File size: 14,820 Bytes
da0a26f
 
 
 
 
d3fe64e
da0a26f
 
 
 
 
 
d3fe64e
 
da0a26f
d3fe64e
 
da0a26f
 
d3fe64e
da0a26f
 
 
d3fe64e
da0a26f
 
 
 
 
 
 
d3fe64e
da0a26f
d3fe64e
 
 
 
 
da0a26f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- HuggingFaceFW/fineweb
metrics:
- accuracy
model-index:
- name: T5Laa2-Large-WeightedLoss
  results:
  - task:
      name: Causal Language Modeling
      type: text-generation
    dataset:
      name: HuggingFaceFW/fineweb sample-350BT
      type: HuggingFaceFW/fineweb
      config: default
      split: train
      args: sample-350BT
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.03730665362035225
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# T5Laa2-Large-WeightedLoss

This model is a fine-tuned version of [](https://huggingface.co/) on the HuggingFaceFW/fineweb sample-350BT dataset.
It achieves the following results on the evaluation set:
- Perplexity: 184.5759
- Loss: 5.2181
- Accuracy: 0.0373
- Lookahead Perplexity: 2089.7438
- Lookahead Loss: 7.6448

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 524288

### Training results

| Training Loss | Epoch  | Step   | Accuracy | Lookahead Loss | Lookahead Perplexity       | Validation Loss | Perplexity |
|:-------------:|:------:|:------:|:--------:|:--------------:|:--------------------------:|:---------------:|:----------:|
| 6.7799        | 0.0095 | 5000   | 0.0277   | 48.3492        | 994884838669032751104.0000 | 6.6288          | 756.5394   |
| 6.3701        | 0.0191 | 10000  | 0.0298   | 29.9422        | 10086010098930.062         | 6.2896          | 538.9212   |
| 6.1926        | 0.0286 | 15000  | 0.0310   | 17.4292        | 37103420.1102              | 6.0969          | 444.4629   |
| 6.058         | 0.0381 | 20000  | 0.0312   | 11.2096        | 73837.0007                 | 5.9705          | 391.7203   |
| 5.9483        | 0.0477 | 25000  | 0.0318   | 8.7609         | 6379.6106                  | 5.8987          | 364.5553   |
| 5.8936        | 0.0572 | 30000  | 0.0317   | 8.6431         | 5671.1388                  | 5.9102          | 368.7617   |
| 5.9237        | 0.0668 | 35000  | 0.0342   | 8.5313         | 5070.9207                  | 5.8056          | 332.1394   |
| 5.8761        | 0.0763 | 40000  | 0.0346   | 8.3857         | 4383.7940                  | 5.7683          | 319.9989   |
| 5.8407        | 0.0858 | 45000  | 0.0353   | 8.6143         | 5509.9856                  | 5.7586          | 316.8908   |
| 5.9167        | 0.0954 | 50000  | 0.0354   | 8.6580         | 5755.8949                  | 5.7596          | 317.2192   |
| 6.0003        | 0.1049 | 55000  | 0.0359   | 8.7358         | 6221.9875                  | 5.7997          | 330.1962   |
| 5.9179        | 0.1144 | 60000  | 0.0379   | 8.6974         | 5987.3140                  | 5.7904          | 327.1379   |
| 5.9174        | 0.1240 | 65000  | 0.0384   | 8.5412         | 5121.6778                  | 5.8089          | 333.2610   |
| 5.9954        | 0.1335 | 70000  | 0.0393   | 8.5149         | 4988.5368                  | 5.8409          | 344.0949   |
| 6.0362        | 0.1431 | 75000  | 0.0400   | 8.3793         | 4356.0051                  | 5.8705          | 354.4363   |
| 5.8366        | 0.1526 | 80000  | 0.0393   | 8.2272         | 3741.2679                  | 5.8130          | 334.6056   |
| 6.0205        | 0.1621 | 85000  | 0.0392   | 8.5779         | 5313.1989                  | 5.7982          | 329.6925   |
| 5.973         | 0.1717 | 90000  | 0.0398   | 8.8638         | 7071.0320                  | 5.8446          | 345.3771   |
| 5.9258        | 0.1812 | 95000  | 0.0400   | 8.1622         | 3505.8012                  | 5.7733          | 321.5895   |
| 5.8746        | 0.1907 | 100000 | 0.0403   | 8.2517         | 3834.1854                  | 5.7572          | 316.4552   |
| 5.9069        | 0.2003 | 105000 | 0.0402   | 8.2418         | 3796.3680                  | 5.7586          | 316.9171   |
| 5.9402        | 0.2098 | 110000 | 0.0400   | 8.5282         | 5055.2648                  | 5.7703          | 320.6236   |
| 5.8692        | 0.2193 | 115000 | 0.0405   | 8.3863         | 4386.4832                  | 5.7466          | 313.1122   |
| 5.9973        | 0.2289 | 120000 | 0.0394   | 8.6531         | 5727.7346                  | 5.7815          | 324.2362   |
| 5.8888        | 0.2384 | 125000 | 0.0402   | 8.1073         | 3318.6616                  | 5.7300          | 307.9743   |
| 5.9601        | 0.2480 | 130000 | 0.0409   | 8.6942         | 5968.4347                  | 5.7525          | 314.9845   |
| 5.8925        | 0.2575 | 135000 | 0.0405   | 8.1664         | 3520.7167                  | 5.7142          | 303.1319   |
| 5.8557        | 0.2670 | 140000 | 0.0401   | 7.9957         | 2968.1186                  | 5.6992          | 298.6369   |
| 5.8511        | 0.2766 | 145000 | 0.0402   | 7.9752         | 2907.9587                  | 5.7048          | 300.3090   |
| 5.8921        | 0.2861 | 150000 | 0.0407   | 7.9627         | 2871.8322                  | 5.6648          | 288.5226   |
| 5.8002        | 0.2956 | 155000 | 0.0400   | 7.8912         | 2673.5755                  | 5.6494          | 284.1184   |
| 5.8017        | 0.3052 | 160000 | 0.0400   | 8.0297         | 3070.7274                  | 5.6654          | 288.7003   |
| 5.8462        | 0.3147 | 165000 | 0.0405   | 7.9691         | 2890.2133                  | 5.6639          | 288.2660   |
| 5.8635        | 0.3242 | 170000 | 0.0403   | 8.2405         | 3791.4329                  | 5.6655          | 288.7322   |
| 5.7894        | 0.3338 | 175000 | 0.0399   | 8.0391         | 3099.9643                  | 5.6634          | 288.1246   |
| 5.9122        | 0.3433 | 180000 | 0.0411   | 8.0436         | 3113.8276                  | 5.6549          | 285.6828   |
| 5.8401        | 0.3529 | 185000 | 0.0409   | 8.2639         | 3881.1753                  | 5.6554          | 285.8374   |
| 5.8252        | 0.3624 | 190000 | 0.0408   | 7.9751         | 2907.7520                  | 5.6592          | 286.9267   |
| 5.8975        | 0.3719 | 195000 | 0.0405   | 7.9789         | 2918.8320                  | 5.6414          | 281.8590   |
| 5.8008        | 0.3815 | 200000 | 0.0393   | 7.8772         | 2636.5364                  | 5.6323          | 279.2986   |
| 5.776         | 0.3910 | 205000 | 0.0401   | 7.9352         | 2793.9517                  | 5.6288          | 278.3158   |
| 5.8825        | 0.4005 | 210000 | 0.0401   | 7.9805         | 2923.3879                  | 5.6192          | 275.6601   |
| 5.7651        | 0.4101 | 215000 | 0.0400   | 7.9989         | 2977.7573                  | 5.5993          | 270.2366   |
| 5.7721        | 0.4196 | 220000 | 0.0406   | 7.8928         | 2677.9319                  | 5.5979          | 269.8660   |
| 5.8312        | 0.4292 | 225000 | 0.0396   | 8.0192         | 3038.8659                  | 5.6054          | 271.8775   |
| 5.7752        | 0.4387 | 230000 | 0.0405   | 7.8009         | 2442.8390                  | 5.5823          | 265.6886   |
| 5.8101        | 0.4482 | 235000 | 0.0397   | 7.8881         | 2665.3761                  | 5.5903          | 267.8042   |
| 5.7115        | 0.4578 | 240000 | 0.0400   | 7.9381         | 2802.0555                  | 5.5694          | 262.2645   |
| 5.7196        | 0.4673 | 245000 | 0.0394   | 7.8143         | 2475.7568                  | 5.5596          | 259.7104   |
| 5.6944        | 0.4768 | 250000 | 0.0409   | 7.8772         | 2636.5595                  | 5.5478          | 256.6677   |
| 5.6823        | 0.4864 | 255000 | 0.0395   | 7.7952         | 2428.9769                  | 5.5298          | 252.0854   |
| 5.674         | 0.4959 | 260000 | 0.0399   | 7.8926         | 2677.4051                  | 5.5318          | 252.5954   |
| 5.6606        | 0.5054 | 265000 | 0.0400   | 7.8189         | 2487.2421                  | 5.5178          | 249.0964   |
| 5.7097        | 0.5150 | 270000 | 0.0395   | 7.8465         | 2556.6945                  | 5.5101          | 247.1704   |
| 5.7047        | 0.5245 | 275000 | 0.0402   | 7.7667         | 2360.7532                  | 5.5015          | 245.0604   |
| 5.6797        | 0.5341 | 280000 | 0.0397   | 7.8969         | 2688.8862                  | 5.4982          | 244.2633   |
| 5.6739        | 0.5436 | 285000 | 0.0398   | 8.0241         | 3053.8151                  | 5.4930          | 242.9751   |
| 5.6826        | 0.5531 | 290000 | 0.0397   | 7.9106         | 2726.0737                  | 5.4990          | 244.4371   |
| 5.7864        | 0.5627 | 295000 | 0.0397   | 7.8498         | 2565.2361                  | 5.4800          | 239.8371   |
| 5.6506        | 0.5722 | 300000 | 0.0401   | 7.9694         | 2891.0478                  | 5.4805          | 239.9755   |
| 5.6403        | 0.5817 | 305000 | 0.0390   | 7.8301         | 2515.0960                  | 5.4738          | 238.3728   |
| 5.6538        | 0.5913 | 310000 | 0.0398   | 7.8934         | 2679.4140                  | 5.4811          | 240.0990   |
| 5.6665        | 0.6008 | 315000 | 0.0399   | 7.8407         | 2541.9513                  | 5.4566          | 234.3107   |
| 5.5755        | 0.6104 | 320000 | 232.2292 | 5.4477         | 0.0395                     | 2593.5901       | 7.8608     |
| 5.641         | 0.6199 | 325000 | 231.2019 | 5.4433         | 0.0394                     | 2925.4813       | 7.9812     |
| 5.6113        | 0.6294 | 330000 | 229.7290 | 5.4369         | 0.0391                     | 2471.8038       | 7.8127     |
| 5.6697        | 0.6390 | 335000 | 229.2882 | 5.4350         | 0.0394                     | 2709.0417       | 7.9044     |
| 5.6425        | 0.6485 | 340000 | 228.1699 | 5.4301         | 0.0397                     | 2550.9241       | 7.8442     |
| 5.626         | 0.6580 | 345000 | 226.4364 | 5.4225         | 0.0391                     | 2601.7519       | 7.8639     |
| 5.5888        | 0.6676 | 350000 | 225.6680 | 5.4191         | 0.0394                     | 2929.0955       | 7.9824     |
| 5.5793        | 0.6771 | 355000 | 224.6552 | 5.4146         | 0.0389                     | 3111.5742       | 8.0429     |
| 5.5751        | 0.6866 | 360000 | 222.2638 | 5.4039         | 0.0385                     | 2507.0953       | 7.8269     |
| 5.5659        | 0.6962 | 365000 | 219.8554 | 5.3930         | 0.0388                     | 2442.3736       | 7.8007     |
| 5.6128        | 0.7057 | 370000 | 217.8869 | 5.3840         | 0.0385                     | 2365.9076       | 7.7689     |
| 5.5471        | 0.7153 | 375000 | 216.1903 | 5.3762         | 0.0380                     | 2286.1222       | 7.7346     |
| 5.5468        | 0.7248 | 380000 | 214.2540 | 5.3672         | 0.0387                     | 2292.4794       | 7.7374     |
| 5.5354        | 0.7343 | 385000 | 211.9470 | 5.3563         | 0.0383                     | 2245.4357       | 7.7167     |
| 5.5659        | 0.7439 | 390000 | 210.5267 | 5.3496         | 0.0384                     | 2303.3757       | 7.7421     |
| 5.5114        | 0.7534 | 395000 | 209.1623 | 5.3431         | 0.0382                     | 2344.8778       | 7.7600     |
| 5.5024        | 0.7629 | 400000 | 207.8823 | 5.3370         | 0.0383                     | 2387.2802       | 7.7779     |
| 5.5723        | 0.7725 | 405000 | 206.5772 | 5.3307         | 0.0381                     | 2312.2991       | 7.7460     |
| 5.4679        | 0.7820 | 410000 | 204.4713 | 5.3204         | 0.0384                     | 2225.5773       | 7.7078     |
| 5.5022        | 0.7915 | 415000 | 202.6541 | 5.3115         | 0.0379                     | 2216.8935       | 7.7039     |
| 5.4582        | 0.8011 | 420000 | 202.3064 | 5.3098         | 0.0382                     | 2253.1685       | 7.7201     |
| 5.4716        | 0.8106 | 425000 | 199.9121 | 5.2979         | 0.0379                     | 2201.0493       | 7.6967     |
| 5.4742        | 0.8202 | 430000 | 199.2166 | 5.2944         | 0.0379                     | 2221.2136       | 7.7058     |
| 5.456         | 0.8297 | 435000 | 197.5286 | 5.2859         | 0.0378                     | 2275.2305       | 7.7298     |
| 5.4751        | 0.8392 | 440000 | 196.2503 | 5.2794         | 0.0380                     | 2230.8815       | 7.7102     |
| 5.4628        | 0.8488 | 445000 | 195.3121 | 5.2746         | 0.0379                     | 2281.6319       | 7.7326     |
| 5.3535        | 0.8583 | 450000 | 195.0385 | 5.2732         | 0.0377                     | 2178.3606       | 7.6863     |
| 5.5193        | 0.8678 | 455000 | 193.3610 | 5.2646         | 0.0380                     | 2221.9979       | 7.7062     |
| 5.4747        | 0.8774 | 460000 | 192.5007 | 5.2601         | 0.0374                     | 2183.6563       | 7.6888     |
| 5.4077        | 0.8869 | 465000 | 191.1322 | 5.2530         | 0.0375                     | 2137.0722       | 7.6672     |
| 5.4288        | 0.8965 | 470000 | 190.2730 | 5.2485         | 0.0377                     | 2108.7450       | 7.6538     |
| 5.4653        | 0.9060 | 475000 | 189.7327 | 5.2456         | 0.0377                     | 2132.3223       | 7.6650     |
| 5.3929        | 0.9155 | 480000 | 188.8477 | 5.2409         | 0.0376                     | 2122.3287       | 7.6603     |
| 5.405         | 0.9251 | 485000 | 187.7804 | 5.2353         | 0.0374                     | 2107.0023       | 7.6530     |
| 5.4504        | 0.9346 | 490000 | 187.0694 | 5.2315         | 0.0374                     | 2111.6347       | 7.6552     |
| 5.4217        | 0.9441 | 495000 | 186.9062 | 5.2306         | 0.0374                     | 2110.7966       | 7.6548     |
| 5.4109        | 0.9537 | 500000 | 185.9346 | 5.2254         | 0.0372                     | 2099.9909       | 7.6497     |
| 5.3892        | 1.0095 | 505000 | 185.5628 | 5.2234         | 0.0374                     | 2097.9349       | 7.6487     |
| 5.3806        | 1.0191 | 510000 | 184.9853 | 5.2203         | 0.0374                     | 2092.8939       | 7.6463     |
| 5.4174        | 1.0286 | 515000 | 184.8205 | 5.2194         | 0.0375                     | 2090.1261       | 7.6450     |
| 5.4017        | 1.0381 | 520000 | 184.6505 | 5.2185         | 0.0374                     | 2090.0473       | 7.6449     |


### Framework versions

- Transformers 4.57.0.dev0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1