stefan-it commited on
Commit
09705db
·
1 Parent(s): fc07167

Upload ./training.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. training.log +511 -0
training.log ADDED
@@ -0,0 +1,511 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-10-24 10:02:59,640 ----------------------------------------------------------------------------------------------------
2
+ 2023-10-24 10:02:59,641 Model: "SequenceTagger(
3
+ (embeddings): TransformerWordEmbeddings(
4
+ (model): BertModel(
5
+ (embeddings): BertEmbeddings(
6
+ (word_embeddings): Embedding(64001, 768)
7
+ (position_embeddings): Embedding(512, 768)
8
+ (token_type_embeddings): Embedding(2, 768)
9
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
10
+ (dropout): Dropout(p=0.1, inplace=False)
11
+ )
12
+ (encoder): BertEncoder(
13
+ (layer): ModuleList(
14
+ (0): BertLayer(
15
+ (attention): BertAttention(
16
+ (self): BertSelfAttention(
17
+ (query): Linear(in_features=768, out_features=768, bias=True)
18
+ (key): Linear(in_features=768, out_features=768, bias=True)
19
+ (value): Linear(in_features=768, out_features=768, bias=True)
20
+ (dropout): Dropout(p=0.1, inplace=False)
21
+ )
22
+ (output): BertSelfOutput(
23
+ (dense): Linear(in_features=768, out_features=768, bias=True)
24
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
25
+ (dropout): Dropout(p=0.1, inplace=False)
26
+ )
27
+ )
28
+ (intermediate): BertIntermediate(
29
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
30
+ (intermediate_act_fn): GELUActivation()
31
+ )
32
+ (output): BertOutput(
33
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
34
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
35
+ (dropout): Dropout(p=0.1, inplace=False)
36
+ )
37
+ )
38
+ (1): BertLayer(
39
+ (attention): BertAttention(
40
+ (self): BertSelfAttention(
41
+ (query): Linear(in_features=768, out_features=768, bias=True)
42
+ (key): Linear(in_features=768, out_features=768, bias=True)
43
+ (value): Linear(in_features=768, out_features=768, bias=True)
44
+ (dropout): Dropout(p=0.1, inplace=False)
45
+ )
46
+ (output): BertSelfOutput(
47
+ (dense): Linear(in_features=768, out_features=768, bias=True)
48
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
49
+ (dropout): Dropout(p=0.1, inplace=False)
50
+ )
51
+ )
52
+ (intermediate): BertIntermediate(
53
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
54
+ (intermediate_act_fn): GELUActivation()
55
+ )
56
+ (output): BertOutput(
57
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
58
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
59
+ (dropout): Dropout(p=0.1, inplace=False)
60
+ )
61
+ )
62
+ (2): BertLayer(
63
+ (attention): BertAttention(
64
+ (self): BertSelfAttention(
65
+ (query): Linear(in_features=768, out_features=768, bias=True)
66
+ (key): Linear(in_features=768, out_features=768, bias=True)
67
+ (value): Linear(in_features=768, out_features=768, bias=True)
68
+ (dropout): Dropout(p=0.1, inplace=False)
69
+ )
70
+ (output): BertSelfOutput(
71
+ (dense): Linear(in_features=768, out_features=768, bias=True)
72
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
73
+ (dropout): Dropout(p=0.1, inplace=False)
74
+ )
75
+ )
76
+ (intermediate): BertIntermediate(
77
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
78
+ (intermediate_act_fn): GELUActivation()
79
+ )
80
+ (output): BertOutput(
81
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
82
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
83
+ (dropout): Dropout(p=0.1, inplace=False)
84
+ )
85
+ )
86
+ (3): BertLayer(
87
+ (attention): BertAttention(
88
+ (self): BertSelfAttention(
89
+ (query): Linear(in_features=768, out_features=768, bias=True)
90
+ (key): Linear(in_features=768, out_features=768, bias=True)
91
+ (value): Linear(in_features=768, out_features=768, bias=True)
92
+ (dropout): Dropout(p=0.1, inplace=False)
93
+ )
94
+ (output): BertSelfOutput(
95
+ (dense): Linear(in_features=768, out_features=768, bias=True)
96
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
97
+ (dropout): Dropout(p=0.1, inplace=False)
98
+ )
99
+ )
100
+ (intermediate): BertIntermediate(
101
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
102
+ (intermediate_act_fn): GELUActivation()
103
+ )
104
+ (output): BertOutput(
105
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
106
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
107
+ (dropout): Dropout(p=0.1, inplace=False)
108
+ )
109
+ )
110
+ (4): BertLayer(
111
+ (attention): BertAttention(
112
+ (self): BertSelfAttention(
113
+ (query): Linear(in_features=768, out_features=768, bias=True)
114
+ (key): Linear(in_features=768, out_features=768, bias=True)
115
+ (value): Linear(in_features=768, out_features=768, bias=True)
116
+ (dropout): Dropout(p=0.1, inplace=False)
117
+ )
118
+ (output): BertSelfOutput(
119
+ (dense): Linear(in_features=768, out_features=768, bias=True)
120
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
121
+ (dropout): Dropout(p=0.1, inplace=False)
122
+ )
123
+ )
124
+ (intermediate): BertIntermediate(
125
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
126
+ (intermediate_act_fn): GELUActivation()
127
+ )
128
+ (output): BertOutput(
129
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
130
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
131
+ (dropout): Dropout(p=0.1, inplace=False)
132
+ )
133
+ )
134
+ (5): BertLayer(
135
+ (attention): BertAttention(
136
+ (self): BertSelfAttention(
137
+ (query): Linear(in_features=768, out_features=768, bias=True)
138
+ (key): Linear(in_features=768, out_features=768, bias=True)
139
+ (value): Linear(in_features=768, out_features=768, bias=True)
140
+ (dropout): Dropout(p=0.1, inplace=False)
141
+ )
142
+ (output): BertSelfOutput(
143
+ (dense): Linear(in_features=768, out_features=768, bias=True)
144
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
145
+ (dropout): Dropout(p=0.1, inplace=False)
146
+ )
147
+ )
148
+ (intermediate): BertIntermediate(
149
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
150
+ (intermediate_act_fn): GELUActivation()
151
+ )
152
+ (output): BertOutput(
153
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
154
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
155
+ (dropout): Dropout(p=0.1, inplace=False)
156
+ )
157
+ )
158
+ (6): BertLayer(
159
+ (attention): BertAttention(
160
+ (self): BertSelfAttention(
161
+ (query): Linear(in_features=768, out_features=768, bias=True)
162
+ (key): Linear(in_features=768, out_features=768, bias=True)
163
+ (value): Linear(in_features=768, out_features=768, bias=True)
164
+ (dropout): Dropout(p=0.1, inplace=False)
165
+ )
166
+ (output): BertSelfOutput(
167
+ (dense): Linear(in_features=768, out_features=768, bias=True)
168
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
169
+ (dropout): Dropout(p=0.1, inplace=False)
170
+ )
171
+ )
172
+ (intermediate): BertIntermediate(
173
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
174
+ (intermediate_act_fn): GELUActivation()
175
+ )
176
+ (output): BertOutput(
177
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
178
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
179
+ (dropout): Dropout(p=0.1, inplace=False)
180
+ )
181
+ )
182
+ (7): BertLayer(
183
+ (attention): BertAttention(
184
+ (self): BertSelfAttention(
185
+ (query): Linear(in_features=768, out_features=768, bias=True)
186
+ (key): Linear(in_features=768, out_features=768, bias=True)
187
+ (value): Linear(in_features=768, out_features=768, bias=True)
188
+ (dropout): Dropout(p=0.1, inplace=False)
189
+ )
190
+ (output): BertSelfOutput(
191
+ (dense): Linear(in_features=768, out_features=768, bias=True)
192
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
193
+ (dropout): Dropout(p=0.1, inplace=False)
194
+ )
195
+ )
196
+ (intermediate): BertIntermediate(
197
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
198
+ (intermediate_act_fn): GELUActivation()
199
+ )
200
+ (output): BertOutput(
201
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
202
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
203
+ (dropout): Dropout(p=0.1, inplace=False)
204
+ )
205
+ )
206
+ (8): BertLayer(
207
+ (attention): BertAttention(
208
+ (self): BertSelfAttention(
209
+ (query): Linear(in_features=768, out_features=768, bias=True)
210
+ (key): Linear(in_features=768, out_features=768, bias=True)
211
+ (value): Linear(in_features=768, out_features=768, bias=True)
212
+ (dropout): Dropout(p=0.1, inplace=False)
213
+ )
214
+ (output): BertSelfOutput(
215
+ (dense): Linear(in_features=768, out_features=768, bias=True)
216
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
217
+ (dropout): Dropout(p=0.1, inplace=False)
218
+ )
219
+ )
220
+ (intermediate): BertIntermediate(
221
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
222
+ (intermediate_act_fn): GELUActivation()
223
+ )
224
+ (output): BertOutput(
225
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
226
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
227
+ (dropout): Dropout(p=0.1, inplace=False)
228
+ )
229
+ )
230
+ (9): BertLayer(
231
+ (attention): BertAttention(
232
+ (self): BertSelfAttention(
233
+ (query): Linear(in_features=768, out_features=768, bias=True)
234
+ (key): Linear(in_features=768, out_features=768, bias=True)
235
+ (value): Linear(in_features=768, out_features=768, bias=True)
236
+ (dropout): Dropout(p=0.1, inplace=False)
237
+ )
238
+ (output): BertSelfOutput(
239
+ (dense): Linear(in_features=768, out_features=768, bias=True)
240
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
241
+ (dropout): Dropout(p=0.1, inplace=False)
242
+ )
243
+ )
244
+ (intermediate): BertIntermediate(
245
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
246
+ (intermediate_act_fn): GELUActivation()
247
+ )
248
+ (output): BertOutput(
249
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
250
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
251
+ (dropout): Dropout(p=0.1, inplace=False)
252
+ )
253
+ )
254
+ (10): BertLayer(
255
+ (attention): BertAttention(
256
+ (self): BertSelfAttention(
257
+ (query): Linear(in_features=768, out_features=768, bias=True)
258
+ (key): Linear(in_features=768, out_features=768, bias=True)
259
+ (value): Linear(in_features=768, out_features=768, bias=True)
260
+ (dropout): Dropout(p=0.1, inplace=False)
261
+ )
262
+ (output): BertSelfOutput(
263
+ (dense): Linear(in_features=768, out_features=768, bias=True)
264
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
265
+ (dropout): Dropout(p=0.1, inplace=False)
266
+ )
267
+ )
268
+ (intermediate): BertIntermediate(
269
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
270
+ (intermediate_act_fn): GELUActivation()
271
+ )
272
+ (output): BertOutput(
273
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
274
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
275
+ (dropout): Dropout(p=0.1, inplace=False)
276
+ )
277
+ )
278
+ (11): BertLayer(
279
+ (attention): BertAttention(
280
+ (self): BertSelfAttention(
281
+ (query): Linear(in_features=768, out_features=768, bias=True)
282
+ (key): Linear(in_features=768, out_features=768, bias=True)
283
+ (value): Linear(in_features=768, out_features=768, bias=True)
284
+ (dropout): Dropout(p=0.1, inplace=False)
285
+ )
286
+ (output): BertSelfOutput(
287
+ (dense): Linear(in_features=768, out_features=768, bias=True)
288
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
289
+ (dropout): Dropout(p=0.1, inplace=False)
290
+ )
291
+ )
292
+ (intermediate): BertIntermediate(
293
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
294
+ (intermediate_act_fn): GELUActivation()
295
+ )
296
+ (output): BertOutput(
297
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
298
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
299
+ (dropout): Dropout(p=0.1, inplace=False)
300
+ )
301
+ )
302
+ )
303
+ )
304
+ (pooler): BertPooler(
305
+ (dense): Linear(in_features=768, out_features=768, bias=True)
306
+ (activation): Tanh()
307
+ )
308
+ )
309
+ )
310
+ (locked_dropout): LockedDropout(p=0.5)
311
+ (linear): Linear(in_features=768, out_features=21, bias=True)
312
+ (loss_function): CrossEntropyLoss()
313
+ )"
314
+ 2023-10-24 10:02:59,641 ----------------------------------------------------------------------------------------------------
315
+ 2023-10-24 10:02:59,641 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
316
+ - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
317
+ 2023-10-24 10:02:59,641 ----------------------------------------------------------------------------------------------------
318
+ 2023-10-24 10:02:59,641 Train: 5901 sentences
319
+ 2023-10-24 10:02:59,641 (train_with_dev=False, train_with_test=False)
320
+ 2023-10-24 10:02:59,641 ----------------------------------------------------------------------------------------------------
321
+ 2023-10-24 10:02:59,641 Training Params:
322
+ 2023-10-24 10:02:59,641 - learning_rate: "3e-05"
323
+ 2023-10-24 10:02:59,641 - mini_batch_size: "8"
324
+ 2023-10-24 10:02:59,641 - max_epochs: "10"
325
+ 2023-10-24 10:02:59,641 - shuffle: "True"
326
+ 2023-10-24 10:02:59,641 ----------------------------------------------------------------------------------------------------
327
+ 2023-10-24 10:02:59,641 Plugins:
328
+ 2023-10-24 10:02:59,641 - TensorboardLogger
329
+ 2023-10-24 10:02:59,642 - LinearScheduler | warmup_fraction: '0.1'
330
+ 2023-10-24 10:02:59,642 ----------------------------------------------------------------------------------------------------
331
+ 2023-10-24 10:02:59,642 Final evaluation on model from best epoch (best-model.pt)
332
+ 2023-10-24 10:02:59,642 - metric: "('micro avg', 'f1-score')"
333
+ 2023-10-24 10:02:59,642 ----------------------------------------------------------------------------------------------------
334
+ 2023-10-24 10:02:59,642 Computation:
335
+ 2023-10-24 10:02:59,642 - compute on device: cuda:0
336
+ 2023-10-24 10:02:59,642 - embedding storage: none
337
+ 2023-10-24 10:02:59,642 ----------------------------------------------------------------------------------------------------
338
+ 2023-10-24 10:02:59,642 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
339
+ 2023-10-24 10:02:59,642 ----------------------------------------------------------------------------------------------------
340
+ 2023-10-24 10:02:59,642 ----------------------------------------------------------------------------------------------------
341
+ 2023-10-24 10:02:59,642 Logging anything other than scalars to TensorBoard is currently not supported.
342
+ 2023-10-24 10:03:05,895 epoch 1 - iter 73/738 - loss 2.42550890 - time (sec): 6.25 - samples/sec: 2471.21 - lr: 0.000003 - momentum: 0.000000
343
+ 2023-10-24 10:03:12,507 epoch 1 - iter 146/738 - loss 1.50600625 - time (sec): 12.86 - samples/sec: 2418.68 - lr: 0.000006 - momentum: 0.000000
344
+ 2023-10-24 10:03:19,533 epoch 1 - iter 219/738 - loss 1.12767070 - time (sec): 19.89 - samples/sec: 2397.52 - lr: 0.000009 - momentum: 0.000000
345
+ 2023-10-24 10:03:26,301 epoch 1 - iter 292/738 - loss 0.93406611 - time (sec): 26.66 - samples/sec: 2376.48 - lr: 0.000012 - momentum: 0.000000
346
+ 2023-10-24 10:03:33,259 epoch 1 - iter 365/738 - loss 0.80134282 - time (sec): 33.62 - samples/sec: 2375.26 - lr: 0.000015 - momentum: 0.000000
347
+ 2023-10-24 10:03:39,853 epoch 1 - iter 438/738 - loss 0.71149145 - time (sec): 40.21 - samples/sec: 2361.86 - lr: 0.000018 - momentum: 0.000000
348
+ 2023-10-24 10:03:47,300 epoch 1 - iter 511/738 - loss 0.63540461 - time (sec): 47.66 - samples/sec: 2356.51 - lr: 0.000021 - momentum: 0.000000
349
+ 2023-10-24 10:03:53,988 epoch 1 - iter 584/738 - loss 0.57914697 - time (sec): 54.35 - samples/sec: 2358.43 - lr: 0.000024 - momentum: 0.000000
350
+ 2023-10-24 10:04:01,580 epoch 1 - iter 657/738 - loss 0.53176914 - time (sec): 61.94 - samples/sec: 2360.80 - lr: 0.000027 - momentum: 0.000000
351
+ 2023-10-24 10:04:09,449 epoch 1 - iter 730/738 - loss 0.49158401 - time (sec): 69.81 - samples/sec: 2357.65 - lr: 0.000030 - momentum: 0.000000
352
+ 2023-10-24 10:04:10,192 ----------------------------------------------------------------------------------------------------
353
+ 2023-10-24 10:04:10,192 EPOCH 1 done: loss 0.4878 - lr: 0.000030
354
+ 2023-10-24 10:04:16,415 DEV : loss 0.10594037920236588 - f1-score (micro avg) 0.7283
355
+ 2023-10-24 10:04:16,436 saving best model
356
+ 2023-10-24 10:04:16,986 ----------------------------------------------------------------------------------------------------
357
+ 2023-10-24 10:04:23,926 epoch 2 - iter 73/738 - loss 0.14091494 - time (sec): 6.94 - samples/sec: 2335.41 - lr: 0.000030 - momentum: 0.000000
358
+ 2023-10-24 10:04:31,241 epoch 2 - iter 146/738 - loss 0.12231896 - time (sec): 14.25 - samples/sec: 2342.68 - lr: 0.000029 - momentum: 0.000000
359
+ 2023-10-24 10:04:37,881 epoch 2 - iter 219/738 - loss 0.12111484 - time (sec): 20.89 - samples/sec: 2339.29 - lr: 0.000029 - momentum: 0.000000
360
+ 2023-10-24 10:04:45,345 epoch 2 - iter 292/738 - loss 0.12184837 - time (sec): 28.36 - samples/sec: 2317.62 - lr: 0.000029 - momentum: 0.000000
361
+ 2023-10-24 10:04:52,383 epoch 2 - iter 365/738 - loss 0.12080821 - time (sec): 35.40 - samples/sec: 2342.50 - lr: 0.000028 - momentum: 0.000000
362
+ 2023-10-24 10:04:59,079 epoch 2 - iter 438/738 - loss 0.11532571 - time (sec): 42.09 - samples/sec: 2347.84 - lr: 0.000028 - momentum: 0.000000
363
+ 2023-10-24 10:05:06,120 epoch 2 - iter 511/738 - loss 0.11512762 - time (sec): 49.13 - samples/sec: 2336.44 - lr: 0.000028 - momentum: 0.000000
364
+ 2023-10-24 10:05:13,584 epoch 2 - iter 584/738 - loss 0.11551858 - time (sec): 56.60 - samples/sec: 2347.44 - lr: 0.000027 - momentum: 0.000000
365
+ 2023-10-24 10:05:20,545 epoch 2 - iter 657/738 - loss 0.11451103 - time (sec): 63.56 - samples/sec: 2343.30 - lr: 0.000027 - momentum: 0.000000
366
+ 2023-10-24 10:05:27,102 epoch 2 - iter 730/738 - loss 0.11268099 - time (sec): 70.11 - samples/sec: 2353.65 - lr: 0.000027 - momentum: 0.000000
367
+ 2023-10-24 10:05:27,733 ----------------------------------------------------------------------------------------------------
368
+ 2023-10-24 10:05:27,734 EPOCH 2 done: loss 0.1124 - lr: 0.000027
369
+ 2023-10-24 10:05:36,219 DEV : loss 0.1031927615404129 - f1-score (micro avg) 0.8039
370
+ 2023-10-24 10:05:36,241 saving best model
371
+ 2023-10-24 10:05:36,964 ----------------------------------------------------------------------------------------------------
372
+ 2023-10-24 10:05:43,681 epoch 3 - iter 73/738 - loss 0.06142961 - time (sec): 6.72 - samples/sec: 2392.58 - lr: 0.000026 - momentum: 0.000000
373
+ 2023-10-24 10:05:50,369 epoch 3 - iter 146/738 - loss 0.06320856 - time (sec): 13.40 - samples/sec: 2398.13 - lr: 0.000026 - momentum: 0.000000
374
+ 2023-10-24 10:05:57,239 epoch 3 - iter 219/738 - loss 0.06406728 - time (sec): 20.27 - samples/sec: 2350.76 - lr: 0.000026 - momentum: 0.000000
375
+ 2023-10-24 10:06:04,920 epoch 3 - iter 292/738 - loss 0.06949115 - time (sec): 27.95 - samples/sec: 2363.73 - lr: 0.000025 - momentum: 0.000000
376
+ 2023-10-24 10:06:12,095 epoch 3 - iter 365/738 - loss 0.06948464 - time (sec): 35.13 - samples/sec: 2368.81 - lr: 0.000025 - momentum: 0.000000
377
+ 2023-10-24 10:06:18,669 epoch 3 - iter 438/738 - loss 0.06584312 - time (sec): 41.70 - samples/sec: 2376.09 - lr: 0.000025 - momentum: 0.000000
378
+ 2023-10-24 10:06:25,135 epoch 3 - iter 511/738 - loss 0.06518111 - time (sec): 48.17 - samples/sec: 2382.47 - lr: 0.000024 - momentum: 0.000000
379
+ 2023-10-24 10:06:32,856 epoch 3 - iter 584/738 - loss 0.06469238 - time (sec): 55.89 - samples/sec: 2372.12 - lr: 0.000024 - momentum: 0.000000
380
+ 2023-10-24 10:06:39,410 epoch 3 - iter 657/738 - loss 0.06589124 - time (sec): 62.45 - samples/sec: 2374.79 - lr: 0.000024 - momentum: 0.000000
381
+ 2023-10-24 10:06:46,704 epoch 3 - iter 730/738 - loss 0.06610678 - time (sec): 69.74 - samples/sec: 2361.48 - lr: 0.000023 - momentum: 0.000000
382
+ 2023-10-24 10:06:47,394 ----------------------------------------------------------------------------------------------------
383
+ 2023-10-24 10:06:47,394 EPOCH 3 done: loss 0.0660 - lr: 0.000023
384
+ 2023-10-24 10:06:55,870 DEV : loss 0.10477666556835175 - f1-score (micro avg) 0.822
385
+ 2023-10-24 10:06:55,892 saving best model
386
+ 2023-10-24 10:06:56,591 ----------------------------------------------------------------------------------------------------
387
+ 2023-10-24 10:07:03,333 epoch 4 - iter 73/738 - loss 0.04080442 - time (sec): 6.74 - samples/sec: 2324.73 - lr: 0.000023 - momentum: 0.000000
388
+ 2023-10-24 10:07:11,372 epoch 4 - iter 146/738 - loss 0.04335989 - time (sec): 14.78 - samples/sec: 2266.77 - lr: 0.000023 - momentum: 0.000000
389
+ 2023-10-24 10:07:18,506 epoch 4 - iter 219/738 - loss 0.04233301 - time (sec): 21.91 - samples/sec: 2373.52 - lr: 0.000022 - momentum: 0.000000
390
+ 2023-10-24 10:07:25,615 epoch 4 - iter 292/738 - loss 0.04153088 - time (sec): 29.02 - samples/sec: 2358.09 - lr: 0.000022 - momentum: 0.000000
391
+ 2023-10-24 10:07:32,101 epoch 4 - iter 365/738 - loss 0.04133152 - time (sec): 35.51 - samples/sec: 2370.06 - lr: 0.000022 - momentum: 0.000000
392
+ 2023-10-24 10:07:39,193 epoch 4 - iter 438/738 - loss 0.04256243 - time (sec): 42.60 - samples/sec: 2370.12 - lr: 0.000021 - momentum: 0.000000
393
+ 2023-10-24 10:07:46,147 epoch 4 - iter 511/738 - loss 0.04221785 - time (sec): 49.56 - samples/sec: 2352.83 - lr: 0.000021 - momentum: 0.000000
394
+ 2023-10-24 10:07:53,003 epoch 4 - iter 584/738 - loss 0.04300245 - time (sec): 56.41 - samples/sec: 2352.17 - lr: 0.000021 - momentum: 0.000000
395
+ 2023-10-24 10:08:00,219 epoch 4 - iter 657/738 - loss 0.04276968 - time (sec): 63.63 - samples/sec: 2342.79 - lr: 0.000020 - momentum: 0.000000
396
+ 2023-10-24 10:08:06,859 epoch 4 - iter 730/738 - loss 0.04317653 - time (sec): 70.27 - samples/sec: 2342.56 - lr: 0.000020 - momentum: 0.000000
397
+ 2023-10-24 10:08:07,592 ----------------------------------------------------------------------------------------------------
398
+ 2023-10-24 10:08:07,592 EPOCH 4 done: loss 0.0432 - lr: 0.000020
399
+ 2023-10-24 10:08:16,095 DEV : loss 0.152599036693573 - f1-score (micro avg) 0.8181
400
+ 2023-10-24 10:08:16,116 ----------------------------------------------------------------------------------------------------
401
+ 2023-10-24 10:08:23,270 epoch 5 - iter 73/738 - loss 0.03851342 - time (sec): 7.15 - samples/sec: 2259.95 - lr: 0.000020 - momentum: 0.000000
402
+ 2023-10-24 10:08:30,725 epoch 5 - iter 146/738 - loss 0.02771039 - time (sec): 14.61 - samples/sec: 2337.46 - lr: 0.000019 - momentum: 0.000000
403
+ 2023-10-24 10:08:37,294 epoch 5 - iter 219/738 - loss 0.03124182 - time (sec): 21.18 - samples/sec: 2370.01 - lr: 0.000019 - momentum: 0.000000
404
+ 2023-10-24 10:08:44,328 epoch 5 - iter 292/738 - loss 0.02900780 - time (sec): 28.21 - samples/sec: 2371.67 - lr: 0.000019 - momentum: 0.000000
405
+ 2023-10-24 10:08:51,054 epoch 5 - iter 365/738 - loss 0.02939080 - time (sec): 34.94 - samples/sec: 2388.23 - lr: 0.000018 - momentum: 0.000000
406
+ 2023-10-24 10:08:58,572 epoch 5 - iter 438/738 - loss 0.03158563 - time (sec): 42.45 - samples/sec: 2390.55 - lr: 0.000018 - momentum: 0.000000
407
+ 2023-10-24 10:09:05,161 epoch 5 - iter 511/738 - loss 0.03343792 - time (sec): 49.04 - samples/sec: 2377.13 - lr: 0.000018 - momentum: 0.000000
408
+ 2023-10-24 10:09:12,032 epoch 5 - iter 584/738 - loss 0.03263845 - time (sec): 55.91 - samples/sec: 2365.33 - lr: 0.000017 - momentum: 0.000000
409
+ 2023-10-24 10:09:18,863 epoch 5 - iter 657/738 - loss 0.03330939 - time (sec): 62.75 - samples/sec: 2355.58 - lr: 0.000017 - momentum: 0.000000
410
+ 2023-10-24 10:09:26,361 epoch 5 - iter 730/738 - loss 0.03263123 - time (sec): 70.24 - samples/sec: 2343.37 - lr: 0.000017 - momentum: 0.000000
411
+ 2023-10-24 10:09:27,040 ----------------------------------------------------------------------------------------------------
412
+ 2023-10-24 10:09:27,041 EPOCH 5 done: loss 0.0325 - lr: 0.000017
413
+ 2023-10-24 10:09:35,593 DEV : loss 0.16575849056243896 - f1-score (micro avg) 0.8262
414
+ 2023-10-24 10:09:35,615 saving best model
415
+ 2023-10-24 10:09:36,323 ----------------------------------------------------------------------------------------------------
416
+ 2023-10-24 10:09:44,530 epoch 6 - iter 73/738 - loss 0.02678751 - time (sec): 8.21 - samples/sec: 2432.33 - lr: 0.000016 - momentum: 0.000000
417
+ 2023-10-24 10:09:50,761 epoch 6 - iter 146/738 - loss 0.02291770 - time (sec): 14.44 - samples/sec: 2413.80 - lr: 0.000016 - momentum: 0.000000
418
+ 2023-10-24 10:09:58,454 epoch 6 - iter 219/738 - loss 0.02553640 - time (sec): 22.13 - samples/sec: 2340.90 - lr: 0.000016 - momentum: 0.000000
419
+ 2023-10-24 10:10:04,889 epoch 6 - iter 292/738 - loss 0.02480548 - time (sec): 28.56 - samples/sec: 2332.14 - lr: 0.000015 - momentum: 0.000000
420
+ 2023-10-24 10:10:11,608 epoch 6 - iter 365/738 - loss 0.02547611 - time (sec): 35.28 - samples/sec: 2353.19 - lr: 0.000015 - momentum: 0.000000
421
+ 2023-10-24 10:10:18,635 epoch 6 - iter 438/738 - loss 0.02484851 - time (sec): 42.31 - samples/sec: 2356.94 - lr: 0.000015 - momentum: 0.000000
422
+ 2023-10-24 10:10:25,292 epoch 6 - iter 511/738 - loss 0.02610251 - time (sec): 48.97 - samples/sec: 2361.14 - lr: 0.000014 - momentum: 0.000000
423
+ 2023-10-24 10:10:31,906 epoch 6 - iter 584/738 - loss 0.02565136 - time (sec): 55.58 - samples/sec: 2358.71 - lr: 0.000014 - momentum: 0.000000
424
+ 2023-10-24 10:10:38,251 epoch 6 - iter 657/738 - loss 0.02458488 - time (sec): 61.93 - samples/sec: 2358.32 - lr: 0.000014 - momentum: 0.000000
425
+ 2023-10-24 10:10:45,681 epoch 6 - iter 730/738 - loss 0.02431977 - time (sec): 69.36 - samples/sec: 2365.19 - lr: 0.000013 - momentum: 0.000000
426
+ 2023-10-24 10:10:46,741 ----------------------------------------------------------------------------------------------------
427
+ 2023-10-24 10:10:46,741 EPOCH 6 done: loss 0.0242 - lr: 0.000013
428
+ 2023-10-24 10:10:55,250 DEV : loss 0.19801990687847137 - f1-score (micro avg) 0.8271
429
+ 2023-10-24 10:10:55,271 saving best model
430
+ 2023-10-24 10:10:55,967 ----------------------------------------------------------------------------------------------------
431
+ 2023-10-24 10:11:02,824 epoch 7 - iter 73/738 - loss 0.01696546 - time (sec): 6.86 - samples/sec: 2413.99 - lr: 0.000013 - momentum: 0.000000
432
+ 2023-10-24 10:11:09,882 epoch 7 - iter 146/738 - loss 0.01294632 - time (sec): 13.91 - samples/sec: 2378.56 - lr: 0.000013 - momentum: 0.000000
433
+ 2023-10-24 10:11:17,288 epoch 7 - iter 219/738 - loss 0.01398777 - time (sec): 21.32 - samples/sec: 2369.26 - lr: 0.000012 - momentum: 0.000000
434
+ 2023-10-24 10:11:24,456 epoch 7 - iter 292/738 - loss 0.01547935 - time (sec): 28.49 - samples/sec: 2349.20 - lr: 0.000012 - momentum: 0.000000
435
+ 2023-10-24 10:11:31,386 epoch 7 - iter 365/738 - loss 0.01507352 - time (sec): 35.42 - samples/sec: 2339.48 - lr: 0.000012 - momentum: 0.000000
436
+ 2023-10-24 10:11:38,521 epoch 7 - iter 438/738 - loss 0.01688411 - time (sec): 42.55 - samples/sec: 2328.32 - lr: 0.000011 - momentum: 0.000000
437
+ 2023-10-24 10:11:46,033 epoch 7 - iter 511/738 - loss 0.01735857 - time (sec): 50.06 - samples/sec: 2335.27 - lr: 0.000011 - momentum: 0.000000
438
+ 2023-10-24 10:11:52,504 epoch 7 - iter 584/738 - loss 0.01711860 - time (sec): 56.54 - samples/sec: 2328.63 - lr: 0.000011 - momentum: 0.000000
439
+ 2023-10-24 10:11:58,762 epoch 7 - iter 657/738 - loss 0.01671606 - time (sec): 62.79 - samples/sec: 2345.39 - lr: 0.000010 - momentum: 0.000000
440
+ 2023-10-24 10:12:06,314 epoch 7 - iter 730/738 - loss 0.01629479 - time (sec): 70.35 - samples/sec: 2344.46 - lr: 0.000010 - momentum: 0.000000
441
+ 2023-10-24 10:12:06,944 ----------------------------------------------------------------------------------------------------
442
+ 2023-10-24 10:12:06,944 EPOCH 7 done: loss 0.0164 - lr: 0.000010
443
+ 2023-10-24 10:12:15,453 DEV : loss 0.2032857984304428 - f1-score (micro avg) 0.8268
444
+ 2023-10-24 10:12:15,475 ----------------------------------------------------------------------------------------------------
445
+ 2023-10-24 10:12:22,424 epoch 8 - iter 73/738 - loss 0.01216183 - time (sec): 6.95 - samples/sec: 2287.40 - lr: 0.000010 - momentum: 0.000000
446
+ 2023-10-24 10:12:29,512 epoch 8 - iter 146/738 - loss 0.01236948 - time (sec): 14.04 - samples/sec: 2336.90 - lr: 0.000009 - momentum: 0.000000
447
+ 2023-10-24 10:12:37,062 epoch 8 - iter 219/738 - loss 0.01044188 - time (sec): 21.59 - samples/sec: 2309.04 - lr: 0.000009 - momentum: 0.000000
448
+ 2023-10-24 10:12:43,982 epoch 8 - iter 292/738 - loss 0.01034487 - time (sec): 28.51 - samples/sec: 2346.41 - lr: 0.000009 - momentum: 0.000000
449
+ 2023-10-24 10:12:51,543 epoch 8 - iter 365/738 - loss 0.01126341 - time (sec): 36.07 - samples/sec: 2368.99 - lr: 0.000008 - momentum: 0.000000
450
+ 2023-10-24 10:12:58,262 epoch 8 - iter 438/738 - loss 0.01076147 - time (sec): 42.79 - samples/sec: 2353.67 - lr: 0.000008 - momentum: 0.000000
451
+ 2023-10-24 10:13:05,389 epoch 8 - iter 511/738 - loss 0.01075803 - time (sec): 49.91 - samples/sec: 2354.08 - lr: 0.000008 - momentum: 0.000000
452
+ 2023-10-24 10:13:12,279 epoch 8 - iter 584/738 - loss 0.01183127 - time (sec): 56.80 - samples/sec: 2342.58 - lr: 0.000007 - momentum: 0.000000
453
+ 2023-10-24 10:13:19,173 epoch 8 - iter 657/738 - loss 0.01204421 - time (sec): 63.70 - samples/sec: 2347.40 - lr: 0.000007 - momentum: 0.000000
454
+ 2023-10-24 10:13:25,559 epoch 8 - iter 730/738 - loss 0.01168359 - time (sec): 70.08 - samples/sec: 2351.74 - lr: 0.000007 - momentum: 0.000000
455
+ 2023-10-24 10:13:26,318 ----------------------------------------------------------------------------------------------------
456
+ 2023-10-24 10:13:26,318 EPOCH 8 done: loss 0.0116 - lr: 0.000007
457
+ 2023-10-24 10:13:34,847 DEV : loss 0.19606834650039673 - f1-score (micro avg) 0.8411
458
+ 2023-10-24 10:13:34,869 saving best model
459
+ 2023-10-24 10:13:35,564 ----------------------------------------------------------------------------------------------------
460
+ 2023-10-24 10:13:42,230 epoch 9 - iter 73/738 - loss 0.00325841 - time (sec): 6.67 - samples/sec: 2350.12 - lr: 0.000006 - momentum: 0.000000
461
+ 2023-10-24 10:13:49,266 epoch 9 - iter 146/738 - loss 0.00560515 - time (sec): 13.70 - samples/sec: 2327.56 - lr: 0.000006 - momentum: 0.000000
462
+ 2023-10-24 10:13:55,847 epoch 9 - iter 219/738 - loss 0.00871536 - time (sec): 20.28 - samples/sec: 2341.82 - lr: 0.000006 - momentum: 0.000000
463
+ 2023-10-24 10:14:03,005 epoch 9 - iter 292/738 - loss 0.00745041 - time (sec): 27.44 - samples/sec: 2358.00 - lr: 0.000005 - momentum: 0.000000
464
+ 2023-10-24 10:14:10,081 epoch 9 - iter 365/738 - loss 0.00721985 - time (sec): 34.52 - samples/sec: 2337.43 - lr: 0.000005 - momentum: 0.000000
465
+ 2023-10-24 10:14:16,553 epoch 9 - iter 438/738 - loss 0.00827858 - time (sec): 40.99 - samples/sec: 2344.81 - lr: 0.000005 - momentum: 0.000000
466
+ 2023-10-24 10:14:22,960 epoch 9 - iter 511/738 - loss 0.00832065 - time (sec): 47.39 - samples/sec: 2343.01 - lr: 0.000004 - momentum: 0.000000
467
+ 2023-10-24 10:14:30,542 epoch 9 - iter 584/738 - loss 0.00748758 - time (sec): 54.98 - samples/sec: 2349.55 - lr: 0.000004 - momentum: 0.000000
468
+ 2023-10-24 10:14:37,973 epoch 9 - iter 657/738 - loss 0.00872752 - time (sec): 62.41 - samples/sec: 2360.31 - lr: 0.000004 - momentum: 0.000000
469
+ 2023-10-24 10:14:45,591 epoch 9 - iter 730/738 - loss 0.00832303 - time (sec): 70.03 - samples/sec: 2355.51 - lr: 0.000003 - momentum: 0.000000
470
+ 2023-10-24 10:14:46,236 ----------------------------------------------------------------------------------------------------
471
+ 2023-10-24 10:14:46,236 EPOCH 9 done: loss 0.0083 - lr: 0.000003
472
+ 2023-10-24 10:14:54,743 DEV : loss 0.21085196733474731 - f1-score (micro avg) 0.8465
473
+ 2023-10-24 10:14:54,765 saving best model
474
+ 2023-10-24 10:14:55,461 ----------------------------------------------------------------------------------------------------
475
+ 2023-10-24 10:15:03,114 epoch 10 - iter 73/738 - loss 0.00225549 - time (sec): 7.65 - samples/sec: 2254.22 - lr: 0.000003 - momentum: 0.000000
476
+ 2023-10-24 10:15:09,825 epoch 10 - iter 146/738 - loss 0.00248018 - time (sec): 14.36 - samples/sec: 2313.87 - lr: 0.000003 - momentum: 0.000000
477
+ 2023-10-24 10:15:16,491 epoch 10 - iter 219/738 - loss 0.00258571 - time (sec): 21.03 - samples/sec: 2308.26 - lr: 0.000002 - momentum: 0.000000
478
+ 2023-10-24 10:15:23,656 epoch 10 - iter 292/738 - loss 0.00272149 - time (sec): 28.19 - samples/sec: 2317.62 - lr: 0.000002 - momentum: 0.000000
479
+ 2023-10-24 10:15:31,083 epoch 10 - iter 365/738 - loss 0.00322358 - time (sec): 35.62 - samples/sec: 2357.62 - lr: 0.000002 - momentum: 0.000000
480
+ 2023-10-24 10:15:38,019 epoch 10 - iter 438/738 - loss 0.00349996 - time (sec): 42.56 - samples/sec: 2352.67 - lr: 0.000001 - momentum: 0.000000
481
+ 2023-10-24 10:15:45,376 epoch 10 - iter 511/738 - loss 0.00398963 - time (sec): 49.91 - samples/sec: 2355.98 - lr: 0.000001 - momentum: 0.000000
482
+ 2023-10-24 10:15:52,559 epoch 10 - iter 584/738 - loss 0.00460257 - time (sec): 57.10 - samples/sec: 2352.17 - lr: 0.000001 - momentum: 0.000000
483
+ 2023-10-24 10:15:58,908 epoch 10 - iter 657/738 - loss 0.00450873 - time (sec): 63.45 - samples/sec: 2352.91 - lr: 0.000000 - momentum: 0.000000
484
+ 2023-10-24 10:16:05,753 epoch 10 - iter 730/738 - loss 0.00478145 - time (sec): 70.29 - samples/sec: 2345.44 - lr: 0.000000 - momentum: 0.000000
485
+ 2023-10-24 10:16:06,439 ----------------------------------------------------------------------------------------------------
486
+ 2023-10-24 10:16:06,440 EPOCH 10 done: loss 0.0048 - lr: 0.000000
487
+ 2023-10-24 10:16:14,959 DEV : loss 0.21770432591438293 - f1-score (micro avg) 0.8466
488
+ 2023-10-24 10:16:14,981 saving best model
489
+ 2023-10-24 10:16:16,242 ----------------------------------------------------------------------------------------------------
490
+ 2023-10-24 10:16:16,243 Loading model from best epoch ...
491
+ 2023-10-24 10:16:18,060 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
492
+ 2023-10-24 10:16:24,729
493
+ Results:
494
+ - F-score (micro) 0.7923
495
+ - F-score (macro) 0.7091
496
+ - Accuracy 0.6784
497
+
498
+ By class:
499
+ precision recall f1-score support
500
+
501
+ loc 0.8467 0.8753 0.8607 858
502
+ pers 0.7404 0.7914 0.7651 537
503
+ org 0.5532 0.5909 0.5714 132
504
+ time 0.5217 0.6667 0.5854 54
505
+ prod 0.7895 0.7377 0.7627 61
506
+
507
+ micro avg 0.7726 0.8130 0.7923 1642
508
+ macro avg 0.6903 0.7324 0.7091 1642
509
+ weighted avg 0.7755 0.8130 0.7935 1642
510
+
511
+ 2023-10-24 10:16:24,729 ----------------------------------------------------------------------------------------------------