hmart824 commited on
Commit
ee7b1a3
·
verified ·
1 Parent(s): 8769098

End of training

Browse files
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/layoutlm-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: layoutlm-base-uncased-finetuned-invoices-0
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # layoutlm-base-uncased-finetuned-invoices-0
16
+
17
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0543
20
+ - B-adress: {'precision': 0.9086576648133439, 'recall': 0.967032967032967, 'f1': 0.9369369369369369, 'number': 1183}
21
+ - B-name: {'precision': 0.96045197740113, 'recall': 0.9941520467836257, 'f1': 0.9770114942528735, 'number': 342}
22
+ - Gst no: {'precision': 0.952755905511811, 'recall': 0.983739837398374, 'f1': 0.968, 'number': 123}
23
+ - Invoice no: {'precision': 0.94, 'recall': 0.94, 'f1': 0.94, 'number': 100}
24
+ - Order date: {'precision': 1.0, 'recall': 0.983739837398374, 'f1': 0.9918032786885246, 'number': 123}
25
+ - Order id: {'precision': 0.9922480620155039, 'recall': 0.9846153846153847, 'f1': 0.9884169884169884, 'number': 130}
26
+ - S-adress: {'precision': 0.9866666666666667, 'recall': 0.9458077709611452, 'f1': 0.9658052727747326, 'number': 1956}
27
+ - S-name: {'precision': 0.85431654676259, 'recall': 0.9875259875259875, 'f1': 0.9161041465766634, 'number': 481}
28
+ - Total gross: {'precision': 0.8545454545454545, 'recall': 0.8392857142857143, 'f1': 0.8468468468468467, 'number': 56}
29
+ - Total net: {'precision': 0.8768115942028986, 'recall': 0.952755905511811, 'f1': 0.9132075471698112, 'number': 127}
30
+ - Overall Precision: 0.9421
31
+ - Overall Recall: 0.9610
32
+ - Overall F1: 0.9515
33
+ - Overall Accuracy: 0.9872
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 5e-05
53
+ - train_batch_size: 16
54
+ - eval_batch_size: 8
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - lr_scheduler_warmup_steps: 10
59
+ - num_epochs: 15
60
+
61
+ ### Training results
62
+
63
+ | Training Loss | Epoch | Step | Validation Loss | B-adress | B-name | Gst no | Invoice no | Order date | Order id | S-adress | S-name | Total gross | Total net | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
64
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
65
+ | 1.3404 | 1.0 | 19 | 0.5934 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1183} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 342} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 123} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 123} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 130} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1956} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 481} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 56} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 127} | 0.0 | 0.0 | 0.0 | 0.8274 |
66
+ | 0.4824 | 2.0 | 38 | 0.3290 | {'precision': 0.5835654596100278, 'recall': 0.35418427726120033, 'f1': 0.4408206207259337, 'number': 1183} | {'precision': 0.5, 'recall': 0.0029239766081871343, 'f1': 0.005813953488372093, 'number': 342} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 123} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 123} | {'precision': 1.0, 'recall': 0.4076923076923077, 'f1': 0.5792349726775957, 'number': 130} | {'precision': 0.8446411012782694, 'recall': 0.878323108384458, 'f1': 0.8611528822055139, 'number': 1956} | {'precision': 0.825, 'recall': 0.6860706860706861, 'f1': 0.7491486946651532, 'number': 481} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 56} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 127} | 0.7861 | 0.5456 | 0.6441 | 0.9083 |
67
+ | 0.2716 | 3.0 | 57 | 0.2123 | {'precision': 0.6143583227445998, 'recall': 0.8174133558748944, 'f1': 0.701487123685165, 'number': 1183} | {'precision': 0.856140350877193, 'recall': 0.7134502923976608, 'f1': 0.7783094098883573, 'number': 342} | {'precision': 0.8910891089108911, 'recall': 0.7317073170731707, 'f1': 0.8035714285714285, 'number': 123} | {'precision': 0.98, 'recall': 0.49, 'f1': 0.6533333333333333, 'number': 100} | {'precision': 0.9375, 'recall': 0.6097560975609756, 'f1': 0.7389162561576355, 'number': 123} | {'precision': 0.9223300970873787, 'recall': 0.7307692307692307, 'f1': 0.815450643776824, 'number': 130} | {'precision': 0.9909255898366606, 'recall': 0.8374233128834356, 'f1': 0.9077306733167083, 'number': 1956} | {'precision': 0.9159836065573771, 'recall': 0.9293139293139293, 'f1': 0.9226006191950464, 'number': 481} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 56} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 127} | 0.8318 | 0.7801 | 0.8051 | 0.9439 |
68
+ | 0.1817 | 4.0 | 76 | 0.1527 | {'precision': 0.7367706919945726, 'recall': 0.9180050718512257, 'f1': 0.8174633044787355, 'number': 1183} | {'precision': 0.8218085106382979, 'recall': 0.9035087719298246, 'f1': 0.8607242339832869, 'number': 342} | {'precision': 0.8928571428571429, 'recall': 0.8130081300813008, 'f1': 0.8510638297872342, 'number': 123} | {'precision': 0.8651685393258427, 'recall': 0.77, 'f1': 0.8148148148148148, 'number': 100} | {'precision': 0.9484536082474226, 'recall': 0.7479674796747967, 'f1': 0.8363636363636364, 'number': 123} | {'precision': 0.96, 'recall': 0.7384615384615385, 'f1': 0.8347826086956522, 'number': 130} | {'precision': 0.9706510138740662, 'recall': 0.929959100204499, 'f1': 0.9498694516971279, 'number': 1956} | {'precision': 0.9447852760736196, 'recall': 0.9604989604989606, 'f1': 0.9525773195876289, 'number': 481} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 56} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 127} | 0.8764 | 0.8745 | 0.8754 | 0.9615 |
69
+ | 0.1376 | 5.0 | 95 | 0.1115 | {'precision': 0.8572664359861591, 'recall': 0.8377007607776839, 'f1': 0.84737067122702, 'number': 1183} | {'precision': 0.8636363636363636, 'recall': 0.9444444444444444, 'f1': 0.9022346368715084, 'number': 342} | {'precision': 0.9363636363636364, 'recall': 0.8373983739837398, 'f1': 0.8841201716738197, 'number': 123} | {'precision': 0.875, 'recall': 0.84, 'f1': 0.8571428571428572, 'number': 100} | {'precision': 0.8899082568807339, 'recall': 0.7886178861788617, 'f1': 0.8362068965517241, 'number': 123} | {'precision': 0.9702970297029703, 'recall': 0.7538461538461538, 'f1': 0.8484848484848484, 'number': 130} | {'precision': 0.9693665628245067, 'recall': 0.9544989775051125, 'f1': 0.9618753219989695, 'number': 1956} | {'precision': 0.9665970772442589, 'recall': 0.9625779625779626, 'f1': 0.9645833333333335, 'number': 481} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 56} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 127} | 0.9253 | 0.8712 | 0.8975 | 0.9683 |
70
+ | 0.1027 | 6.0 | 114 | 0.0891 | {'precision': 0.8551068883610451, 'recall': 0.9129332206255283, 'f1': 0.8830744071954211, 'number': 1183} | {'precision': 0.9029649595687331, 'recall': 0.97953216374269, 'f1': 0.9396914446002805, 'number': 342} | {'precision': 0.9568965517241379, 'recall': 0.9024390243902439, 'f1': 0.9288702928870294, 'number': 123} | {'precision': 0.9052631578947369, 'recall': 0.86, 'f1': 0.8820512820512821, 'number': 100} | {'precision': 0.9067796610169492, 'recall': 0.8699186991869918, 'f1': 0.8879668049792531, 'number': 123} | {'precision': 0.9902912621359223, 'recall': 0.7846153846153846, 'f1': 0.8755364806866953, 'number': 130} | {'precision': 0.9579789894947474, 'recall': 0.9790388548057259, 'f1': 0.9683944374209861, 'number': 1956} | {'precision': 0.9747368421052631, 'recall': 0.9625779625779626, 'f1': 0.9686192468619247, 'number': 481} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 56} | {'precision': 0.6666666666666666, 'recall': 0.015748031496062992, 'f1': 0.03076923076923077, 'number': 127} | 0.9247 | 0.9091 | 0.9168 | 0.9740 |
71
+ | 0.0774 | 7.0 | 133 | 0.0761 | {'precision': 0.883495145631068, 'recall': 0.9230769230769231, 'f1': 0.9028524183546921, 'number': 1183} | {'precision': 0.9786585365853658, 'recall': 0.9385964912280702, 'f1': 0.9582089552238806, 'number': 342} | {'precision': 0.9576271186440678, 'recall': 0.9186991869918699, 'f1': 0.9377593360995852, 'number': 123} | {'precision': 0.9368421052631579, 'recall': 0.89, 'f1': 0.9128205128205129, 'number': 100} | {'precision': 0.9652173913043478, 'recall': 0.9024390243902439, 'f1': 0.9327731092436974, 'number': 123} | {'precision': 0.9908256880733946, 'recall': 0.8307692307692308, 'f1': 0.9037656903765691, 'number': 130} | {'precision': 0.9897739504843919, 'recall': 0.9401840490797546, 'f1': 0.9643418982695334, 'number': 1956} | {'precision': 0.9019230769230769, 'recall': 0.975051975051975, 'f1': 0.9370629370629371, 'number': 481} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 56} | {'precision': 0.5984251968503937, 'recall': 0.5984251968503937, 'f1': 0.5984251968503937, 'number': 127} | 0.9361 | 0.9128 | 0.9243 | 0.9783 |
72
+ | 0.0604 | 8.0 | 152 | 0.0642 | {'precision': 0.8949511400651465, 'recall': 0.9289940828402367, 'f1': 0.9116549149730402, 'number': 1183} | {'precision': 0.9598853868194842, 'recall': 0.97953216374269, 'f1': 0.9696092619392185, 'number': 342} | {'precision': 0.9603174603174603, 'recall': 0.983739837398374, 'f1': 0.9718875502008032, 'number': 123} | {'precision': 0.9468085106382979, 'recall': 0.89, 'f1': 0.9175257731958764, 'number': 100} | {'precision': 0.9910714285714286, 'recall': 0.9024390243902439, 'f1': 0.9446808510638298, 'number': 123} | {'precision': 1.0, 'recall': 0.8615384615384616, 'f1': 0.9256198347107438, 'number': 130} | {'precision': 0.9896061269146609, 'recall': 0.9248466257668712, 'f1': 0.9561310782241015, 'number': 1956} | {'precision': 0.8571428571428571, 'recall': 0.9854469854469855, 'f1': 0.9168278529980657, 'number': 481} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 56} | {'precision': 0.5363128491620112, 'recall': 0.7559055118110236, 'f1': 0.627450980392157, 'number': 127} | 0.9269 | 0.9188 | 0.9228 | 0.9798 |
73
+ | 0.0472 | 9.0 | 171 | 0.0684 | {'precision': 0.8824439288476411, 'recall': 0.9644970414201184, 'f1': 0.9216478190630049, 'number': 1183} | {'precision': 0.9629629629629629, 'recall': 0.9883040935672515, 'f1': 0.9754689754689754, 'number': 342} | {'precision': 0.9596774193548387, 'recall': 0.967479674796748, 'f1': 0.9635627530364373, 'number': 123} | {'precision': 0.9479166666666666, 'recall': 0.91, 'f1': 0.9285714285714285, 'number': 100} | {'precision': 0.990909090909091, 'recall': 0.8861788617886179, 'f1': 0.9356223175965666, 'number': 123} | {'precision': 1.0, 'recall': 0.8615384615384616, 'f1': 0.9256198347107438, 'number': 130} | {'precision': 0.987417943107221, 'recall': 0.9228016359918201, 'f1': 0.9540169133192389, 'number': 1956} | {'precision': 0.8166089965397924, 'recall': 0.9812889812889813, 'f1': 0.8914069877242682, 'number': 481} | {'precision': 0.09523809523809523, 'recall': 0.03571428571428571, 'f1': 0.051948051948051945, 'number': 56} | {'precision': 0.42907801418439717, 'recall': 0.952755905511811, 'f1': 0.5916870415647921, 'number': 127} | 0.8989 | 0.9327 | 0.9155 | 0.9780 |
74
+ | 0.0399 | 10.0 | 190 | 0.0571 | {'precision': 0.8933649289099526, 'recall': 0.9560439560439561, 'f1': 0.9236423029808084, 'number': 1183} | {'precision': 0.9659090909090909, 'recall': 0.9941520467836257, 'f1': 0.9798270893371758, 'number': 342} | {'precision': 0.9603174603174603, 'recall': 0.983739837398374, 'f1': 0.9718875502008032, 'number': 123} | {'precision': 0.94, 'recall': 0.94, 'f1': 0.94, 'number': 100} | {'precision': 1.0, 'recall': 0.9349593495934959, 'f1': 0.9663865546218486, 'number': 123} | {'precision': 1.0, 'recall': 0.9153846153846154, 'f1': 0.9558232931726908, 'number': 130} | {'precision': 0.9876277568585261, 'recall': 0.9386503067484663, 'f1': 0.9625163826998688, 'number': 1956} | {'precision': 0.8497316636851521, 'recall': 0.9875259875259875, 'f1': 0.9134615384615384, 'number': 481} | {'precision': 0.7368421052631579, 'recall': 0.5, 'f1': 0.5957446808510638, 'number': 56} | {'precision': 0.5757575757575758, 'recall': 0.8976377952755905, 'f1': 0.7015384615384614, 'number': 127} | 0.9241 | 0.9463 | 0.9351 | 0.9831 |
75
+ | 0.0348 | 11.0 | 209 | 0.0652 | {'precision': 0.8785549577248271, 'recall': 0.9661876584953508, 'f1': 0.9202898550724637, 'number': 1183} | {'precision': 0.9550561797752809, 'recall': 0.9941520467836257, 'f1': 0.9742120343839542, 'number': 342} | {'precision': 0.9453125, 'recall': 0.983739837398374, 'f1': 0.9641434262948206, 'number': 123} | {'precision': 0.94, 'recall': 0.94, 'f1': 0.94, 'number': 100} | {'precision': 0.9918032786885246, 'recall': 0.983739837398374, 'f1': 0.9877551020408164, 'number': 123} | {'precision': 0.984375, 'recall': 0.9692307692307692, 'f1': 0.9767441860465116, 'number': 130} | {'precision': 0.9912087912087912, 'recall': 0.9222903885480572, 'f1': 0.9555084745762713, 'number': 1956} | {'precision': 0.8191126279863481, 'recall': 0.997920997920998, 'f1': 0.8997188378631678, 'number': 481} | {'precision': 0.8367346938775511, 'recall': 0.7321428571428571, 'f1': 0.7809523809523811, 'number': 56} | {'precision': 0.711764705882353, 'recall': 0.952755905511811, 'f1': 0.8148148148148149, 'number': 127} | 0.9225 | 0.9502 | 0.9361 | 0.9827 |
76
+ | 0.0302 | 12.0 | 228 | 0.0513 | {'precision': 0.8866615265998458, 'recall': 0.9721048182586645, 'f1': 0.9274193548387096, 'number': 1183} | {'precision': 0.9798270893371758, 'recall': 0.9941520467836257, 'f1': 0.9869375907111755, 'number': 342} | {'precision': 0.9453125, 'recall': 0.983739837398374, 'f1': 0.9641434262948206, 'number': 123} | {'precision': 0.9393939393939394, 'recall': 0.93, 'f1': 0.9346733668341709, 'number': 100} | {'precision': 1.0, 'recall': 0.983739837398374, 'f1': 0.9918032786885246, 'number': 123} | {'precision': 0.9921875, 'recall': 0.9769230769230769, 'f1': 0.9844961240310077, 'number': 130} | {'precision': 0.9872, 'recall': 0.946319018404908, 'f1': 0.9663273296789351, 'number': 1956} | {'precision': 0.8574007220216606, 'recall': 0.9875259875259875, 'f1': 0.9178743961352657, 'number': 481} | {'precision': 0.8653846153846154, 'recall': 0.8035714285714286, 'f1': 0.8333333333333334, 'number': 56} | {'precision': 0.8345323741007195, 'recall': 0.9133858267716536, 'f1': 0.8721804511278195, 'number': 127} | 0.9365 | 0.9606 | 0.9484 | 0.9861 |
77
+ | 0.0269 | 13.0 | 247 | 0.0543 | {'precision': 0.9086576648133439, 'recall': 0.967032967032967, 'f1': 0.9369369369369369, 'number': 1183} | {'precision': 0.96045197740113, 'recall': 0.9941520467836257, 'f1': 0.9770114942528735, 'number': 342} | {'precision': 0.952755905511811, 'recall': 0.983739837398374, 'f1': 0.968, 'number': 123} | {'precision': 0.94, 'recall': 0.94, 'f1': 0.94, 'number': 100} | {'precision': 1.0, 'recall': 0.983739837398374, 'f1': 0.9918032786885246, 'number': 123} | {'precision': 0.9922480620155039, 'recall': 0.9846153846153847, 'f1': 0.9884169884169884, 'number': 130} | {'precision': 0.9866666666666667, 'recall': 0.9458077709611452, 'f1': 0.9658052727747326, 'number': 1956} | {'precision': 0.85431654676259, 'recall': 0.9875259875259875, 'f1': 0.9161041465766634, 'number': 481} | {'precision': 0.8545454545454545, 'recall': 0.8392857142857143, 'f1': 0.8468468468468467, 'number': 56} | {'precision': 0.8768115942028986, 'recall': 0.952755905511811, 'f1': 0.9132075471698112, 'number': 127} | 0.9421 | 0.9610 | 0.9515 | 0.9872 |
78
+ | 0.0251 | 14.0 | 266 | 0.0549 | {'precision': 0.8923315259488769, 'recall': 0.9737954353338969, 'f1': 0.931285367825384, 'number': 1183} | {'precision': 0.9855072463768116, 'recall': 0.9941520467836257, 'f1': 0.9898107714701602, 'number': 342} | {'precision': 0.9603174603174603, 'recall': 0.983739837398374, 'f1': 0.9718875502008032, 'number': 123} | {'precision': 0.9405940594059405, 'recall': 0.95, 'f1': 0.9452736318407959, 'number': 100} | {'precision': 1.0, 'recall': 0.983739837398374, 'f1': 0.9918032786885246, 'number': 123} | {'precision': 0.9922480620155039, 'recall': 0.9846153846153847, 'f1': 0.9884169884169884, 'number': 130} | {'precision': 0.98718633208756, 'recall': 0.9452965235173824, 'f1': 0.9657874118568818, 'number': 1956} | {'precision': 0.85431654676259, 'recall': 0.9875259875259875, 'f1': 0.9161041465766634, 'number': 481} | {'precision': 0.8421052631578947, 'recall': 0.8571428571428571, 'f1': 0.8495575221238938, 'number': 56} | {'precision': 0.7610062893081762, 'recall': 0.952755905511811, 'f1': 0.8461538461538461, 'number': 127} | 0.9353 | 0.9630 | 0.9489 | 0.9862 |
79
+ | 0.0242 | 15.0 | 285 | 0.0543 | {'precision': 0.902668759811617, 'recall': 0.9721048182586645, 'f1': 0.9361009361009361, 'number': 1183} | {'precision': 0.9855072463768116, 'recall': 0.9941520467836257, 'f1': 0.9898107714701602, 'number': 342} | {'precision': 0.9603174603174603, 'recall': 0.983739837398374, 'f1': 0.9718875502008032, 'number': 123} | {'precision': 0.9405940594059405, 'recall': 0.95, 'f1': 0.9452736318407959, 'number': 100} | {'precision': 1.0, 'recall': 0.983739837398374, 'f1': 0.9918032786885246, 'number': 123} | {'precision': 0.9922480620155039, 'recall': 0.9846153846153847, 'f1': 0.9884169884169884, 'number': 130} | {'precision': 0.9887580299785867, 'recall': 0.9442740286298569, 'f1': 0.9660041841004183, 'number': 1956} | {'precision': 0.8530465949820788, 'recall': 0.9896049896049897, 'f1': 0.9162656400384984, 'number': 481} | {'precision': 0.8421052631578947, 'recall': 0.8571428571428571, 'f1': 0.8495575221238938, 'number': 56} | {'precision': 0.7960526315789473, 'recall': 0.952755905511811, 'f1': 0.8673835125448028, 'number': 127} | 0.9400 | 0.9623 | 0.9510 | 0.9870 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.44.2
85
+ - Pytorch 2.4.0+cu121
86
+ - Datasets 3.0.0
87
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/layoutlm-base-uncased",
3
+ "architectures": [
4
+ "LayoutLMForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "O",
12
+ "1": "Invoice no",
13
+ "2": "Order id",
14
+ "3": "Order date",
15
+ "4": "GST no",
16
+ "5": "Total net",
17
+ "6": "Total gross",
18
+ "7": "S-name",
19
+ "8": "B-name",
20
+ "9": "S-adress",
21
+ "10": "B-adress"
22
+ },
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 3072,
25
+ "label2id": {
26
+ "B-adress": 10,
27
+ "B-name": 8,
28
+ "GST no": 4,
29
+ "Invoice no": 1,
30
+ "O": 0,
31
+ "Order date": 3,
32
+ "Order id": 2,
33
+ "S-adress": 9,
34
+ "S-name": 7,
35
+ "Total gross": 6,
36
+ "Total net": 5
37
+ },
38
+ "layer_norm_eps": 1e-12,
39
+ "max_2d_position_embeddings": 1024,
40
+ "max_position_embeddings": 512,
41
+ "model_type": "layoutlm",
42
+ "num_attention_heads": 12,
43
+ "num_hidden_layers": 12,
44
+ "output_past": true,
45
+ "pad_token_id": 0,
46
+ "position_embedding_type": "absolute",
47
+ "torch_dtype": "float32",
48
+ "transformers_version": "4.44.2",
49
+ "type_vocab_size": 2,
50
+ "use_cache": true,
51
+ "vocab_size": 30522
52
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7488aa380f5fc4dd52e7a5e6b3afeb6c5d46f59965d60113b8e3b394cfc2ef75
3
+ size 450570516
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_len": 512,
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "LayoutLMTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:290b8e6708c244c1a969f5642e2b2e2ca63c555c3c62c691a29aa603bca0d3a3
3
+ size 5176
vocab.txt ADDED
The diff for this file is too large to render. See raw diff