--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** HiroSan6595 - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) Sample Use 以下elyza-tasks-100-TV_0.jsonlの回答のためのコード ```python !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install -U xformers --index-url https://download.pytorch.org/whl/cu124 !pip install --no-deps "trl<0.9.0" peft accelerate bitsandbytes import torch if torch.cuda.get_device_capability()[0] >= 8: !pip install --no-deps packaging ninja einops "flash-attn>=2.6.3" from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from unsloth import FastLanguageModel import torch max_seq_length = 512 # unslothではRoPEをサポートしているのでコンテキスト長は自由に設定可能 dtype = None # Noneにしておけば自動で設定 load_in_4bit = True # 今回は8Bクラスのモデルを扱うためTrue model_id = "llm-jp/llm-jp-3-13b" new_model_id = "llm-jp-3-13b-finetune-2" #Fine-Tuningしたモデルにつけたい名前 # FastLanguageModel インスタンスを作成 model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, ) # SFT用のモデルを用意 model = FastLanguageModel.get_peft_model( model, r = 32, target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 32, lora_dropout = 0.05, bias = "none", use_gradient_checkpointing = "unsloth", random_state = 3407, use_rslora = False, loftq_config = None, max_seq_length = max_seq_length, ) HF_TOKEN = "mytoken" """ dataset: 学習に用いるデータセット ベースコードでは以下のリンクからデータをダウンロードして使います。zipを展開(!unzip)してデータのパスを指定してください。 (https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/) 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024) omnicampusの開発環境では取得したデータを左側にドラッグアンドドロップしてお使いください。 """ from datasets import load_dataset dataset = load_dataset("json", data_files="./ichikara-instruction-003-001-1.json") dataset # 学習時のプロンプトフォーマットの定義 prompt = """### 指示 {} ### 回答 {}""" """ formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる """ EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン(文末トークン) def formatting_prompts_func(examples): input = examples["text"] # 入力データ output = examples["output"] # 出力データ text = prompt.format(input, output) + EOS_TOKEN # プロンプトの作成 return { "formatted_text" : text, } # 新しいフィールド "formatted_text" を返す pass # # 各データにフォーマットを適用 dataset = dataset.map( formatting_prompts_func, num_proc= 4, # 並列処理数を指定 ) dataset print(dataset["train"]["formatted_text"][3]) from trl import SFTTrainer from transformers import TrainingArguments from unsloth import is_bfloat16_supported trainer = SFTTrainer( model = model, tokenizer = tokenizer, train_dataset=dataset["train"], max_seq_length = max_seq_length, dataset_text_field="formatted_text", packing = False, args = TrainingArguments( per_device_train_batch_size = 2, gradient_accumulation_steps = 4, num_train_epochs = 1, eval_steps=0.2, logging_steps = 10, warmup_steps = 10, save_steps=100, save_total_limit=2, max_steps=-1, learning_rate = 2e-4, fp16 = not is_bfloat16_supported(), bf16 = is_bfloat16_supported(), group_by_length=True, seed = 3407, output_dir = "outputs", ), ) trainer_stats = trainer.train() gpu_stats = torch.cuda.get_device_properties(0) start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") print(f"{start_gpu_memory} GB of memory reserved.") trainer_stats = trainer.train() model.push_to_hub_merged( new_model_id, tokenizer=tokenizer, # save_method="lora", token=HF_TOKEN, private=True ) ```