
1378
+ "loss": 0.5658,
1379
+ "step": 223
1380
+ },
1381
+ {
1382
+ "epoch": 0.71,
1383
+ "learning_rate": 6.108901870442009e-06,
1384
+ "loss": 0.5642,
1385
+ "step": 224
1386
+ },
1387
+ {
1388
+ "epoch": 0.72,
1389
+ "learning_rate": 6.09089608748533e-06,
1390
+ "loss": 0.5413,
1391
+ "step": 225
1392
+ },
1393
+ {
1394
+ "epoch": 0.72,
1395
+ "learning_rate": 6.072831817670382e-06,
1396
+ "loss": 0.5394,
1397
+ "step": 226
1398
+ },
1399
+ {
1400
+ "epoch": 0.72,
1401
+ "learning_rate": 6.054709566293626e-06,
1402
+ "loss": 0.5397,
1403
+ "step": 227
1404
+ },
1405
+ {
1406
+ "epoch": 0.73,
1407
+ "learning_rate": 6.036529840273388e-06,
1408
+ "loss": 0.5701,
1409
+ "step": 228
1410
+ },
1411
+ {
1412
+ "epoch": 0.73,
1413
+ "learning_rate": 6.018293148135684e-06,
1414
+ "loss": 0.5632,
1415
+ "step": 229
1416
+ },
1417
+ {
1418
+ "epoch": 0.73,
1419
+ "learning_rate": 6e-06,
1420
+ "loss": 0.5492,
1421
+ "step": 230
1422
+ },
1423
+ {
1424
+ "epoch": 0.74,
1425
+ "learning_rate": 5.98165090756501e-06,
1426
+ "loss": 0.5409,
1427
+ "step": 231
1428
+ },
1429
+ {
1430
+ "epoch": 0.74,
1431
+ "learning_rate": 5.963246384094273e-06,
1432
+ "loss": 0.5207,
1433
+ "step": 232
1434
+ },
1435
+ {
1436
+ "epoch": 0.74,
1437
+ "learning_rate": 5.944786944401874e-06,
1438
+ "loss": 0.5153,
1439
+ "step": 233
1440
+ },
1441
+ {
1442
+ "epoch": 0.75,
1443
+ "learning_rate": 5.926273104838025e-06,
1444
+ "loss": 0.5628,
1445
+ "step": 234
1446
+ },
1447
+ {
1448
+ "epoch": 0.75,
1449
+ "learning_rate": 5.907705383274616e-06,
1450
+ "loss": 0.5387,
1451
+ "step": 235
1452
+ },
1453
+ {
1454
+ "epoch": 0.75,
1455
+ "learning_rate": 5.889084299090731e-06,
1456
+ "loss": 0.552,
1457
+ "step": 236
1458
+ },
1459
+ {
1460
+ "epoch": 0.76,
1461
+ "learning_rate": 5.870410373158125e-06,
1462
+ "loss": 0.5473,
1463
+ "step": 237
1464
+ },
1465
+ {
1466
+ "epoch": 0.76,
1467
+ "learning_rate": 5.85168412782665e-06,
1468
+ "loss": 0.5455,
1469
+ "step": 238
1470
+ },
1471
+ {
1472
+ "epoch": 0.76,
1473
+ "learning_rate": 5.832906086909641e-06,
1474
+ "loss": 0.541,
1475
+ "step": 239
1476
+ },
1477
+ {
1478
+ "epoch": 0.77,
1479
+ "learning_rate": 5.8140767756692705e-06,
1480
+ "loss": 0.5405,
1481
+ "step": 240
1482
+ },
1483
+ {
1484
+ "epoch": 0.77,
1485
+ "learning_rate": 5.795196720801849e-06,
1486
+ "loss": 0.5421,
1487
+ "step": 241
1488
+ },
1489
+ {
1490
+ "epoch": 0.77,
1491
+ "learning_rate": 5.7762664504230965e-06,
1492
+ "loss": 0.5345,
1493
+ "step": 242
1494
+ },
1495
+ {
1496
+ "epoch": 0.77,
1497
+ "learning_rate": 5.75728649405337e-06,
1498
+ "loss": 0.5287,
1499
+ "step": 243
1500
+ },
1501
+ {
1502
+ "epoch": 0.78,
1503
+ "learning_rate": 5.73825738260285e-06,
1504
+ "loss": 0.5414,
1505
+ "step": 244
1506
+ },
1507
+ {
1508
+ "epoch": 0.78,
1509
+ "learning_rate": 5.7191796483566865e-06,
1510
+ "loss": 0.5427,
1511
+ "step": 245
1512
+ },
1513
+ {
1514
+ "epoch": 0.78,
1515
+ "learning_rate": 5.70005382496012e-06,
1516
+ "loss": 0.5582,
1517
+ "step": 246
1518
+ },
1519
+ {
1520
+ "epoch": 0.79,
1521
+ "learning_rate": 5.680880447403544e-06,
1522
+ "loss": 0.5183,
1523
+ "step": 247
1524
+ },
1525
+ {
1526
+ "epoch": 0.79,
1527
+ "learning_rate": 5.661660052007546e-06,
1528
+ "loss": 0.5319,
1529
+ "step": 248
1530
+ },
1531
+ {
1532
+ "epoch": 0.79,
1533
+ "learning_rate": 5.6423931764079e-06,
1534
+ "loss": 0.53,
1535
+ "step": 249
1536
+ },
1537
+ {
1538
+ "epoch": 0.8,
1539
+ "learning_rate": 5.623080359540536e-06,
1540
+ "loss": 0.5378,
1541
+ "step": 250
1542
+ },
1543
+ {
1544
+ "epoch": 0.8,
1545
+ "eval_loss": 0.544645369052887,
1546
+ "eval_runtime": 20.274,
1547
+ "eval_samples_per_second": 40.051,
1548
+ "eval_steps_per_second": 2.516,
1549
+ "step": 250
1550
+ },
1551
+ {
1552
+ "epoch": 0.8,
1553
+ "learning_rate": 5.6037221416264545e-06,
1554
+ "loss": 0.5536,
1555
+ "step": 251
1556
+ },
1557
+ {
1558
+ "epoch": 0.8,
1559
+ "learning_rate": 5.584319064156627e-06,
1560
+ "loss": 0.5427,
1561
+ "step": 252
1562
+ },
1563
+ {
1564
+ "epoch": 0.81,
1565
+ "learning_rate": 5.5648716698768395e-06,
1566
+ "loss": 0.5224,
1567
+ "step": 253
1568
+ },
1569
+ {
1570
+ "epoch": 0.81,
1571
+ "learning_rate": 5.545380502772514e-06,
1572
+ "loss": 0.5579,
1573
+ "step": 254
1574
+ },
1575
+ {
1576
+ "epoch": 0.81,
1577
+ "learning_rate": 5.525846108053495e-06,
1578
+ "loss": 0.5457,
1579
+ "step": 255
1580
+ },
1581
+ {
1582
+ "epoch": 0.82,
1583
+ "learning_rate": 5.506269032138794e-06,
1584
+ "loss": 0.5763,
1585
+ "step": 256
1586
+ },
1587
+ {
1588
+ "epoch": 0.82,
1589
+ "learning_rate": 5.48664982264131e-06,
1590
+ "loss": 0.565,
1591
+ "step": 257
1592
+ },
1593
+ {
1594
+ "epoch": 0.82,
1595
+ "learning_rate": 5.4669890283525045e-06,
1596
+ "loss": 0.5151,
1597
+ "step": 258
1598
+ },
1599
+ {
1600
+ "epoch": 0.83,
1601
+ "learning_rate": 5.44728719922706e-06,
1602
+ "loss": 0.5771,
1603
+ "step": 259
1604
+ },
1605
+ {
1606
+ "epoch": 0.83,
1607
+ "learning_rate": 5.427544886367487e-06,
1608
+ "loss": 0.5131,
1609
+ "step": 260
1610
+ },
1611
+ {
1612
+ "epoch": 0.83,
1613
+ "learning_rate": 5.407762642008718e-06,
1614
+ "loss": 0.5431,
1615
+ "step": 261
1616
+ },
1617
+ {
1618
+ "epoch": 0.84,
1619
+ "learning_rate": 5.387941019502649e-06,
1620
+ "loss": 0.5393,
1621
+ "step": 262
1622
+ },
1623
+ {
1624
+ "epoch": 0.84,
1625
+ "learning_rate": 5.368080573302675e-06,
1626
+ "loss": 0.5516,
1627
+ "step": 263
1628
+ },
1629
+ {
1630
+ "epoch": 0.84,
1631
+ "learning_rate": 5.348181858948167e-06,
1632
+ "loss": 0.5478,
1633
+ "step": 264
1634
+ },
1635
+ {
1636
+ "epoch": 0.84,
1637
+ "learning_rate": 5.328245433048942e-06,
1638
+ "loss": 0.5263,
1639
+ "step": 265
1640
+ },
1641
+ {
1642
+ "epoch": 0.85,
1643
+ "learning_rate": 5.308271853269687e-06,
1644
+ "loss": 0.5432,
1645
+ "step": 266
1646
+ },
1647
+ {
1648
+ "epoch": 0.85,
1649
+ "learning_rate": 5.288261678314367e-06,
1650
+ "loss": 0.5477,
1651
+ "step": 267
1652
+ },
1653
+ {
1654
+ "epoch": 0.85,
1655
+ "learning_rate": 5.268215467910587e-06,
1656
+ "loss": 0.5605,
1657
+ "step": 268
1658
+ },
1659
+ {
1660
+ "epoch": 0.86,
1661
+ "learning_rate": 5.248133782793947e-06,
1662
+ "loss": 0.536,
1663
+ "step": 269
1664
+ },
1665
+ {
1666
+ "epoch": 0.86,
1667
+ "learning_rate": 5.228017184692351e-06,
1668
+ "loss": 0.5339,
1669
+ "step": 270
1670
+ },
1671
+ {
1672
+ "epoch": 0.86,
1673
+ "learning_rate": 5.207866236310286e-06,
1674
+ "loss": 0.5691,
1675
+ "step": 271
1676
+ },
1677
+ {
1678
+ "epoch": 0.87,
1679
+ "learning_rate": 5.1876815013131e-06,
1680
+ "loss": 0.5627,
1681
+ "step": 272
1682
+ },
1683
+ {
1684
+ "epoch": 0.87,
1685
+ "learning_rate": 5.167463544311218e-06,
1686
+ "loss": 0.5429,
1687
+ "step": 273
1688
+ },
1689
+ {
1690
+ "epoch": 0.87,
1691
+ "learning_rate": 5.147212930844361e-06,
1692
+ "loss": 0.5142,
1693
+ "step": 274
1694
+ },
1695
+ {
1696
+ "epoch": 0.88,
1697
+ "learning_rate": 5.126930227365719e-06,
1698
+ "loss": 0.5284,
1699
+ "step": 275
1700
+ },
1701
+ {
1702
+ "epoch": 0.88,
1703
+ "learning_rate": 5.106616001226108e-06,
1704
+ "loss": 0.5293,
1705
+ "step": 276
1706
+ },
1707
+ {
1708
+ "epoch": 0.88,
1709
+ "learning_rate": 5.086270820658103e-06,
1710
+ "loss": 0.5616,
1711
+ "step": 277
1712
+ },
1713
+ {
1714
+ "epoch": 0.89,
1715
+ "learning_rate": 5.065895254760139e-06,
1716
+ "loss": 0.5402,
1717
+ "step": 278
1718
+ },
1719
+ {
1720
+ "epoch": 0.89,
1721
+ "learning_rate": 5.045489873480596e-06,
1722
+ "loss": 0.5738,
1723
+ "step": 279
1724
+ },
1725
+ {
1726
+ "epoch": 0.89,
1727
+ "learning_rate": 5.02505524760185e-06,
1728
+ "loss": 0.5377,
1729
+ "step": 280
1730
+ },
1731
+ {
1732
+ "epoch": 0.9,
1733
+ "learning_rate": 5.004591948724316e-06,
1734
+ "loss": 0.543,
1735
+ "step": 281
1736
+ },
1737
+ {
1738
+ "epoch": 0.9,
1739
+ "learning_rate": 4.984100549250454e-06,
1740
+ "loss": 0.5374,
1741
+ "step": 282
1742
+ },
1743
+ {
1744
+ "epoch": 0.9,
1745
+ "learning_rate": 4.963581622368753e-06,
1746
+ "loss": 0.5351,
1747
+ "step": 283
1748
+ },
1749
+ {
1750
+ "epoch": 0.91,
1751
+ "learning_rate": 4.943035742037709e-06,
1752
+ "loss": 0.5339,
1753
+ "step": 284
1754
+ },
1755
+ {
1756
+ "epoch": 0.91,
1757
+ "learning_rate": 4.922463482969761e-06,
1758
+ "loss": 0.5258,
1759
+ "step": 285
1760
+ },
1761
+ {
1762
+ "epoch": 0.91,
1763
+ "learning_rate": 4.901865420615218e-06,
1764
+ "loss": 0.5288,
1765
+ "step": 286
1766
+ },
1767
+ {
1768
+ "epoch": 0.91,
1769
+ "learning_rate": 4.881242131146163e-06,
1770
+ "loss": 0.5445,
1771
+ "step": 287
1772
+ },
1773
+ {
1774
+ "epoch": 0.92,
1775
+ "learning_rate": 4.8605941914403355e-06,
1776
+ "loss": 0.5147,
1777
+ "step": 288
1778
+ },
1779
+ {
1780
+ "epoch": 0.92,
1781
+ "learning_rate": 4.839922179064993e-06,
1782
+ "loss": 0.5395,
1783
+ "step": 289
1784
+ },
1785
+ {
1786
+ "epoch": 0.92,
1787
+ "learning_rate": 4.819226672260763e-06,
1788
+ "loss": 0.5912,
1789
+ "step": 290
1790
+ },
1791
+ {
1792
+ "epoch": 0.93,
1793
+ "learning_rate": 4.798508249925456e-06,
1794
+ "loss": 0.5475,
1795
+ "step": 291
1796
+ },
1797
+ {
1798
+ "epoch": 0.93,
1799
+ "learning_rate": 4.777767491597883e-06,
1800
+ "loss": 0.5369,
1801
+ "step": 292
1802
+ },
1803
+ {
1804
+ "epoch": 0.93,
1805
+ "learning_rate": 4.7570049774416405e-06,
1806
+ "loss": 0.5359,
1807
+ "step": 293
1808
+ },
1809
+ {
1810
+ "epoch": 0.94,
1811
+ "learning_rate": 4.736221288228881e-06,
1812
+ "loss": 0.558,
1813
+ "step": 294
1814
+ },
1815
+ {
1816
+ "epoch": 0.94,
1817
+ "learning_rate": 4.71541700532407e-06,
1818
+ "loss": 0.5399,
1819
+ "step": 295
1820
+ },
1821
+ {
1822
+ "epoch": 0.94,
1823
+ "learning_rate": 4.694592710667722e-06,
1824
+ "loss": 0.5255,
1825
+ "step": 296
1826
+ },
1827
+ {
1828
+ "epoch": 0.95,
1829
+ "learning_rate": 4.673748986760122e-06,
1830
+ "loss": 0.5621,
1831
+ "step": 297
1832
+ },
1833
+ {
1834
+ "epoch": 0.95,
1835
+ "learning_rate": 4.652886416645037e-06,
1836
+ "loss": 0.5378,
1837
+ "step": 298
1838
+ },
1839
+ {
1840
+ "epoch": 0.95,
1841
+ "learning_rate": 4.6320055838934e-06,
1842
+ "loss": 0.5279,
1843
+ "step": 299
1844
+ },
1845
+ {
1846
+ "epoch": 0.96,
1847
+ "learning_rate": 4.611107072586988e-06,
1848
+ "loss": 0.5354,
1849
+ "step": 300
1850
+ },
1851
+ {
1852
+ "epoch": 0.96,
1853
+ "eval_loss": 0.5399758815765381,
1854
+ "eval_runtime": 20.2602,
1855
+ "eval_samples_per_second": 40.079,
1856
+ "eval_steps_per_second": 2.517,
1857
+ "step": 300
1858
+ },
1859
+ {
1860
+ "epoch": 0.96,
1861
+ "learning_rate": 4.5901914673020886e-06,
1862
+ "loss": 0.5329,
1863
+ "step": 301
1864
+ },
1865
+ {
1866
+ "epoch": 0.96,
1867
+ "learning_rate": 4.569259353093141e-06,
1868
+ "loss": 0.5258,
1869
+ "step": 302
1870
+ },
1871
+ {
1872
+ "epoch": 0.97,
1873
+ "learning_rate": 4.548311315476378e-06,
1874
+ "loss": 0.5317,
1875
+ "step": 303
1876
+ },
1877
+ {
1878
+ "epoch": 0.97,
1879
+ "learning_rate": 4.527347940413441e-06,
1880
+ "loss": 0.5301,
1881
+ "step": 304
1882
+ },
1883
+ {
1884
+ "epoch": 0.97,
1885
+ "learning_rate": 4.506369814294997e-06,
1886
+ "loss": 0.539,
1887
+ "step": 305
1888
+ },
1889
+ {
1890
+ "epoch": 0.98,
1891
+ "learning_rate": 4.485377523924327e-06,
1892
+ "loss": 0.5841,
1893
+ "step": 306
1894
+ },
1895
+ {
1896
+ "epoch": 0.98,
1897
+ "learning_rate": 4.4643716565009205e-06,
1898
+ "loss": 0.552,
1899
+ "step": 307
1900
+ },
1901
+ {
1902
+ "epoch": 0.98,
1903
+ "learning_rate": 4.443352799604044e-06,
1904
+ "loss": 0.5149,
1905
+ "step": 308
1906
+ },
1907
+ {
1908
+ "epoch": 0.99,
1909
+ "learning_rate": 4.422321541176308e-06,
1910
+ "loss": 0.5542,
1911
+ "step": 309
1912
+ },
1913
+ {
1914
+ "epoch": 0.99,
1915
+ "learning_rate": 4.40127846950722e-06,
1916
+ "loss": 0.5427,
1917
+ "step": 310
1918
+ },
1919
+ {
1920
+ "epoch": 0.99,
1921
+ "learning_rate": 4.38022417321673e-06,
1922
+ "loss": 0.5485,
1923
+ "step": 311
1924
+ },
1925
+ {
1926
+ "epoch": 0.99,
1927
+ "learning_rate": 4.359159241238766e-06,
1928
+ "loss": 0.5387,
1929
+ "step": 312
1930
+ },
1931
+ {
1932
+ "epoch": 1.0,
1933
+ "learning_rate": 4.338084262804757e-06,
1934
+ "loss": 0.5586,
1935
+ "step": 313
1936
+ },
1937
+ {
1938
+ "epoch": 1.0,
1939
+ "learning_rate": 4.3169998274271535e-06,
1940
+ "loss": 0.4948,
1941
+ "step": 314
1942
+ },
1943
+ {
1944
+ "epoch": 1.0,
1945
+ "learning_rate": 4.295906524882937e-06,
1946
+ "loss": 0.4486,
1947
+ "step": 315
1948
+ },
1949
+ {
1950
+ "epoch": 1.01,
1951
+ "learning_rate": 4.274804945197124e-06,
1952
+ "loss": 0.4642,
1953
+ "step": 316
1954
+ },
1955
+ {
1956
+ "epoch": 1.01,
1957
+ "learning_rate": 4.2536956786262574e-06,
1958
+ "loss": 0.4591,
1959
+ "step": 317
1960
+ },
1961
+ {
1962
+ "epoch": 1.01,
1963
+ "learning_rate": 4.232579315641903e-06,
1964
+ "loss": 0.4295,
1965
+ "step": 318
1966
+ },
1967
+ {
1968
+ "epoch": 1.02,
1969
+ "learning_rate": 4.211456446914125e-06,
1970
+ "loss": 0.4422,
1971
+ "step": 319
1972
+ },
1973
+ {
1974
+ "epoch": 1.02,
1975
+ "learning_rate": 4.1903276632949695e-06,
1976
+ "loss": 0.464,
1977
+ "step": 320
1978
+ },
1979
+ {
1980
+ "epoch": 1.02,
1981
+ "learning_rate": 4.169193555801932e-06,
1982
+ "loss": 0.4293,
1983
+ "step": 321
1984
+ },
1985
+ {
1986
+ "epoch": 1.03,
1987
+ "learning_rate": 4.148054715601433e-06,
1988
+ "loss": 0.4368,
1989
+ "step": 322
1990
+ },
1991
+ {
1992
+ "epoch": 1.03,
1993
+ "learning_rate": 4.126911733992271e-06,
1994
+ "loss": 0.4495,
1995
+ "step": 323
1996
+ },
1997
+ {
1998
+ "epoch": 1.03,
1999
+ "learning_rate": 4.105765202389093e-06,
2000
+ "loss": 0.4396,
2001
+ "step": 324
2002
+ },
2003
+ {
2004
+ "epoch": 1.04,
2005
+ "learning_rate": 4.084615712305847e-06,
2006
+ "loss": 0.4307,
2007
+ "step": 325
2008
+ },
2009
+ {
2010
+ "epoch": 1.04,
2011
+ "learning_rate": 4.063463855339232e-06,
2012
+ "loss": 0.432,
2013
+ "step": 326
2014
+ },
2015
+ {
2016
+ "epoch": 1.04,
2017
+ "learning_rate": 4.042310223152158e-06,
2018
+ "loss": 0.4475,
2019
+ "step": 327
2020
+ },
2021
+ {
2022
+ "epoch": 1.05,
2023
+ "learning_rate": 4.0211554074571905e-06,
2024
+ "loss": 0.4292,
2025
+ "step": 328
2026
+ },
2027
+ {
2028
+ "epoch": 1.05,
2029
+ "learning_rate": 4e-06,
2030
+ "loss": 0.4457,
2031
+ "step": 329
2032
+ },
2033
+ {
2034
+ "epoch": 1.05,
2035
+ "learning_rate": 3.978844592542808e-06,
2036
+ "loss": 0.4325,
2037
+ "step": 330
2038
+ },
2039
+ {
2040
+ "epoch": 1.06,
2041
+ "learning_rate": 3.957689776847842e-06,
2042
+ "loss": 0.4415,
2043
+ "step": 331
2044
+ },
2045
+ {
2046
+ "epoch": 1.06,
2047
+ "learning_rate": 3.936536144660768e-06,
2048
+ "loss": 0.4464,
2049
+ "step": 332
2050
+ },
2051
+ {
2052
+ "epoch": 1.06,
2053
+ "learning_rate": 3.915384287694154e-06,
2054
+ "loss": 0.4397,
2055
+ "step": 333
2056
+ },
2057
+ {
2058
+ "epoch": 1.06,
2059
+ "learning_rate": 3.894234797610906e-06,
2060
+ "loss": 0.4458,
2061
+ "step": 334
2062
+ },
2063
+ {
2064
+ "epoch": 1.07,
2065
+ "learning_rate": 3.87308826600773e-06,
2066
+ "loss": 0.4415,
2067
+ "step": 335
2068
+ },
2069
+ {
2070
+ "epoch": 1.07,
2071
+ "learning_rate": 3.851945284398567e-06,
2072
+ "loss": 0.4255,
2073
+ "step": 336
2074
+ },
2075
+ {
2076
+ "epoch": 1.07,
2077
+ "learning_rate": 3.8308064441980675e-06,
2078
+ "loss": 0.4191,
2079
+ "step": 337
2080
+ },
2081
+ {
2082
+ "epoch": 1.08,
2083
+ "learning_rate": 3.8096723367050306e-06,
2084
+ "loss": 0.423,
2085
+ "step": 338
2086
+ },
2087
+ {
2088
+ "epoch": 1.08,
2089
+ "learning_rate": 3.7885435530858745e-06,
2090
+ "loss": 0.4148,
2091
+ "step": 339
2092
+ },
2093
+ {
2094
+ "epoch": 1.08,
2095
+ "learning_rate": 3.7674206843580965e-06,
2096
+ "loss": 0.4113,
2097
+ "step": 340
2098
+ },
2099
+ {
2100
+ "epoch": 1.09,
2101
+ "learning_rate": 3.7463043213737418e-06,
2102
+ "loss": 0.4287,
2103
+ "step": 341
2104
+ },
2105
+ {
2106
+ "epoch": 1.09,
2107
+ "learning_rate": 3.7251950548028763e-06,
2108
+ "loss": 0.3999,
2109
+ "step": 342
2110
+ },
2111
+ {
2112
+ "epoch": 1.09,
2113
+ "learning_rate": 3.704093475117063e-06,
2114
+ "loss": 0.4107,
2115
+ "step": 343
2116
+ },
2117
+ {
2118
+ "epoch": 1.1,
2119
+ "learning_rate": 3.6830001725728453e-06,
2120
+ "loss": 0.4478,
2121
+ "step": 344
2122
+ },
2123
+ {
2124
+ "epoch": 1.1,
2125
+ "learning_rate": 3.661915737195243e-06,
2126
+ "loss": 0.4519,
2127
+ "step": 345
2128
+ },
2129
+ {
2130
+ "epoch": 1.1,
2131
+ "learning_rate": 3.640840758761233e-06,
2132
+ "loss": 0.4304,
2133
+ "step": 346
2134
+ },
2135
+ {
2136
+ "epoch": 1.11,
2137
+ "learning_rate": 3.61977582678327e-06,
2138
+ "loss": 0.434,
2139
+ "step": 347
2140
+ },
2141
+ {
2142
+ "epoch": 1.11,
2143
+ "learning_rate": 3.59872153049278e-06,
2144
+ "loss": 0.4349,
2145
+ "step": 348
2146
+ },
2147
+ {
2148
+ "epoch": 1.11,
2149
+ "learning_rate": 3.5776784588236934e-06,
2150
+ "loss": 0.4222,
2151
+ "step": 349
2152
+ },
2153
+ {
2154
+ "epoch": 1.12,
2155
+ "learning_rate": 3.556647200395956e-06,
2156
+ "loss": 0.4345,
2157
+ "step": 350
2158
+ },
2159
+ {
2160
+ "epoch": 1.12,
2161
+ "eval_loss": 0.5446686744689941,
2162
+ "eval_runtime": 20.2909,
2163
+ "eval_samples_per_second": 40.018,
2164
+ "eval_steps_per_second": 2.513,
2165
+ "step": 350
2166
+ },
2167
+ {
2168
+ "epoch": 1.12,
2169
+ "learning_rate": 3.5356283434990783e-06,
2170
+ "loss": 0.4362,
2171
+ "step": 351
2172
+ },
2173
+ {
2174
+ "epoch": 1.12,
2175
+ "learning_rate": 3.5146224760756726e-06,
2176
+ "loss": 0.4428,
2177
+ "step": 352
2178
+ },
2179
+ {
2180
+ "epoch": 1.13,
2181
+ "learning_rate": 3.4936301857050025e-06,
2182
+ "loss": 0.436,
2183
+ "step": 353
2184
+ },
2185
+ {
2186
+ "epoch": 1.13,
2187
+ "learning_rate": 3.4726520595865585e-06,
2188
+ "loss": 0.4456,
2189
+ "step": 354
2190
+ },
2191
+ {
2192
+ "epoch": 1.13,
2193
+ "learning_rate": 3.4516886845236217e-06,
2194
+ "loss": 0.4599,
2195
+ "step": 355
2196
+ },
2197
+ {
2198
+ "epoch": 1.13,
2199
+ "learning_rate": 3.4307406469068596e-06,
2200
+ "loss": 0.4351,
2201
+ "step": 356
2202
+ },
2203
+ {
2204
+ "epoch": 1.14,
2205
+ "learning_rate": 3.409808532697912e-06,
2206
+ "loss": 0.4355,
2207
+ "step": 357
2208
+ },
2209
+ {
2210
+ "epoch": 1.14,
2211
+ "learning_rate": 3.3888929274130117e-06,
2212
+ "loss": 0.4175,
2213
+ "step": 358
2214
+ },
2215
+ {
2216
+ "epoch": 1.14,
2217
+ "learning_rate": 3.3679944161066e-06,
2218
+ "loss": 0.4451,
2219
+ "step": 359
2220
+ },
2221
+ {
2222
+ "epoch": 1.15,
2223
+ "learning_rate": 3.3471135833549626e-06,
2224
+ "loss": 0.4228,
2225
+ "step": 360
2226
+ },
2227
+ {
2228
+ "epoch": 1.15,
2229
+ "learning_rate": 3.3262510132398783e-06,
2230
+ "loss": 0.4121,
2231
+ "step": 361
2232
+ },
2233
+ {
2234
+ "epoch": 1.15,
2235
+ "learning_rate": 3.3054072893322785e-06,
2236
+ "loss": 0.4258,
2237
+ "step": 362
2238
+ },
2239
+ {
2240
+ "epoch": 1.16,
2241
+ "learning_rate": 3.2845829946759312e-06,
2242
+ "loss": 0.428,
2243
+ "step": 363
2244
+ },
2245
+ {
2246
+ "epoch": 1.16,
2247
+ "learning_rate": 3.263778711771119e-06,
2248
+ "loss": 0.4413,
2249
+ "step": 364
2250
+ },
2251
+ {
2252
+ "epoch": 1.16,
2253
+ "learning_rate": 3.2429950225583604e-06,
2254
+ "loss": 0.4413,
2255
+ "step": 365
2256
+ },
2257
+ {
2258
+ "epoch": 1.17,
2259
+ "learning_rate": 3.2222325084021166e-06,
2260
+ "loss": 0.4311,
2261
+ "step": 366
2262
+ },
2263
+ {
2264
+ "epoch": 1.17,
2265
+ "learning_rate": 3.2014917500745437e-06,
2266
+ "loss": 0.4339,
2267
+ "step": 367
2268
+ },
2269
+ {
2270
+ "epoch": 1.17,
2271
+ "learning_rate": 3.180773327739238e-06,
2272
+ "loss": 0.4252,
2273
+ "step": 368
2274
+ },
2275
+ {
2276
+ "epoch": 1.18,
2277
+ "learning_rate": 3.1600778209350063e-06,
2278
+ "loss": 0.4225,
2279
+ "step": 369
2280
+ },
2281
+ {
2282
+ "epoch": 1.18,
2283
+ "learning_rate": 3.1394058085596663e-06,
2284
+ "loss": 0.4153,
2285
+ "step": 370
2286
+ },
2287
+ {
2288
+ "epoch": 1.18,
2289
+ "learning_rate": 3.1187578688538373e-06,
2290
+ "loss": 0.4357,
2291
+ "step": 371
2292
+ },
2293
+ {
2294
+ "epoch": 1.19,
2295
+ "learning_rate": 3.098134579384783e-06,
2296
+ "loss": 0.4141,
2297
+ "step": 372
2298
+ },
2299
+ {
2300
+ "epoch": 1.19,
2301
+ "learning_rate": 3.077536517030239e-06,
2302
+ "loss": 0.4339,
2303
+ "step": 373
2304
+ },
2305
+ {
2306
+ "epoch": 1.19,
2307
+ "learning_rate": 3.0569642579622904e-06,
2308
+ "loss": 0.43,
2309
+ "step": 374
2310
+ },
2311
+ {
2312
+ "epoch": 1.2,
2313
+ "learning_rate": 3.0364183776312474e-06,
2314
+ "loss": 0.433,
2315
+ "step": 375
2316
+ },
2317
+ {
2318
+ "epoch": 1.2,
2319
+ "learning_rate": 3.015899450749546e-06,
2320
+ "loss": 0.4263,
2321
+ "step": 376
2322
+ },
2323
+ {
2324
+ "epoch": 1.2,
2325
+ "learning_rate": 2.995408051275683e-06,
2326
+ "loss": 0.4269,
2327
+ "step": 377
2328
+ },
2329
+ {
2330
+ "epoch": 1.21,
2331
+ "learning_rate": 2.9749447523981498e-06,
2332
+ "loss": 0.4203,
2333
+ "step": 378
2334
+ },
2335
+ {
2336
+ "epoch": 1.21,
2337
+ "learning_rate": 2.9545101265194048e-06,
2338
+ "loss": 0.4418,
2339
+ "step": 379
2340
+ },
2341
+ {
2342
+ "epoch": 1.21,
2343
+ "learning_rate": 2.9341047452398604e-06,
2344
+ "loss": 0.4454,
2345
+ "step": 380
2346
+ },
2347
+ {
2348
+ "epoch": 1.21,
2349
+ "learning_rate": 2.9137291793418958e-06,
2350
+ "loss": 0.4377,
2351
+ "step": 381
2352
+ },
2353
+ {
2354
+ "epoch": 1.22,
2355
+ "learning_rate": 2.893383998773892e-06,
2356
+ "loss": 0.4703,
2357
+ "step": 382
2358
+ },
2359
+ {
2360
+ "epoch": 1.22,
2361
+ "learning_rate": 2.873069772634281e-06,
2362
+ "loss": 0.4278,
2363
+ "step": 383
2364
+ },
2365
+ {
2366
+ "epoch": 1.22,
2367
+ "learning_rate": 2.85278706915564e-06,
2368
+ "loss": 0.4473,
2369
+ "step": 384
2370
+ },
2371
+ {
2372
+ "epoch": 1.23,
2373
+ "learning_rate": 2.832536455688782e-06,
2374
+ "loss": 0.4169,
2375
+ "step": 385
2376
+ },
2377
+ {
2378
+ "epoch": 1.23,
2379
+ "learning_rate": 2.812318498686902e-06,
2380
+ "loss": 0.4152,
2381
+ "step": 386
2382
+ },
2383
+ {
2384
+ "epoch": 1.23,
2385
+ "learning_rate": 2.7921337636897136e-06,
2386
+ "loss": 0.4001,
2387
+ "step": 387
2388
+ },
2389
+ {
2390
+ "epoch": 1.24,
2391
+ "learning_rate": 2.7719828153076486e-06,
2392
+ "loss": 0.4363,
2393
+ "step": 388
2394
+ },
2395
+ {
2396
+ "epoch": 1.24,
2397
+ "learning_rate": 2.751866217206052e-06,
2398
+ "loss": 0.4035,
2399
+ "step": 389
2400
+ },
2401
+ {
2402
+ "epoch": 1.24,
2403
+ "learning_rate": 2.7317845320894124e-06,
2404
+ "loss": 0.4358,
2405
+ "step": 390
2406
+ },
2407
+ {
2408
+ "epoch": 1.25,
2409
+ "learning_rate": 2.711738321685635e-06,
2410
+ "loss": 0.4162,
2411
+ "step": 391
2412
+ },
2413
+ {
2414
+ "epoch": 1.25,
2415
+ "learning_rate": 2.6917281467303133e-06,
2416
+ "loss": 0.4593,
2417
+ "step": 392
2418
+ },
2419
+ {
2420
+ "epoch": 1.25,
2421
+ "learning_rate": 2.6717545669510593e-06,
2422
+ "loss": 0.4203,
2423
+ "step": 393
2424
+ },
2425
+ {
2426
+ "epoch": 1.26,
2427
+ "learning_rate": 2.6518181410518327e-06,
2428
+ "loss": 0.451,
2429
+ "step": 394
2430
+ },
2431
+ {
2432
+ "epoch": 1.26,
2433
+ "learning_rate": 2.631919426697325e-06,
2434
+ "loss": 0.4532,
2435
+ "step": 395
2436
+ },
2437
+ {
2438
+ "epoch": 1.26,
2439
+ "learning_rate": 2.6120589804973504e-06,
2440
+ "loss": 0.46,
2441
+ "step": 396
2442
+ },
2443
+ {
2444
+ "epoch": 1.27,
2445
+ "learning_rate": 2.5922373579912825e-06,
2446
+ "loss": 0.4266,
2447
+ "step": 397
2448
+ },
2449
+ {
2450
+ "epoch": 1.27,
2451
+ "learning_rate": 2.5724551136325126e-06,
2452
+ "loss": 0.4085,
2453
+ "step": 398
2454
+ },
2455
+ {
2456
+ "epoch": 1.27,
2457
+ "learning_rate": 2.5527128007729404e-06,
2458
+ "loss": 0.4435,
2459
+ "step": 399
2460
+ },
2461
+ {
2462
+ "epoch": 1.28,
2463
+ "learning_rate": 2.5330109716474955e-06,
2464
+ "loss": 0.4204,
2465
+ "step": 400
2466
+ },
2467
+ {
2468
+ "epoch": 1.28,
2469
+ "eval_loss": 0.5436715483665466,
2470
+ "eval_runtime": 20.2552,
2471
+ "eval_samples_per_second": 40.088,
2472
+ "eval_steps_per_second": 2.518,
2473
+ "step": 400
2474
+ },
2475
+ {
2476
+ "epoch": 1.28,
2477
+ "learning_rate": 2.5133501773586904e-06,
2478
+ "loss": 0.4335,
2479
+ "step": 401
2480
+ },
2481
+ {
2482
+ "epoch": 1.28,
2483
+ "learning_rate": 2.493730967861205e-06,
2484
+ "loss": 0.3994,
2485
+ "step": 402
2486
+ },
2487
+ {
2488
+ "epoch": 1.28,
2489
+ "learning_rate": 2.474153891946505e-06,
2490
+ "loss": 0.4503,
2491
+ "step": 403
2492
+ },
2493
+ {
2494
+ "epoch": 1.29,
2495
+ "learning_rate": 2.4546194972274847e-06,
2496
+ "loss": 0.4138,
2497
+ "step": 404
2498
+ },
2499
+ {
2500
+ "epoch": 1.29,
2501
+ "learning_rate": 2.4351283301231614e-06,
2502
+ "loss": 0.4225,
2503
+ "step": 405
2504
+ },
2505
+ {
2506
+ "epoch": 1.29,
2507
+ "learning_rate": 2.4156809358433725e-06,
2508
+ "loss": 0.434,
2509
+ "step": 406
2510
+ },
2511
+ {
2512
+ "epoch": 1.3,
2513
+ "learning_rate": 2.396277858373546e-06,
2514
+ "loss": 0.4191,
2515
+ "step": 407
2516
+ },
2517
+ {
2518
+ "epoch": 1.3,
2519
+ "learning_rate": 2.3769196404594647e-06,
2520
+ "loss": 0.4516,
2521
+ "step": 408
2522
+ },
2523
+ {
2524
+ "epoch": 1.3,
2525
+ "learning_rate": 2.3576068235920993e-06,
2526
+ "loss": 0.4376,
2527
+ "step": 409
2528
+ },
2529
+ {
2530
+ "epoch": 1.31,
2531
+ "learning_rate": 2.3383399479924544e-06,
2532
+ "loss": 0.4235,
2533
+ "step": 410
2534
+ },
2535
+ {
2536
+ "epoch": 1.31,
2537
+ "learning_rate": 2.319119552596455e-06,
2538
+ "loss": 0.4409,
2539
+ "step": 411
2540
+ },
2541
+ {
2542
+ "epoch": 1.31,
2543
+ "learning_rate": 2.299946175039881e-06,
2544
+ "loss": 0.4088,
2545
+ "step": 412
2546
+ },
2547
+ {
2548
+ "epoch": 1.32,
2549
+ "learning_rate": 2.280820351643313e-06,
2550
+ "loss": 0.4093,
2551
+ "step": 413
2552
+ },
2553
+ {
2554
+ "epoch": 1.32,
2555
+ "learning_rate": 2.2617426173971528e-06,
2556
+ "loss": 0.4343,
2557
+ "step": 414
2558
+ },
2559
+ {
2560
+ "epoch": 1.32,
2561
+ "learning_rate": 2.24271350594663e-06,
2562
+ "loss": 0.452,
2563
+ "step": 415
2564
+ },
2565
+ {
2566
+ "epoch": 1.33,
2567
+ "learning_rate": 2.223733549576903e-06,
2568
+ "loss": 0.4149,
2569
+ "step": 416
2570
+ },
2571
+ {
2572
+ "epoch": 1.33,
2573
+ "learning_rate": 2.2048032791981513e-06,
2574
+ "loss": 0.4081,
2575
+ "step": 417
2576
+ },
2577
+ {
2578
+ "epoch": 1.33,
2579
+ "learning_rate": 2.1859232243307296e-06,
2580
+ "loss": 0.4345,
2581
+ "step": 418
2582
+ },
2583
+ {
2584
+ "epoch": 1.34,
2585
+ "learning_rate": 2.1670939130903583e-06,
2586
+ "loss": 0.3928,
2587
+ "step": 419
2588
+ },
2589
+ {
2590
+ "epoch": 1.34,
2591
+ "learning_rate": 2.14831587217335e-06,
2592
+ "loss": 0.4428,
2593
+ "step": 420
2594
+ },
2595
+ {
2596
+ "epoch": 1.34,
2597
+ "learning_rate": 2.1295896268418747e-06,
2598
+ "loss": 0.4255,
2599
+ "step": 421
2600
+ },
2601
+ {
2602
+ "epoch": 1.35,
2603
+ "learning_rate": 2.1109157009092697e-06,
2604
+ "loss": 0.4159,
2605
+ "step": 422
2606
+ },
2607
+ {
2608
+ "epoch": 1.35,
2609
+ "learning_rate": 2.0922946167253853e-06,
2610
+ "loss": 0.4591,
2611
+ "step": 423
2612
+ },
2613
+ {
2614
+ "epoch": 1.35,
2615
+ "learning_rate": 2.073726895161975e-06,
2616
+ "loss": 0.4041,
2617
+ "step": 424
2618
+ },
2619
+ {
2620
+ "epoch": 1.35,
2621
+ "learning_rate": 2.055213055598126e-06,
2622
+ "loss": 0.4201,
2623
+ "step": 425
2624
+ },
2625
+ {
2626
+ "epoch": 1.36,
2627
+ "learning_rate": 2.036753615905728e-06,
2628
+ "loss": 0.4174,
2629
+ "step": 426
2630
+ },
2631
+ {
2632
+ "epoch": 1.36,
2633
+ "learning_rate": 2.0183490924349912e-06,
2634
+ "loss": 0.4379,
2635
+ "step": 427
2636
+ },
2637
+ {
2638
+ "epoch": 1.36,
2639
+ "learning_rate": 2.0000000000000008e-06,
2640
+ "loss": 0.3877,
2641
+ "step": 428
2642
+ },
2643
+ {
2644
+ "epoch": 1.37,
2645
+ "learning_rate": 1.9817068518643154e-06,
2646
+ "loss": 0.4416,
2647
+ "step": 429
2648
+ },
2649
+ {
2650
+ "epoch": 1.37,
2651
+ "learning_rate": 1.9634701597266134e-06,
2652
+ "loss": 0.4631,
2653
+ "step": 430
2654
+ },
2655
+ {
2656
+ "epoch": 1.37,
2657
+ "learning_rate": 1.9452904337063757e-06,
2658
+ "loss": 0.4077,
2659
+ "step": 431
2660
+ },
2661
+ {
2662
+ "epoch": 1.38,
2663
+ "learning_rate": 1.9271681823296177e-06,
2664
+ "loss": 0.4365,
2665
+ "step": 432
2666
+ },
2667
+ {
2668
+ "epoch": 1.38,
2669
+ "learning_rate": 1.9091039125146715e-06,
2670
+ "loss": 0.4345,
2671
+ "step": 433
2672
+ },
2673
+ {
2674
+ "epoch": 1.38,
2675
+ "learning_rate": 1.89109812955799e-06,
2676
+ "loss": 0.3845,
2677
+ "step": 434
2678
+ },
2679
+ {
2680
+ "epoch": 1.39,
2681
+ "learning_rate": 1.8731513371200344e-06,
2682
+ "loss": 0.4188,
2683
+ "step": 435
2684
+ },
2685
+ {
2686
+ "epoch": 1.39,
2687
+ "learning_rate": 1.855264037211163e-06,
2688
+ "loss": 0.4209,
2689
+ "step": 436
2690
+ },
2691
+ {
2692
+ "epoch": 1.39,
2693
+ "learning_rate": 1.837436730177611e-06,
2694
+ "loss": 0.4211,
2695
+ "step": 437
2696
+ },
2697
+ {
2698
+ "epoch": 1.4,
2699
+ "learning_rate": 1.8196699146874734e-06,
2700
+ "loss": 0.4061,
2701
+ "step": 438
2702
+ },
2703
+ {
2704
+ "epoch": 1.4,
2705
+ "learning_rate": 1.801964087716776e-06,
2706
+ "loss": 0.4164,
2707
+ "step": 439
2708
+ },
2709
+ {
2710
+ "epoch": 1.4,
2711
+ "learning_rate": 1.7843197445355589e-06,
2712
+ "loss": 0.4148,
2713
+ "step": 440
2714
+ },
2715
+ {
2716
+ "epoch": 1.41,
2717
+ "learning_rate": 1.7667373786940307e-06,
2718
+ "loss": 0.4212,
2719
+ "step": 441
2720
+ },
2721
+ {
2722
+ "epoch": 1.41,
2723
+ "learning_rate": 1.7492174820087594e-06,
2724
+ "loss": 0.4445,
2725
+ "step": 442
2726
+ },
2727
+ {
2728
+ "epoch": 1.41,
2729
+ "learning_rate": 1.7317605445489175e-06,
2730
+ "loss": 0.4249,
2731
+ "step": 443
2732
+ },
2733
+ {
2734
+ "epoch": 1.42,
2735
+ "learning_rate": 1.7143670546225715e-06,
2736
+ "loss": 0.4041,
2737
+ "step": 444
2738
+ },
2739
+ {
2740
+ "epoch": 1.42,
2741
+ "learning_rate": 1.697037498763025e-06,
2742
+ "loss": 0.4122,
2743
+ "step": 445
2744
+ },
2745
+ {
2746
+ "epoch": 1.42,
2747
+ "learning_rate": 1.6797723617152077e-06,
2748
+ "loss": 0.4299,
2749
+ "step": 446
2750
+ },
2751
+ {
2752
+ "epoch": 1.42,
2753
+ "learning_rate": 1.662572126422117e-06,
2754
+ "loss": 0.4175,
2755
+ "step": 447
2756
+ },
2757
+ {
2758
+ "epoch": 1.43,
2759
+ "learning_rate": 1.645437274011309e-06,
2760
+ "loss": 0.425,
2761
+ "step": 448
2762
+ },
2763
+ {
2764
+ "epoch": 1.43,
2765
+ "learning_rate": 1.6283682837814387e-06,
2766
+ "loss": 0.4413,
2767
+ "step": 449
2768
+ },
2769
+ {
2770
+ "epoch": 1.43,
2771
+ "learning_rate": 1.611365633188856e-06,
2772
+ "loss": 0.417,
2773
+ "step": 450
2774
+ },
2775
+ {
2776
+ "epoch": 1.43,
2777
+ "eval_loss": 0.5418304204940796,
2778
+ "eval_runtime": 20.2567,
2779
+ "eval_samples_per_second": 40.085,
2780
+ "eval_steps_per_second": 2.518,
2781
+ "step": 450
2782
+ },
2783
+ {
2784
+ "epoch": 1.44,
2785
+ "learning_rate": 1.5944297978342473e-06,
2786
+ "loss": 0.4245,
2787
+ "step": 451
2788
+ },
2789
+ {
2790
+ "epoch": 1.44,
2791
+ "learning_rate": 1.577561251449334e-06,
2792
+ "loss": 0.433,
2793
+ "step": 452
2794
+ },
2795
+ {
2796
+ "epoch": 1.44,
2797
+ "learning_rate": 1.5607604658836184e-06,
2798
+ "loss": 0.4076,
2799
+ "step": 453
2800
+ },
2801
+ {
2802
+ "epoch": 1.45,
2803
+ "learning_rate": 1.544027911091193e-06,
2804
+ "loss": 0.4075,
2805
+ "step": 454
2806
+ },
2807
+ {
2808
+ "epoch": 1.45,
2809
+ "learning_rate": 1.527364055117579e-06,
2810
+ "loss": 0.4168,
2811
+ "step": 455
2812
+ },
2813
+ {
2814
+ "epoch": 1.45,
2815
+ "learning_rate": 1.5107693640866543e-06,
2816
+ "loss": 0.4428,
2817
+ "step": 456
2818
+ },
2819
+ {
2820
+ "epoch": 1.46,
2821
+ "learning_rate": 1.494244302187595e-06,
2822
+ "loss": 0.4229,
2823
+ "step": 457
2824
+ },
2825
+ {
2826
+ "epoch": 1.46,
2827
+ "learning_rate": 1.4777893316619112e-06,
2828
+ "loss": 0.4156,
2829
+ "step": 458
2830
+ },
2831
+ {
2832
+ "epoch": 1.46,
2833
+ "learning_rate": 1.4614049127904951e-06,
2834
+ "loss": 0.4174,
2835
+ "step": 459
2836
+ },
2837
+ {
2838
+ "epoch": 1.47,
2839
+ "learning_rate": 1.4450915038807674e-06,
2840
+ "loss": 0.4194,
2841
+ "step": 460
2842
+ },
2843
+ {
2844
+ "epoch": 1.47,
2845
+ "learning_rate": 1.4288495612538425e-06,
2846
+ "loss": 0.4077,
2847
+ "step": 461
2848
+ },
2849
+ {
2850
+ "epoch": 1.47,
2851
+ "learning_rate": 1.41267953923177e-06,
2852
+ "loss": 0.4208,
2853
+ "step": 462
2854
+ },
2855
+ {
2856
+ "epoch": 1.48,
2857
+ "learning_rate": 1.396581890124826e-06,
2858
+ "loss": 0.4359,
2859
+ "step": 463
2860
+ },
2861
+ {
2862
+ "epoch": 1.48,
2863
+ "learning_rate": 1.38055706421886e-06,
2864
+ "loss": 0.4225,
2865
+ "step": 464
2866
+ },
2867
+ {
2868
+ "epoch": 1.48,
2869
+ "learning_rate": 1.3646055097627004e-06,
2870
+ "loss": 0.4369,
2871
+ "step": 465
2872
+ },
2873
+ {
2874
+ "epoch": 1.49,
2875
+ "learning_rate": 1.348727672955616e-06,
2876
+ "loss": 0.4316,
2877
+ "step": 466
2878
+ },
2879
+ {
2880
+ "epoch": 1.49,
2881
+ "learning_rate": 1.332923997934834e-06,
2882
+ "loss": 0.4077,
2883
+ "step": 467
2884
+ },
2885
+ {
2886
+ "epoch": 1.49,
2887
+ "learning_rate": 1.3171949267631166e-06,
2888
+ "loss": 0.4084,
2889
+ "step": 468
2890
+ },
2891
+ {
2892
+ "epoch": 1.5,
2893
+ "learning_rate": 1.3015408994163973e-06,
2894
+ "loss": 0.4184,
2895
+ "step": 469
2896
+ },
2897
+ {
2898
+ "epoch": 1.5,
2899
+ "learning_rate": 1.2859623537714716e-06,
2900
+ "loss": 0.4181,
2901
+ "step": 470
2902
+ },
2903
+ {
2904
+ "epoch": 1.5,
2905
+ "learning_rate": 1.2704597255937492e-06,
2906
+ "loss": 0.4561,
2907
+ "step": 471
2908
+ },
2909
+ {
2910
+ "epoch": 1.5,
2911
+ "learning_rate": 1.255033448525066e-06,
2912
+ "loss": 0.4527,
2913
+ "step": 472
2914
+ },
2915
+ {
2916
+ "epoch": 1.51,
2917
+ "learning_rate": 1.2396839540715527e-06,
2918
+ "loss": 0.4339,
2919
+ "step": 473
2920
+ },
2921
+ {
2922
+ "epoch": 1.51,
2923
+ "learning_rate": 1.2244116715915635e-06,
2924
+ "loss": 0.4224,
2925
+ "step": 474
2926
+ },
2927
+ {
2928
+ "epoch": 1.51,
2929
+ "learning_rate": 1.2092170282836738e-06,
2930
+ "loss": 0.4184,
2931
+ "step": 475
2932
+ },
2933
+ {
2934
+ "epoch": 1.52,
2935
+ "learning_rate": 1.1941004491747145e-06,
2936
+ "loss": 0.4335,
2937
+ "step": 476
2938
+ },
2939
+ {
2940
+ "epoch": 1.52,
2941
+ "learning_rate": 1.1790623571079042e-06,
2942
+ "loss": 0.4284,
2943
+ "step": 477
2944
+ },
2945
+ {
2946
+ "epoch": 1.52,
2947
+ "learning_rate": 1.1641031727309995e-06,
2948
+ "loss": 0.4312,
2949
+ "step": 478
2950
+ },
2951
+ {
2952
+ "epoch": 1.53,
2953
+ "learning_rate": 1.1492233144845497e-06,
2954
+ "loss": 0.4201,
2955
+ "step": 479
2956
+ },
2957
+ {
2958
+ "epoch": 1.53,
2959
+ "learning_rate": 1.1344231985901708e-06,
2960
+ "loss": 0.4405,
2961
+ "step": 480
2962
+ },
2963
+ {
2964
+ "epoch": 1.53,
2965
+ "learning_rate": 1.1197032390389254e-06,
2966
+ "loss": 0.412,
2967
+ "step": 481
2968
+ },
2969
+ {
2970
+ "epoch": 1.54,
2971
+ "learning_rate": 1.1050638475797191e-06,
2972
+ "loss": 0.4424,
2973
+ "step": 482
2974
+ },
2975
+ {
2976
+ "epoch": 1.54,
2977
+ "learning_rate": 1.090505433707805e-06,
2978
+ "loss": 0.4234,
2979
+ "step": 483
2980
+ },
2981
+ {
2982
+ "epoch": 1.54,
2983
+ "learning_rate": 1.0760284046533134e-06,
2984
+ "loss": 0.433,
2985
+ "step": 484
2986
+ },
2987
+ {
2988
+ "epoch": 1.55,
2989
+ "learning_rate": 1.0616331653698672e-06,
2990
+ "loss": 0.4113,
2991
+ "step": 485
2992
+ },
2993
+ {
2994
+ "epoch": 1.55,
2995
+ "learning_rate": 1.0473201185232538e-06,
2996
+ "loss": 0.4328,
2997
+ "step": 486
2998
+ },
2999
+ {
3000
+ "epoch": 1.55,
3001
+ "learning_rate": 1.033089664480162e-06,
3002
+ "loss": 0.4482,
3003
+ "step": 487
3004
+ },
3005
+ {
3006
+ "epoch": 1.56,
3007
+ "learning_rate": 1.0189422012969814e-06,
3008
+ "loss": 0.4159,
3009
+ "step": 488
3010
+ },
3011
+ {
3012
+ "epoch": 1.56,
3013
+ "learning_rate": 1.0048781247086696e-06,
3014
+ "loss": 0.4146,
3015
+ "step": 489
3016
+ },
3017
+ {
3018
+ "epoch": 1.56,
3019
+ "learning_rate": 9.908978281176824e-07,
3020
+ "loss": 0.4519,
3021
+ "step": 490
3022
+ },
3023
+ {
3024
+ "epoch": 1.57,
3025
+ "learning_rate": 9.770017025829674e-07,
3026
+ "loss": 0.4253,
3027
+ "step": 491
3028
+ },
3029
+ {
3030
+ "epoch": 1.57,
3031
+ "learning_rate": 9.631901368090276e-07,
3032
+ "loss": 0.4544,
3033
+ "step": 492
3034
+ },
3035
+ {
3036
+ "epoch": 1.57,
3037
+ "learning_rate": 9.494635171350478e-07,
3038
+ "loss": 0.4072,
3039
+ "step": 493
3040
+ },
3041
+ {
3042
+ "epoch": 1.57,
3043
+ "learning_rate": 9.358222275240884e-07,
3044
+ "loss": 0.4067,
3045
+ "step": 494
3046
+ },
3047
+ {
3048
+ "epoch": 1.58,
3049
+ "learning_rate": 9.22266649552343e-07,
3050
+ "loss": 0.4515,
3051
+ "step": 495
3052
+ },
3053
+ {
3054
+ "epoch": 1.58,
3055
+ "learning_rate": 9.087971623984679e-07,
3056
+ "loss": 0.4241,
3057
+ "step": 496
3058
+ },
3059
+ {
3060
+ "epoch": 1.58,
3061
+ "learning_rate": 8.954141428329722e-07,
3062
+ "loss": 0.4325,
3063
+ "step": 497
3064
+ },
3065
+ {
3066
+ "epoch": 1.59,
3067
+ "learning_rate": 8.821179652076853e-07,
3068
+ "loss": 0.4338,
3069
+ "step": 498
3070
+ },
3071
+ {
3072
+ "epoch": 1.59,
3073
+ "learning_rate": 8.689090014452731e-07,
3074
+ "loss": 0.4252,
3075
+ "step": 499
3076
+ },
3077
+ {
3078
+ "epoch": 1.59,
3079
+ "learning_rate": 8.557876210288508e-07,
3080
+ "loss": 0.4161,
3081
+ "step": 500
3082
+ },
3083
+ {
3084
+ "epoch": 1.59,
3085
+ "eval_loss": 0.5409616827964783,
3086
+ "eval_runtime": 20.2688,
3087
+ "eval_samples_per_second": 40.062,
3088
+ "eval_steps_per_second": 2.516,
3089
+ "step": 500
3090
+ },
3091
+ {
3092
+ "epoch": 1.6,
3093
+ "learning_rate": 8.427541909916312e-07,
3094
+ "loss": 0.4114,
3095
+ "step": 501
3096
+ },
3097
+ {
3098
+ "epoch": 1.6,
3099
+ "learning_rate": 8.298090759066743e-07,
3100
+ "loss": 0.4518,
3101
+ "step": 502
3102
+ },
3103
+ {
3104
+ "epoch": 1.6,
3105
+ "learning_rate": 8.169526378766712e-07,
3106
+ "loss": 0.4471,
3107
+ "step": 503
3108
+ },
3109
+ {
3110
+ "epoch": 1.61,
3111
+ "learning_rate": 8.041852365238346e-07,
3112
+ "loss": 0.4274,
3113
+ "step": 504
3114
+ },
3115
+ {
3116
+ "epoch": 1.61,
3117
+ "learning_rate": 7.915072289798246e-07,
3118
+ "loss": 0.4132,
3119
+ "step": 505
3120
+ },
3121
+ {
3122
+ "epoch": 1.61,
3123
+ "learning_rate": 7.789189698757654e-07,
3124
+ "loss": 0.4155,
3125
+ "step": 506
3126
+ },
3127
+ {
3128
+ "epoch": 1.62,
3129
+ "learning_rate": 7.664208113323245e-07,
3130
+ "loss": 0.42,
3131
+ "step": 507
3132
+ },
3133
+ {
3134
+ "epoch": 1.62,
3135
+ "learning_rate": 7.540131029498633e-07,
3136
+ "loss": 0.4125,
3137
+ "step": 508
3138
+ },
3139
+ {
3140
+ "epoch": 1.62,
3141
+ "learning_rate": 7.416961917986571e-07,
3142
+ "loss": 0.4476,
3143
+ "step": 509
3144
+ },
3145
+ {
3146
+ "epoch": 1.63,
3147
+ "learning_rate": 7.294704224091885e-07,
3148
+ "loss": 0.412,
3149
+ "step": 510
3150
+ },
3151
+ {
3152
+ "epoch": 1.63,
3153
+ "learning_rate": 7.173361367625075e-07,
3154
+ "loss": 0.4278,
3155
+ "step": 511
3156
+ },
3157
+ {
3158
+ "epoch": 1.63,
3159
+ "learning_rate": 7.052936742806692e-07,
3160
+ "loss": 0.418,
3161
+ "step": 512
3162
+ },
3163
+ {
3164
+ "epoch": 1.64,
3165
+ "learning_rate": 6.933433718172357e-07,
3166
+ "loss": 0.459,
3167
+ "step": 513
3168
+ },
3169
+ {
3170
+ "epoch": 1.64,
3171
+ "learning_rate": 6.814855636478558e-07,
3172
+ "loss": 0.3998,
3173
+ "step": 514
3174
+ },
3175
+ {
3176
+ "epoch": 1.64,
3177
+ "learning_rate": 6.697205814609148e-07,
3178
+ "loss": 0.424,
3179
+ "step": 515
3180
+ },
3181
+ {
3182
+ "epoch": 1.64,
3183
+ "learning_rate": 6.580487543482549e-07,
3184
+ "loss": 0.4605,
3185
+ "step": 516
3186
+ },
3187
+ {
3188
+ "epoch": 1.65,
3189
+ "learning_rate": 6.464704087959703e-07,
3190
+ "loss": 0.4591,
3191
+ "step": 517
3192
+ },
3193
+ {
3194
+ "epoch": 1.65,
3195
+ "learning_rate": 6.349858686752747e-07,
3196
+ "loss": 0.4165,
3197
+ "step": 518
3198
+ },
3199
+ {
3200
+ "epoch": 1.65,
3201
+ "learning_rate": 6.235954552334464e-07,
3202
+ "loss": 0.4577,
3203
+ "step": 519
3204
+ },
3205
+ {
3206
+ "epoch": 1.66,
3207
+ "learning_rate": 6.122994870848308e-07,
3208
+ "loss": 0.4225,
3209
+ "step": 520
3210
+ },
3211
+ {
3212
+ "epoch": 1.66,
3213
+ "learning_rate": 6.010982802019429e-07,
3214
+ "loss": 0.4233,
3215
+ "step": 521
3216
+ },
3217
+ {
3218
+ "epoch": 1.66,
3219
+ "learning_rate": 5.899921479066146e-07,
3220
+ "loss": 0.4266,
3221
+ "step": 522
3222
+ },
3223
+ {
3224
+ "epoch": 1.67,
3225
+ "learning_rate": 5.789814008612439e-07,
3226
+ "loss": 0.4291,
3227
+ "step": 523
3228
+ },
3229
+ {
3230
+ "epoch": 1.67,
3231
+ "learning_rate": 5.680663470600917e-07,
3232
+ "loss": 0.4292,
3233
+ "step": 524
3234
+ },
3235
+ {
3236
+ "epoch": 1.67,
3237
+ "learning_rate": 5.572472918206785e-07,
3238
+ "loss": 0.4277,
3239
+ "step": 525
3240
+ },
3241
+ {
3242
+ "epoch": 1.68,
3243
+ "learning_rate": 5.465245377752362e-07,
3244
+ "loss": 0.4184,
3245
+ "step": 526
3246
+ },
3247
+ {
3248
+ "epoch": 1.68,
3249
+ "learning_rate": 5.358983848622451e-07,
3250
+ "loss": 0.4441,
3251
+ "step": 527
3252
+ },
3253
+ {
3254
+ "epoch": 1.68,
3255
+ "learning_rate": 5.253691303180456e-07,
3256
+ "loss": 0.4269,
3257
+ "step": 528
3258
+ },
3259
+ {
3260
+ "epoch": 1.69,
3261
+ "learning_rate": 5.149370686685204e-07,
3262
+ "loss": 0.407,
3263
+ "step": 529
3264
+ },
3265
+ {
3266
+ "epoch": 1.69,
3267
+ "learning_rate": 5.046024917208602e-07,
3268
+ "loss": 0.4238,
3269
+ "step": 530
3270
+ },
3271
+ {
3272
+ "epoch": 1.69,
3273
+ "learning_rate": 4.943656885553973e-07,
3274
+ "loss": 0.4299,
3275
+ "step": 531
3276
+ },
3277
+ {
3278
+ "epoch": 1.7,
3279
+ "learning_rate": 4.842269455175221e-07,
3280
+ "loss": 0.44,
3281
+ "step": 532
3282
+ },
3283
+ {
3284
+ "epoch": 1.7,
3285
+ "learning_rate": 4.7418654620967216e-07,
3286
+ "loss": 0.4051,
3287
+ "step": 533
3288
+ },
3289
+ {
3290
+ "epoch": 1.7,
3291
+ "learning_rate": 4.6424477148339924e-07,
3292
+ "loss": 0.4094,
3293
+ "step": 534
3294
+ },
3295
+ {
3296
+ "epoch": 1.71,
3297
+ "learning_rate": 4.5440189943151395e-07,
3298
+ "loss": 0.448,
3299
+ "step": 535
3300
+ },
3301
+ {
3302
+ "epoch": 1.71,
3303
+ "learning_rate": 4.4465820538030653e-07,
3304
+ "loss": 0.4432,
3305
+ "step": 536
3306
+ },
3307
+ {
3308
+ "epoch": 1.71,
3309
+ "learning_rate": 4.3501396188184446e-07,
3310
+ "loss": 0.4343,
3311
+ "step": 537
3312
+ },
3313
+ {
3314
+ "epoch": 1.72,
3315
+ "learning_rate": 4.2546943870635135e-07,
3316
+ "loss": 0.4085,
3317
+ "step": 538
3318
+ },
3319
+ {
3320
+ "epoch": 1.72,
3321
+ "learning_rate": 4.16024902834657e-07,
3322
+ "loss": 0.4303,
3323
+ "step": 539
3324
+ },
3325
+ {
3326
+ "epoch": 1.72,
3327
+ "learning_rate": 4.0668061845073207e-07,
3328
+ "loss": 0.4229,
3329
+ "step": 540
3330
+ },
3331
+ {
3332
+ "epoch": 1.72,
3333
+ "learning_rate": 3.974368469342977e-07,
3334
+ "loss": 0.3915,
3335
+ "step": 541
3336
+ },
3337
+ {
3338
+ "epoch": 1.73,
3339
+ "learning_rate": 3.8829384685351573e-07,
3340
+ "loss": 0.448,
3341
+ "step": 542
3342
+ },
3343
+ {
3344
+ "epoch": 1.73,
3345
+ "learning_rate": 3.792518739577497e-07,
3346
+ "loss": 0.4459,
3347
+ "step": 543
3348
+ },
3349
+ {
3350
+ "epoch": 1.73,
3351
+ "learning_rate": 3.7031118117042227e-07,
3352
+ "loss": 0.418,
3353
+ "step": 544
3354
+ },
3355
+ {
3356
+ "epoch": 1.74,
3357
+ "learning_rate": 3.6147201858192623e-07,
3358
+ "loss": 0.4231,
3359
+ "step": 545
3360
+ },
3361
+ {
3362
+ "epoch": 1.74,
3363
+ "learning_rate": 3.52734633442644e-07,
3364
+ "loss": 0.4253,
3365
+ "step": 546
3366
+ },
3367
+ {
3368
+ "epoch": 1.74,
3369
+ "learning_rate": 3.4409927015601703e-07,
3370
+ "loss": 0.4241,
3371
+ "step": 547
3372
+ },
3373
+ {
3374
+ "epoch": 1.75,
3375
+ "learning_rate": 3.355661702717216e-07,
3376
+ "loss": 0.4268,
3377
+ "step": 548
3378
+ },
3379
+ {
3380
+ "epoch": 1.75,
3381
+ "learning_rate": 3.2713557247890447e-07,
3382
+ "loss": 0.4503,
3383
+ "step": 549
3384
+ },
3385
+ {
3386
+ "epoch": 1.75,
3387
+ "learning_rate": 3.18807712599507e-07,
3388
+ "loss": 0.4219,
3389
+ "step": 550
3390
+ },
3391
+ {
3392
+ "epoch": 1.75,
3393
+ "eval_loss": 0.5402326583862305,
3394
+ "eval_runtime": 20.2294,
3395
+ "eval_samples_per_second": 40.14,
3396
+ "eval_steps_per_second": 2.521,
3397
+ "step": 550
3398
+ },
3399
+ {
3400
+ "epoch": 1.76,
3401
+ "learning_rate": 3.10582823581675e-07,
3402
+ "loss": 0.4165,
3403
+ "step": 551
3404
+ },
3405
+ {
3406
+ "epoch": 1.76,
3407
+ "learning_rate": 3.0246113549323185e-07,
3408
+ "loss": 0.4205,
3409
+ "step": 552
3410
+ },
3411
+ {
3412
+ "epoch": 1.76,
3413
+ "learning_rate": 2.9444287551525505e-07,
3414
+ "loss": 0.4266,
3415
+ "step": 553
3416
+ },
3417
+ {
3418
+ "epoch": 1.77,
3419
+ "learning_rate": 2.865282679357097e-07,
3420
+ "loss": 0.4536,
3421
+ "step": 554
3422
+ },
3423
+ {
3424
+ "epoch": 1.77,
3425
+ "learning_rate": 2.7871753414318557e-07,
3426
+ "loss": 0.4358,
3427
+ "step": 555
3428
+ },
3429
+ {
3430
+ "epoch": 1.77,
3431
+ "learning_rate": 2.710108926206969e-07,
3432
+ "loss": 0.4157,
3433
+ "step": 556
3434
+ },
3435
+ {
3436
+ "epoch": 1.78,
3437
+ "learning_rate": 2.6340855893957337e-07,
3438
+ "loss": 0.4285,
3439
+ "step": 557
3440
+ },
3441
+ {
3442
+ "epoch": 1.78,
3443
+ "learning_rate": 2.5591074575343016e-07,
3444
+ "loss": 0.4378,
3445
+ "step": 558
3446
+ },
3447
+ {
3448
+ "epoch": 1.78,
3449
+ "learning_rate": 2.4851766279222033e-07,
3450
+ "loss": 0.41,
3451
+ "step": 559
3452
+ },
3453
+ {
3454
+ "epoch": 1.79,
3455
+ "learning_rate": 2.412295168563667e-07,
3456
+ "loss": 0.4278,
3457
+ "step": 560
3458
+ },
3459
+ {
3460
+ "epoch": 1.79,
3461
+ "learning_rate": 2.3404651181097778e-07,
3462
+ "loss": 0.4299,
3463
+ "step": 561
3464
+ },
3465
+ {
3466
+ "epoch": 1.79,
3467
+ "learning_rate": 2.2696884858014552e-07,
3468
+ "loss": 0.4284,
3469
+ "step": 562
3470
+ },
3471
+ {
3472
+ "epoch": 1.79,
3473
+ "learning_rate": 2.1999672514132617e-07,
3474
+ "loss": 0.426,
3475
+ "step": 563
3476
+ },
3477
+ {
3478
+ "epoch": 1.8,
3479
+ "learning_rate": 2.131303365197983e-07,
3480
+ "loss": 0.4299,
3481
+ "step": 564
3482
+ },
3483
+ {
3484
+ "epoch": 1.8,
3485
+ "learning_rate": 2.063698747832139e-07,
3486
+ "loss": 0.4232,
3487
+ "step": 565
3488
+ },
3489
+ {
3490
+ "epoch": 1.8,
3491
+ "learning_rate": 1.9971552903621868e-07,
3492
+ "loss": 0.4224,
3493
+ "step": 566
3494
+ },
3495
+ {
3496
+ "epoch": 1.81,
3497
+ "learning_rate": 1.9316748541516882e-07,
3498
+ "loss": 0.3978,
3499
+ "step": 567
3500
+ },
3501
+ {
3502
+ "epoch": 1.81,
3503
+ "learning_rate": 1.8672592708291934e-07,
3504
+ "loss": 0.4318,
3505
+ "step": 568
3506
+ },
3507
+ {
3508
+ "epoch": 1.81,
3509
+ "learning_rate": 1.803910342237045e-07,
3510
+ "loss": 0.4226,
3511
+ "step": 569
3512
+ },
3513
+ {
3514
+ "epoch": 1.82,
3515
+ "learning_rate": 1.7416298403809625e-07,
3516
+ "loss": 0.4183,
3517
+ "step": 570
3518
+ },
3519
+ {
3520
+ "epoch": 1.82,
3521
+ "learning_rate": 1.680419507380444e-07,
3522
+ "loss": 0.4297,
3523
+ "step": 571
3524
+ },
3525
+ {
3526
+ "epoch": 1.82,
3527
+ "learning_rate": 1.6202810554201097e-07,
3528
+ "loss": 0.4372,
3529
+ "step": 572
3530
+ },
3531
+ {
3532
+ "epoch": 1.83,
3533
+ "learning_rate": 1.561216166701711e-07,
3534
+ "loss": 0.4015,
3535
+ "step": 573
3536
+ },
3537
+ {
3538
+ "epoch": 1.83,
3539
+ "learning_rate": 1.5032264933971806e-07,
3540
+ "loss": 0.4547,
3541
+ "step": 574
3542
+ },
3543
+ {
3544
+ "epoch": 1.83,
3545
+ "learning_rate": 1.4463136576023184e-07,
3546
+ "loss": 0.4241,
3547
+ "step": 575
3548
+ },
3549
+ {
3550
+ "epoch": 1.84,
3551
+ "learning_rate": 1.3904792512914942e-07,
3552
+ "loss": 0.4298,
3553
+ "step": 576
3554
+ },
3555
+ {
3556
+ "epoch": 1.84,
3557
+ "learning_rate": 1.3357248362730755e-07,
3558
+ "loss": 0.4399,
3559
+ "step": 577
3560
+ },
3561
+ {
3562
+ "epoch": 1.84,
3563
+ "learning_rate": 1.28205194414575e-07,
3564
+ "loss": 0.4303,
3565
+ "step": 578
3566
+ },
3567
+ {
3568
+ "epoch": 1.85,
3569
+ "learning_rate": 1.229462076255694e-07,
3570
+ "loss": 0.4212,
3571
+ "step": 579
3572
+ },
3573
+ {
3574
+ "epoch": 1.85,
3575
+ "learning_rate": 1.1779567036545569e-07,
3576
+ "loss": 0.4225,
3577
+ "step": 580
3578
+ },
3579
+ {
3580
+ "epoch": 1.85,
3581
+ "learning_rate": 1.1275372670583338e-07,
3582
+ "loss": 0.4194,
3583
+ "step": 581
3584
+ },
3585
+ {
3586
+ "epoch": 1.86,
3587
+ "learning_rate": 1.0782051768070477e-07,
3588
+ "loss": 0.4573,
3589
+ "step": 582
3590
+ },
3591
+ {
3592
+ "epoch": 1.86,
3593
+ "learning_rate": 1.0299618128253129e-07,
3594
+ "loss": 0.4204,
3595
+ "step": 583
3596
+ },
3597
+ {
3598
+ "epoch": 1.86,
3599
+ "learning_rate": 9.828085245837181e-08,
3600
+ "loss": 0.4088,
3601
+ "step": 584
3602
+ },
3603
+ {
3604
+ "epoch": 1.86,
3605
+ "learning_rate": 9.367466310611095e-08,
3606
+ "loss": 0.4537,
3607
+ "step": 585
3608
+ },
3609
+ {
3610
+ "epoch": 1.87,
3611
+ "learning_rate": 8.9177742070766e-08,
3612
+ "loss": 0.4299,
3613
+ "step": 586
3614
+ },
3615
+ {
3616
+ "epoch": 1.87,
3617
+ "learning_rate": 8.479021514088547e-08,
3618
+ "loss": 0.4376,
3619
+ "step": 587
3620
+ },
3621
+ {
3622
+ "epoch": 1.87,
3623
+ "learning_rate": 8.051220504502864e-08,
3624
+ "loss": 0.4256,
3625
+ "step": 588
3626
+ },
3627
+ {
3628
+ "epoch": 1.88,
3629
+ "learning_rate": 7.634383144833468e-08,
3630
+ "loss": 0.4429,
3631
+ "step": 589
3632
+ },
3633
+ {
3634
+ "epoch": 1.88,
3635
+ "learning_rate": 7.228521094917317e-08,
3636
+ "loss": 0.423,
3637
+ "step": 590
3638
+ },
3639
+ {
3640
+ "epoch": 1.88,
3641
+ "learning_rate": 6.833645707588509e-08,
3642
+ "loss": 0.3991,
3643
+ "step": 591
3644
+ },
3645
+ {
3646
+ "epoch": 1.89,
3647
+ "learning_rate": 6.449768028360303e-08,
3648
+ "loss": 0.4319,
3649
+ "step": 592
3650
+ },
3651
+ {
3652
+ "epoch": 1.89,
3653
+ "learning_rate": 6.076898795116792e-08,
3654
+ "loss": 0.4169,
3655
+ "step": 593
3656
+ },
3657
+ {
3658
+ "epoch": 1.89,
3659
+ "learning_rate": 5.715048437811809e-08,
3660
+ "loss": 0.4372,
3661
+ "step": 594
3662
+ },
3663
+ {
3664
+ "epoch": 1.9,
3665
+ "learning_rate": 5.36422707817783e-08,
3666
+ "loss": 0.4195,
3667
+ "step": 595
3668
+ },
3669
+ {
3670
+ "epoch": 1.9,
3671
+ "learning_rate": 5.0244445294422845e-08,
3672
+ "loss": 0.4105,
3673
+ "step": 596
3674
+ },
3675
+ {
3676
+ "epoch": 1.9,
3677
+ "learning_rate": 4.695710296053601e-08,
3678
+ "loss": 0.4279,
3679
+ "step": 597
3680
+ },
3681
+ {
3682
+ "epoch": 1.91,
3683
+ "learning_rate": 4.378033573414841e-08,
3684
+ "loss": 0.4392,
3685
+ "step": 598
3686
+ },
3687
+ {
3688
+ "epoch": 1.91,
3689
+ "learning_rate": 4.071423247626926e-08,
3690
+ "loss": 0.4049,
3691
+ "step": 599
3692
+ },
3693
+ {
3694
+ "epoch": 1.91,
3695
+ "learning_rate": 3.775887895239726e-08,
3696
+ "loss": 0.4121,
3697
+ "step": 600
3698
+ },
3699
+ {
3700
+ "epoch": 1.91,
3701
+ "eval_loss": 0.5397063493728638,
3702
+ "eval_runtime": 20.2502,
3703
+ "eval_samples_per_second": 40.098,
3704
+ "eval_steps_per_second": 2.518,
3705
+ "step": 600
3706
+ }
3707
+ ],
3708
+ "logging_steps": 1.0,
3709
+ "max_steps": 626,
3710
+ "num_input_tokens_seen": 0,
3711
+ "num_train_epochs": 2,
3712
+ "save_steps": 50,
3713
+ "total_flos": 251453096755200.0,
3714
+ "train_batch_size": 2,
3715
+ "trial_name": null,
3716
+ "trial_params": null
3717
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd04f2bb8d9a21e80a2b7bf8a5337a5386bcbd70a570e6daad2ea5277b705ce7
3
+ size 6776
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)