File size: 24,094 Bytes
103bcc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
2023-10-20 00:21:21,464 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:21,465 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-20 00:21:21,465 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:21,465 MultiCorpus: 1085 train + 148 dev + 364 test sentences
 - NER_HIPE_2022 Corpus: 1085 train + 148 dev + 364 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/sv/with_doc_seperator
2023-10-20 00:21:21,465 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:21,465 Train:  1085 sentences
2023-10-20 00:21:21,465         (train_with_dev=False, train_with_test=False)
2023-10-20 00:21:21,465 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:21,465 Training Params:
2023-10-20 00:21:21,465  - learning_rate: "5e-05" 
2023-10-20 00:21:21,465  - mini_batch_size: "4"
2023-10-20 00:21:21,465  - max_epochs: "10"
2023-10-20 00:21:21,465  - shuffle: "True"
2023-10-20 00:21:21,465 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:21,465 Plugins:
2023-10-20 00:21:21,465  - TensorboardLogger
2023-10-20 00:21:21,465  - LinearScheduler | warmup_fraction: '0.1'
2023-10-20 00:21:21,465 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:21,465 Final evaluation on model from best epoch (best-model.pt)
2023-10-20 00:21:21,465  - metric: "('micro avg', 'f1-score')"
2023-10-20 00:21:21,465 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:21,465 Computation:
2023-10-20 00:21:21,465  - compute on device: cuda:0
2023-10-20 00:21:21,465  - embedding storage: none
2023-10-20 00:21:21,465 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:21,466 Model training base path: "hmbench-newseye/sv-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-20 00:21:21,466 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:21,466 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:21,466 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-20 00:21:21,957 epoch 1 - iter 27/272 - loss 3.46711403 - time (sec): 0.49 - samples/sec: 10461.58 - lr: 0.000005 - momentum: 0.000000
2023-10-20 00:21:22,439 epoch 1 - iter 54/272 - loss 3.46171750 - time (sec): 0.97 - samples/sec: 10681.11 - lr: 0.000010 - momentum: 0.000000
2023-10-20 00:21:22,883 epoch 1 - iter 81/272 - loss 3.28534633 - time (sec): 1.42 - samples/sec: 10814.77 - lr: 0.000015 - momentum: 0.000000
2023-10-20 00:21:23,443 epoch 1 - iter 108/272 - loss 3.01861422 - time (sec): 1.98 - samples/sec: 10633.83 - lr: 0.000020 - momentum: 0.000000
2023-10-20 00:21:23,941 epoch 1 - iter 135/272 - loss 2.80909491 - time (sec): 2.48 - samples/sec: 10406.50 - lr: 0.000025 - momentum: 0.000000
2023-10-20 00:21:24,476 epoch 1 - iter 162/272 - loss 2.54231157 - time (sec): 3.01 - samples/sec: 10303.95 - lr: 0.000030 - momentum: 0.000000
2023-10-20 00:21:24,983 epoch 1 - iter 189/272 - loss 2.31826568 - time (sec): 3.52 - samples/sec: 10208.09 - lr: 0.000035 - momentum: 0.000000
2023-10-20 00:21:25,506 epoch 1 - iter 216/272 - loss 2.08682730 - time (sec): 4.04 - samples/sec: 10358.94 - lr: 0.000040 - momentum: 0.000000
2023-10-20 00:21:26,020 epoch 1 - iter 243/272 - loss 1.91212120 - time (sec): 4.55 - samples/sec: 10466.68 - lr: 0.000044 - momentum: 0.000000
2023-10-20 00:21:26,487 epoch 1 - iter 270/272 - loss 1.80967208 - time (sec): 5.02 - samples/sec: 10325.73 - lr: 0.000049 - momentum: 0.000000
2023-10-20 00:21:26,520 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:26,520 EPOCH 1 done: loss 1.8069 - lr: 0.000049
2023-10-20 00:21:26,937 DEV : loss 0.4722510874271393 - f1-score (micro avg)  0.0
2023-10-20 00:21:26,940 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:27,456 epoch 2 - iter 27/272 - loss 0.61178694 - time (sec): 0.52 - samples/sec: 10248.65 - lr: 0.000049 - momentum: 0.000000
2023-10-20 00:21:27,965 epoch 2 - iter 54/272 - loss 0.57067838 - time (sec): 1.02 - samples/sec: 9816.81 - lr: 0.000049 - momentum: 0.000000
2023-10-20 00:21:28,449 epoch 2 - iter 81/272 - loss 0.56029945 - time (sec): 1.51 - samples/sec: 10217.88 - lr: 0.000048 - momentum: 0.000000
2023-10-20 00:21:28,950 epoch 2 - iter 108/272 - loss 0.54873035 - time (sec): 2.01 - samples/sec: 10325.13 - lr: 0.000048 - momentum: 0.000000
2023-10-20 00:21:29,435 epoch 2 - iter 135/272 - loss 0.55233991 - time (sec): 2.49 - samples/sec: 10424.92 - lr: 0.000047 - momentum: 0.000000
2023-10-20 00:21:29,953 epoch 2 - iter 162/272 - loss 0.54109234 - time (sec): 3.01 - samples/sec: 10331.23 - lr: 0.000047 - momentum: 0.000000
2023-10-20 00:21:30,466 epoch 2 - iter 189/272 - loss 0.52309886 - time (sec): 3.53 - samples/sec: 10393.81 - lr: 0.000046 - momentum: 0.000000
2023-10-20 00:21:30,960 epoch 2 - iter 216/272 - loss 0.51818871 - time (sec): 4.02 - samples/sec: 10345.08 - lr: 0.000046 - momentum: 0.000000
2023-10-20 00:21:31,472 epoch 2 - iter 243/272 - loss 0.51911854 - time (sec): 4.53 - samples/sec: 10371.98 - lr: 0.000045 - momentum: 0.000000
2023-10-20 00:21:31,966 epoch 2 - iter 270/272 - loss 0.52018264 - time (sec): 5.03 - samples/sec: 10319.19 - lr: 0.000045 - momentum: 0.000000
2023-10-20 00:21:31,994 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:31,995 EPOCH 2 done: loss 0.5211 - lr: 0.000045
2023-10-20 00:21:32,748 DEV : loss 0.3575037121772766 - f1-score (micro avg)  0.0408
2023-10-20 00:21:32,752 saving best model
2023-10-20 00:21:32,779 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:33,275 epoch 3 - iter 27/272 - loss 0.40786242 - time (sec): 0.50 - samples/sec: 10258.65 - lr: 0.000044 - momentum: 0.000000
2023-10-20 00:21:33,777 epoch 3 - iter 54/272 - loss 0.42946260 - time (sec): 1.00 - samples/sec: 10855.41 - lr: 0.000043 - momentum: 0.000000
2023-10-20 00:21:34,302 epoch 3 - iter 81/272 - loss 0.41328076 - time (sec): 1.52 - samples/sec: 10338.48 - lr: 0.000043 - momentum: 0.000000
2023-10-20 00:21:34,828 epoch 3 - iter 108/272 - loss 0.41615591 - time (sec): 2.05 - samples/sec: 10115.61 - lr: 0.000042 - momentum: 0.000000
2023-10-20 00:21:35,349 epoch 3 - iter 135/272 - loss 0.41543348 - time (sec): 2.57 - samples/sec: 10345.89 - lr: 0.000042 - momentum: 0.000000
2023-10-20 00:21:35,842 epoch 3 - iter 162/272 - loss 0.41142926 - time (sec): 3.06 - samples/sec: 10218.54 - lr: 0.000041 - momentum: 0.000000
2023-10-20 00:21:36,336 epoch 3 - iter 189/272 - loss 0.40845834 - time (sec): 3.56 - samples/sec: 10363.90 - lr: 0.000041 - momentum: 0.000000
2023-10-20 00:21:36,841 epoch 3 - iter 216/272 - loss 0.42242963 - time (sec): 4.06 - samples/sec: 10316.37 - lr: 0.000040 - momentum: 0.000000
2023-10-20 00:21:37,327 epoch 3 - iter 243/272 - loss 0.42454515 - time (sec): 4.55 - samples/sec: 10234.41 - lr: 0.000040 - momentum: 0.000000
2023-10-20 00:21:37,837 epoch 3 - iter 270/272 - loss 0.42731990 - time (sec): 5.06 - samples/sec: 10207.20 - lr: 0.000039 - momentum: 0.000000
2023-10-20 00:21:37,871 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:37,871 EPOCH 3 done: loss 0.4266 - lr: 0.000039
2023-10-20 00:21:38,629 DEV : loss 0.3016860783100128 - f1-score (micro avg)  0.1798
2023-10-20 00:21:38,633 saving best model
2023-10-20 00:21:38,664 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:39,141 epoch 4 - iter 27/272 - loss 0.39020834 - time (sec): 0.48 - samples/sec: 9628.52 - lr: 0.000038 - momentum: 0.000000
2023-10-20 00:21:39,583 epoch 4 - iter 54/272 - loss 0.38305660 - time (sec): 0.92 - samples/sec: 9183.83 - lr: 0.000038 - momentum: 0.000000
2023-10-20 00:21:40,088 epoch 4 - iter 81/272 - loss 0.38108401 - time (sec): 1.42 - samples/sec: 9963.30 - lr: 0.000037 - momentum: 0.000000
2023-10-20 00:21:40,568 epoch 4 - iter 108/272 - loss 0.37152231 - time (sec): 1.90 - samples/sec: 10128.14 - lr: 0.000037 - momentum: 0.000000
2023-10-20 00:21:41,090 epoch 4 - iter 135/272 - loss 0.37083389 - time (sec): 2.43 - samples/sec: 9998.37 - lr: 0.000036 - momentum: 0.000000
2023-10-20 00:21:41,640 epoch 4 - iter 162/272 - loss 0.37693631 - time (sec): 2.97 - samples/sec: 10410.48 - lr: 0.000036 - momentum: 0.000000
2023-10-20 00:21:42,164 epoch 4 - iter 189/272 - loss 0.37660175 - time (sec): 3.50 - samples/sec: 10495.63 - lr: 0.000035 - momentum: 0.000000
2023-10-20 00:21:42,659 epoch 4 - iter 216/272 - loss 0.38496790 - time (sec): 3.99 - samples/sec: 10395.82 - lr: 0.000034 - momentum: 0.000000
2023-10-20 00:21:43,184 epoch 4 - iter 243/272 - loss 0.38842763 - time (sec): 4.52 - samples/sec: 10340.72 - lr: 0.000034 - momentum: 0.000000
2023-10-20 00:21:43,684 epoch 4 - iter 270/272 - loss 0.38100025 - time (sec): 5.02 - samples/sec: 10307.69 - lr: 0.000033 - momentum: 0.000000
2023-10-20 00:21:43,717 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:43,717 EPOCH 4 done: loss 0.3806 - lr: 0.000033
2023-10-20 00:21:44,623 DEV : loss 0.28507402539253235 - f1-score (micro avg)  0.3513
2023-10-20 00:21:44,626 saving best model
2023-10-20 00:21:44,658 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:45,175 epoch 5 - iter 27/272 - loss 0.30924673 - time (sec): 0.52 - samples/sec: 10765.09 - lr: 0.000033 - momentum: 0.000000
2023-10-20 00:21:45,704 epoch 5 - iter 54/272 - loss 0.34869346 - time (sec): 1.04 - samples/sec: 9934.41 - lr: 0.000032 - momentum: 0.000000
2023-10-20 00:21:46,261 epoch 5 - iter 81/272 - loss 0.34272748 - time (sec): 1.60 - samples/sec: 9845.49 - lr: 0.000032 - momentum: 0.000000
2023-10-20 00:21:46,824 epoch 5 - iter 108/272 - loss 0.33624812 - time (sec): 2.16 - samples/sec: 9475.98 - lr: 0.000031 - momentum: 0.000000
2023-10-20 00:21:47,321 epoch 5 - iter 135/272 - loss 0.34768000 - time (sec): 2.66 - samples/sec: 9471.14 - lr: 0.000031 - momentum: 0.000000
2023-10-20 00:21:47,841 epoch 5 - iter 162/272 - loss 0.34735833 - time (sec): 3.18 - samples/sec: 9453.30 - lr: 0.000030 - momentum: 0.000000
2023-10-20 00:21:48,385 epoch 5 - iter 189/272 - loss 0.34992901 - time (sec): 3.73 - samples/sec: 9530.67 - lr: 0.000029 - momentum: 0.000000
2023-10-20 00:21:48,899 epoch 5 - iter 216/272 - loss 0.34923380 - time (sec): 4.24 - samples/sec: 9511.06 - lr: 0.000029 - momentum: 0.000000
2023-10-20 00:21:49,410 epoch 5 - iter 243/272 - loss 0.34680989 - time (sec): 4.75 - samples/sec: 9621.44 - lr: 0.000028 - momentum: 0.000000
2023-10-20 00:21:49,910 epoch 5 - iter 270/272 - loss 0.34720474 - time (sec): 5.25 - samples/sec: 9831.66 - lr: 0.000028 - momentum: 0.000000
2023-10-20 00:21:49,942 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:49,942 EPOCH 5 done: loss 0.3483 - lr: 0.000028
2023-10-20 00:21:50,740 DEV : loss 0.27170366048812866 - f1-score (micro avg)  0.4177
2023-10-20 00:21:50,744 saving best model
2023-10-20 00:21:50,777 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:51,258 epoch 6 - iter 27/272 - loss 0.34835965 - time (sec): 0.48 - samples/sec: 10640.77 - lr: 0.000027 - momentum: 0.000000
2023-10-20 00:21:51,754 epoch 6 - iter 54/272 - loss 0.35236544 - time (sec): 0.98 - samples/sec: 10347.26 - lr: 0.000027 - momentum: 0.000000
2023-10-20 00:21:52,225 epoch 6 - iter 81/272 - loss 0.34898421 - time (sec): 1.45 - samples/sec: 10363.93 - lr: 0.000026 - momentum: 0.000000
2023-10-20 00:21:52,743 epoch 6 - iter 108/272 - loss 0.34103544 - time (sec): 1.97 - samples/sec: 10239.48 - lr: 0.000026 - momentum: 0.000000
2023-10-20 00:21:53,267 epoch 6 - iter 135/272 - loss 0.34258782 - time (sec): 2.49 - samples/sec: 10292.90 - lr: 0.000025 - momentum: 0.000000
2023-10-20 00:21:53,748 epoch 6 - iter 162/272 - loss 0.34092986 - time (sec): 2.97 - samples/sec: 10268.06 - lr: 0.000024 - momentum: 0.000000
2023-10-20 00:21:54,282 epoch 6 - iter 189/272 - loss 0.33967518 - time (sec): 3.50 - samples/sec: 10554.34 - lr: 0.000024 - momentum: 0.000000
2023-10-20 00:21:54,766 epoch 6 - iter 216/272 - loss 0.34503779 - time (sec): 3.99 - samples/sec: 10493.61 - lr: 0.000023 - momentum: 0.000000
2023-10-20 00:21:55,274 epoch 6 - iter 243/272 - loss 0.33713653 - time (sec): 4.50 - samples/sec: 10472.18 - lr: 0.000023 - momentum: 0.000000
2023-10-20 00:21:55,750 epoch 6 - iter 270/272 - loss 0.33500603 - time (sec): 4.97 - samples/sec: 10390.02 - lr: 0.000022 - momentum: 0.000000
2023-10-20 00:21:55,782 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:55,783 EPOCH 6 done: loss 0.3345 - lr: 0.000022
2023-10-20 00:21:56,555 DEV : loss 0.2611343264579773 - f1-score (micro avg)  0.4743
2023-10-20 00:21:56,559 saving best model
2023-10-20 00:21:56,590 ----------------------------------------------------------------------------------------------------
2023-10-20 00:21:57,104 epoch 7 - iter 27/272 - loss 0.26414586 - time (sec): 0.51 - samples/sec: 10785.15 - lr: 0.000022 - momentum: 0.000000
2023-10-20 00:21:57,653 epoch 7 - iter 54/272 - loss 0.28507475 - time (sec): 1.06 - samples/sec: 10182.43 - lr: 0.000021 - momentum: 0.000000
2023-10-20 00:21:58,174 epoch 7 - iter 81/272 - loss 0.32465150 - time (sec): 1.58 - samples/sec: 10141.41 - lr: 0.000021 - momentum: 0.000000
2023-10-20 00:21:58,684 epoch 7 - iter 108/272 - loss 0.33301144 - time (sec): 2.09 - samples/sec: 9808.71 - lr: 0.000020 - momentum: 0.000000
2023-10-20 00:21:59,201 epoch 7 - iter 135/272 - loss 0.31522540 - time (sec): 2.61 - samples/sec: 9762.86 - lr: 0.000019 - momentum: 0.000000
2023-10-20 00:21:59,708 epoch 7 - iter 162/272 - loss 0.31244099 - time (sec): 3.12 - samples/sec: 9829.27 - lr: 0.000019 - momentum: 0.000000
2023-10-20 00:22:00,198 epoch 7 - iter 189/272 - loss 0.30460946 - time (sec): 3.61 - samples/sec: 9951.47 - lr: 0.000018 - momentum: 0.000000
2023-10-20 00:22:00,681 epoch 7 - iter 216/272 - loss 0.30823837 - time (sec): 4.09 - samples/sec: 9918.18 - lr: 0.000018 - momentum: 0.000000
2023-10-20 00:22:01,195 epoch 7 - iter 243/272 - loss 0.31442376 - time (sec): 4.60 - samples/sec: 10046.22 - lr: 0.000017 - momentum: 0.000000
2023-10-20 00:22:01,687 epoch 7 - iter 270/272 - loss 0.31608757 - time (sec): 5.10 - samples/sec: 10151.04 - lr: 0.000017 - momentum: 0.000000
2023-10-20 00:22:01,717 ----------------------------------------------------------------------------------------------------
2023-10-20 00:22:01,717 EPOCH 7 done: loss 0.3156 - lr: 0.000017
2023-10-20 00:22:02,477 DEV : loss 0.25722736120224 - f1-score (micro avg)  0.4912
2023-10-20 00:22:02,481 saving best model
2023-10-20 00:22:02,511 ----------------------------------------------------------------------------------------------------
2023-10-20 00:22:03,016 epoch 8 - iter 27/272 - loss 0.35861152 - time (sec): 0.50 - samples/sec: 9876.68 - lr: 0.000016 - momentum: 0.000000
2023-10-20 00:22:03,506 epoch 8 - iter 54/272 - loss 0.32562148 - time (sec): 0.99 - samples/sec: 10259.78 - lr: 0.000016 - momentum: 0.000000
2023-10-20 00:22:04,042 epoch 8 - iter 81/272 - loss 0.29992941 - time (sec): 1.53 - samples/sec: 10360.30 - lr: 0.000015 - momentum: 0.000000
2023-10-20 00:22:04,546 epoch 8 - iter 108/272 - loss 0.30456466 - time (sec): 2.03 - samples/sec: 10210.32 - lr: 0.000014 - momentum: 0.000000
2023-10-20 00:22:05,050 epoch 8 - iter 135/272 - loss 0.30766248 - time (sec): 2.54 - samples/sec: 10207.99 - lr: 0.000014 - momentum: 0.000000
2023-10-20 00:22:05,558 epoch 8 - iter 162/272 - loss 0.30300256 - time (sec): 3.05 - samples/sec: 10223.82 - lr: 0.000013 - momentum: 0.000000
2023-10-20 00:22:06,057 epoch 8 - iter 189/272 - loss 0.29664404 - time (sec): 3.55 - samples/sec: 10395.75 - lr: 0.000013 - momentum: 0.000000
2023-10-20 00:22:06,577 epoch 8 - iter 216/272 - loss 0.29539590 - time (sec): 4.07 - samples/sec: 10466.18 - lr: 0.000012 - momentum: 0.000000
2023-10-20 00:22:07,059 epoch 8 - iter 243/272 - loss 0.29947757 - time (sec): 4.55 - samples/sec: 10330.59 - lr: 0.000012 - momentum: 0.000000
2023-10-20 00:22:07,541 epoch 8 - iter 270/272 - loss 0.30317529 - time (sec): 5.03 - samples/sec: 10286.12 - lr: 0.000011 - momentum: 0.000000
2023-10-20 00:22:07,570 ----------------------------------------------------------------------------------------------------
2023-10-20 00:22:07,570 EPOCH 8 done: loss 0.3029 - lr: 0.000011
2023-10-20 00:22:08,345 DEV : loss 0.25111961364746094 - f1-score (micro avg)  0.5085
2023-10-20 00:22:08,348 saving best model
2023-10-20 00:22:08,384 ----------------------------------------------------------------------------------------------------
2023-10-20 00:22:08,889 epoch 9 - iter 27/272 - loss 0.29468874 - time (sec): 0.50 - samples/sec: 10627.07 - lr: 0.000011 - momentum: 0.000000
2023-10-20 00:22:09,377 epoch 9 - iter 54/272 - loss 0.28721000 - time (sec): 0.99 - samples/sec: 10287.41 - lr: 0.000010 - momentum: 0.000000
2023-10-20 00:22:09,867 epoch 9 - iter 81/272 - loss 0.30800265 - time (sec): 1.48 - samples/sec: 10078.94 - lr: 0.000009 - momentum: 0.000000
2023-10-20 00:22:10,363 epoch 9 - iter 108/272 - loss 0.30773883 - time (sec): 1.98 - samples/sec: 10143.35 - lr: 0.000009 - momentum: 0.000000
2023-10-20 00:22:10,880 epoch 9 - iter 135/272 - loss 0.30764331 - time (sec): 2.49 - samples/sec: 10622.48 - lr: 0.000008 - momentum: 0.000000
2023-10-20 00:22:11,333 epoch 9 - iter 162/272 - loss 0.30584889 - time (sec): 2.95 - samples/sec: 10761.15 - lr: 0.000008 - momentum: 0.000000
2023-10-20 00:22:11,816 epoch 9 - iter 189/272 - loss 0.30001539 - time (sec): 3.43 - samples/sec: 10584.33 - lr: 0.000007 - momentum: 0.000000
2023-10-20 00:22:12,318 epoch 9 - iter 216/272 - loss 0.29759046 - time (sec): 3.93 - samples/sec: 10478.54 - lr: 0.000007 - momentum: 0.000000
2023-10-20 00:22:12,847 epoch 9 - iter 243/272 - loss 0.29325136 - time (sec): 4.46 - samples/sec: 10481.70 - lr: 0.000006 - momentum: 0.000000
2023-10-20 00:22:13,356 epoch 9 - iter 270/272 - loss 0.29409257 - time (sec): 4.97 - samples/sec: 10419.18 - lr: 0.000006 - momentum: 0.000000
2023-10-20 00:22:13,385 ----------------------------------------------------------------------------------------------------
2023-10-20 00:22:13,385 EPOCH 9 done: loss 0.2944 - lr: 0.000006
2023-10-20 00:22:14,303 DEV : loss 0.24987336993217468 - f1-score (micro avg)  0.5047
2023-10-20 00:22:14,307 ----------------------------------------------------------------------------------------------------
2023-10-20 00:22:14,773 epoch 10 - iter 27/272 - loss 0.32141785 - time (sec): 0.47 - samples/sec: 10482.29 - lr: 0.000005 - momentum: 0.000000
2023-10-20 00:22:15,272 epoch 10 - iter 54/272 - loss 0.31702834 - time (sec): 0.96 - samples/sec: 10922.56 - lr: 0.000004 - momentum: 0.000000
2023-10-20 00:22:15,739 epoch 10 - iter 81/272 - loss 0.29843000 - time (sec): 1.43 - samples/sec: 10748.54 - lr: 0.000004 - momentum: 0.000000
2023-10-20 00:22:16,241 epoch 10 - iter 108/272 - loss 0.29486713 - time (sec): 1.93 - samples/sec: 10407.84 - lr: 0.000003 - momentum: 0.000000
2023-10-20 00:22:16,724 epoch 10 - iter 135/272 - loss 0.30815187 - time (sec): 2.42 - samples/sec: 10305.36 - lr: 0.000003 - momentum: 0.000000
2023-10-20 00:22:17,232 epoch 10 - iter 162/272 - loss 0.30545146 - time (sec): 2.92 - samples/sec: 10301.34 - lr: 0.000002 - momentum: 0.000000
2023-10-20 00:22:17,717 epoch 10 - iter 189/272 - loss 0.29883950 - time (sec): 3.41 - samples/sec: 10355.45 - lr: 0.000002 - momentum: 0.000000
2023-10-20 00:22:18,228 epoch 10 - iter 216/272 - loss 0.29494759 - time (sec): 3.92 - samples/sec: 10502.29 - lr: 0.000001 - momentum: 0.000000
2023-10-20 00:22:18,754 epoch 10 - iter 243/272 - loss 0.28921084 - time (sec): 4.45 - samples/sec: 10547.46 - lr: 0.000001 - momentum: 0.000000
2023-10-20 00:22:19,264 epoch 10 - iter 270/272 - loss 0.28845308 - time (sec): 4.96 - samples/sec: 10461.24 - lr: 0.000000 - momentum: 0.000000
2023-10-20 00:22:19,292 ----------------------------------------------------------------------------------------------------
2023-10-20 00:22:19,292 EPOCH 10 done: loss 0.2903 - lr: 0.000000
2023-10-20 00:22:20,053 DEV : loss 0.2502773106098175 - f1-score (micro avg)  0.4971
2023-10-20 00:22:20,083 ----------------------------------------------------------------------------------------------------
2023-10-20 00:22:20,083 Loading model from best epoch ...
2023-10-20 00:22:20,162 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-20 00:22:20,978 
Results:
- F-score (micro) 0.3892
- F-score (macro) 0.199
- Accuracy 0.2555

By class:
              precision    recall  f1-score   support

         LOC     0.4795    0.5609    0.5170       312
         PER     0.2359    0.3413    0.2790       208
         ORG     0.0000    0.0000    0.0000        55
   HumanProd     0.0000    0.0000    0.0000        22

   micro avg     0.3688    0.4121    0.3892       597
   macro avg     0.1788    0.2256    0.1990       597
weighted avg     0.3328    0.4121    0.3674       597

2023-10-20 00:22:20,979 ----------------------------------------------------------------------------------------------------