File size: 14,820 Bytes
da0a26f d3fe64e da0a26f d3fe64e da0a26f d3fe64e da0a26f d3fe64e da0a26f d3fe64e da0a26f d3fe64e da0a26f d3fe64e da0a26f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- HuggingFaceFW/fineweb
metrics:
- accuracy
model-index:
- name: T5Laa2-Large-WeightedLoss
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: HuggingFaceFW/fineweb sample-350BT
type: HuggingFaceFW/fineweb
config: default
split: train
args: sample-350BT
metrics:
- name: Accuracy
type: accuracy
value: 0.03730665362035225
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# T5Laa2-Large-WeightedLoss
This model is a fine-tuned version of [](https://huggingface.co/) on the HuggingFaceFW/fineweb sample-350BT dataset.
It achieves the following results on the evaluation set:
- Perplexity: 184.5759
- Loss: 5.2181
- Accuracy: 0.0373
- Lookahead Perplexity: 2089.7438
- Lookahead Loss: 7.6448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 524288
### Training results
| Training Loss | Epoch | Step | Accuracy | Lookahead Loss | Lookahead Perplexity | Validation Loss | Perplexity |
|:-------------:|:------:|:------:|:--------:|:--------------:|:--------------------------:|:---------------:|:----------:|
| 6.7799 | 0.0095 | 5000 | 0.0277 | 48.3492 | 994884838669032751104.0000 | 6.6288 | 756.5394 |
| 6.3701 | 0.0191 | 10000 | 0.0298 | 29.9422 | 10086010098930.062 | 6.2896 | 538.9212 |
| 6.1926 | 0.0286 | 15000 | 0.0310 | 17.4292 | 37103420.1102 | 6.0969 | 444.4629 |
| 6.058 | 0.0381 | 20000 | 0.0312 | 11.2096 | 73837.0007 | 5.9705 | 391.7203 |
| 5.9483 | 0.0477 | 25000 | 0.0318 | 8.7609 | 6379.6106 | 5.8987 | 364.5553 |
| 5.8936 | 0.0572 | 30000 | 0.0317 | 8.6431 | 5671.1388 | 5.9102 | 368.7617 |
| 5.9237 | 0.0668 | 35000 | 0.0342 | 8.5313 | 5070.9207 | 5.8056 | 332.1394 |
| 5.8761 | 0.0763 | 40000 | 0.0346 | 8.3857 | 4383.7940 | 5.7683 | 319.9989 |
| 5.8407 | 0.0858 | 45000 | 0.0353 | 8.6143 | 5509.9856 | 5.7586 | 316.8908 |
| 5.9167 | 0.0954 | 50000 | 0.0354 | 8.6580 | 5755.8949 | 5.7596 | 317.2192 |
| 6.0003 | 0.1049 | 55000 | 0.0359 | 8.7358 | 6221.9875 | 5.7997 | 330.1962 |
| 5.9179 | 0.1144 | 60000 | 0.0379 | 8.6974 | 5987.3140 | 5.7904 | 327.1379 |
| 5.9174 | 0.1240 | 65000 | 0.0384 | 8.5412 | 5121.6778 | 5.8089 | 333.2610 |
| 5.9954 | 0.1335 | 70000 | 0.0393 | 8.5149 | 4988.5368 | 5.8409 | 344.0949 |
| 6.0362 | 0.1431 | 75000 | 0.0400 | 8.3793 | 4356.0051 | 5.8705 | 354.4363 |
| 5.8366 | 0.1526 | 80000 | 0.0393 | 8.2272 | 3741.2679 | 5.8130 | 334.6056 |
| 6.0205 | 0.1621 | 85000 | 0.0392 | 8.5779 | 5313.1989 | 5.7982 | 329.6925 |
| 5.973 | 0.1717 | 90000 | 0.0398 | 8.8638 | 7071.0320 | 5.8446 | 345.3771 |
| 5.9258 | 0.1812 | 95000 | 0.0400 | 8.1622 | 3505.8012 | 5.7733 | 321.5895 |
| 5.8746 | 0.1907 | 100000 | 0.0403 | 8.2517 | 3834.1854 | 5.7572 | 316.4552 |
| 5.9069 | 0.2003 | 105000 | 0.0402 | 8.2418 | 3796.3680 | 5.7586 | 316.9171 |
| 5.9402 | 0.2098 | 110000 | 0.0400 | 8.5282 | 5055.2648 | 5.7703 | 320.6236 |
| 5.8692 | 0.2193 | 115000 | 0.0405 | 8.3863 | 4386.4832 | 5.7466 | 313.1122 |
| 5.9973 | 0.2289 | 120000 | 0.0394 | 8.6531 | 5727.7346 | 5.7815 | 324.2362 |
| 5.8888 | 0.2384 | 125000 | 0.0402 | 8.1073 | 3318.6616 | 5.7300 | 307.9743 |
| 5.9601 | 0.2480 | 130000 | 0.0409 | 8.6942 | 5968.4347 | 5.7525 | 314.9845 |
| 5.8925 | 0.2575 | 135000 | 0.0405 | 8.1664 | 3520.7167 | 5.7142 | 303.1319 |
| 5.8557 | 0.2670 | 140000 | 0.0401 | 7.9957 | 2968.1186 | 5.6992 | 298.6369 |
| 5.8511 | 0.2766 | 145000 | 0.0402 | 7.9752 | 2907.9587 | 5.7048 | 300.3090 |
| 5.8921 | 0.2861 | 150000 | 0.0407 | 7.9627 | 2871.8322 | 5.6648 | 288.5226 |
| 5.8002 | 0.2956 | 155000 | 0.0400 | 7.8912 | 2673.5755 | 5.6494 | 284.1184 |
| 5.8017 | 0.3052 | 160000 | 0.0400 | 8.0297 | 3070.7274 | 5.6654 | 288.7003 |
| 5.8462 | 0.3147 | 165000 | 0.0405 | 7.9691 | 2890.2133 | 5.6639 | 288.2660 |
| 5.8635 | 0.3242 | 170000 | 0.0403 | 8.2405 | 3791.4329 | 5.6655 | 288.7322 |
| 5.7894 | 0.3338 | 175000 | 0.0399 | 8.0391 | 3099.9643 | 5.6634 | 288.1246 |
| 5.9122 | 0.3433 | 180000 | 0.0411 | 8.0436 | 3113.8276 | 5.6549 | 285.6828 |
| 5.8401 | 0.3529 | 185000 | 0.0409 | 8.2639 | 3881.1753 | 5.6554 | 285.8374 |
| 5.8252 | 0.3624 | 190000 | 0.0408 | 7.9751 | 2907.7520 | 5.6592 | 286.9267 |
| 5.8975 | 0.3719 | 195000 | 0.0405 | 7.9789 | 2918.8320 | 5.6414 | 281.8590 |
| 5.8008 | 0.3815 | 200000 | 0.0393 | 7.8772 | 2636.5364 | 5.6323 | 279.2986 |
| 5.776 | 0.3910 | 205000 | 0.0401 | 7.9352 | 2793.9517 | 5.6288 | 278.3158 |
| 5.8825 | 0.4005 | 210000 | 0.0401 | 7.9805 | 2923.3879 | 5.6192 | 275.6601 |
| 5.7651 | 0.4101 | 215000 | 0.0400 | 7.9989 | 2977.7573 | 5.5993 | 270.2366 |
| 5.7721 | 0.4196 | 220000 | 0.0406 | 7.8928 | 2677.9319 | 5.5979 | 269.8660 |
| 5.8312 | 0.4292 | 225000 | 0.0396 | 8.0192 | 3038.8659 | 5.6054 | 271.8775 |
| 5.7752 | 0.4387 | 230000 | 0.0405 | 7.8009 | 2442.8390 | 5.5823 | 265.6886 |
| 5.8101 | 0.4482 | 235000 | 0.0397 | 7.8881 | 2665.3761 | 5.5903 | 267.8042 |
| 5.7115 | 0.4578 | 240000 | 0.0400 | 7.9381 | 2802.0555 | 5.5694 | 262.2645 |
| 5.7196 | 0.4673 | 245000 | 0.0394 | 7.8143 | 2475.7568 | 5.5596 | 259.7104 |
| 5.6944 | 0.4768 | 250000 | 0.0409 | 7.8772 | 2636.5595 | 5.5478 | 256.6677 |
| 5.6823 | 0.4864 | 255000 | 0.0395 | 7.7952 | 2428.9769 | 5.5298 | 252.0854 |
| 5.674 | 0.4959 | 260000 | 0.0399 | 7.8926 | 2677.4051 | 5.5318 | 252.5954 |
| 5.6606 | 0.5054 | 265000 | 0.0400 | 7.8189 | 2487.2421 | 5.5178 | 249.0964 |
| 5.7097 | 0.5150 | 270000 | 0.0395 | 7.8465 | 2556.6945 | 5.5101 | 247.1704 |
| 5.7047 | 0.5245 | 275000 | 0.0402 | 7.7667 | 2360.7532 | 5.5015 | 245.0604 |
| 5.6797 | 0.5341 | 280000 | 0.0397 | 7.8969 | 2688.8862 | 5.4982 | 244.2633 |
| 5.6739 | 0.5436 | 285000 | 0.0398 | 8.0241 | 3053.8151 | 5.4930 | 242.9751 |
| 5.6826 | 0.5531 | 290000 | 0.0397 | 7.9106 | 2726.0737 | 5.4990 | 244.4371 |
| 5.7864 | 0.5627 | 295000 | 0.0397 | 7.8498 | 2565.2361 | 5.4800 | 239.8371 |
| 5.6506 | 0.5722 | 300000 | 0.0401 | 7.9694 | 2891.0478 | 5.4805 | 239.9755 |
| 5.6403 | 0.5817 | 305000 | 0.0390 | 7.8301 | 2515.0960 | 5.4738 | 238.3728 |
| 5.6538 | 0.5913 | 310000 | 0.0398 | 7.8934 | 2679.4140 | 5.4811 | 240.0990 |
| 5.6665 | 0.6008 | 315000 | 0.0399 | 7.8407 | 2541.9513 | 5.4566 | 234.3107 |
| 5.5755 | 0.6104 | 320000 | 232.2292 | 5.4477 | 0.0395 | 2593.5901 | 7.8608 |
| 5.641 | 0.6199 | 325000 | 231.2019 | 5.4433 | 0.0394 | 2925.4813 | 7.9812 |
| 5.6113 | 0.6294 | 330000 | 229.7290 | 5.4369 | 0.0391 | 2471.8038 | 7.8127 |
| 5.6697 | 0.6390 | 335000 | 229.2882 | 5.4350 | 0.0394 | 2709.0417 | 7.9044 |
| 5.6425 | 0.6485 | 340000 | 228.1699 | 5.4301 | 0.0397 | 2550.9241 | 7.8442 |
| 5.626 | 0.6580 | 345000 | 226.4364 | 5.4225 | 0.0391 | 2601.7519 | 7.8639 |
| 5.5888 | 0.6676 | 350000 | 225.6680 | 5.4191 | 0.0394 | 2929.0955 | 7.9824 |
| 5.5793 | 0.6771 | 355000 | 224.6552 | 5.4146 | 0.0389 | 3111.5742 | 8.0429 |
| 5.5751 | 0.6866 | 360000 | 222.2638 | 5.4039 | 0.0385 | 2507.0953 | 7.8269 |
| 5.5659 | 0.6962 | 365000 | 219.8554 | 5.3930 | 0.0388 | 2442.3736 | 7.8007 |
| 5.6128 | 0.7057 | 370000 | 217.8869 | 5.3840 | 0.0385 | 2365.9076 | 7.7689 |
| 5.5471 | 0.7153 | 375000 | 216.1903 | 5.3762 | 0.0380 | 2286.1222 | 7.7346 |
| 5.5468 | 0.7248 | 380000 | 214.2540 | 5.3672 | 0.0387 | 2292.4794 | 7.7374 |
| 5.5354 | 0.7343 | 385000 | 211.9470 | 5.3563 | 0.0383 | 2245.4357 | 7.7167 |
| 5.5659 | 0.7439 | 390000 | 210.5267 | 5.3496 | 0.0384 | 2303.3757 | 7.7421 |
| 5.5114 | 0.7534 | 395000 | 209.1623 | 5.3431 | 0.0382 | 2344.8778 | 7.7600 |
| 5.5024 | 0.7629 | 400000 | 207.8823 | 5.3370 | 0.0383 | 2387.2802 | 7.7779 |
| 5.5723 | 0.7725 | 405000 | 206.5772 | 5.3307 | 0.0381 | 2312.2991 | 7.7460 |
| 5.4679 | 0.7820 | 410000 | 204.4713 | 5.3204 | 0.0384 | 2225.5773 | 7.7078 |
| 5.5022 | 0.7915 | 415000 | 202.6541 | 5.3115 | 0.0379 | 2216.8935 | 7.7039 |
| 5.4582 | 0.8011 | 420000 | 202.3064 | 5.3098 | 0.0382 | 2253.1685 | 7.7201 |
| 5.4716 | 0.8106 | 425000 | 199.9121 | 5.2979 | 0.0379 | 2201.0493 | 7.6967 |
| 5.4742 | 0.8202 | 430000 | 199.2166 | 5.2944 | 0.0379 | 2221.2136 | 7.7058 |
| 5.456 | 0.8297 | 435000 | 197.5286 | 5.2859 | 0.0378 | 2275.2305 | 7.7298 |
| 5.4751 | 0.8392 | 440000 | 196.2503 | 5.2794 | 0.0380 | 2230.8815 | 7.7102 |
| 5.4628 | 0.8488 | 445000 | 195.3121 | 5.2746 | 0.0379 | 2281.6319 | 7.7326 |
| 5.3535 | 0.8583 | 450000 | 195.0385 | 5.2732 | 0.0377 | 2178.3606 | 7.6863 |
| 5.5193 | 0.8678 | 455000 | 193.3610 | 5.2646 | 0.0380 | 2221.9979 | 7.7062 |
| 5.4747 | 0.8774 | 460000 | 192.5007 | 5.2601 | 0.0374 | 2183.6563 | 7.6888 |
| 5.4077 | 0.8869 | 465000 | 191.1322 | 5.2530 | 0.0375 | 2137.0722 | 7.6672 |
| 5.4288 | 0.8965 | 470000 | 190.2730 | 5.2485 | 0.0377 | 2108.7450 | 7.6538 |
| 5.4653 | 0.9060 | 475000 | 189.7327 | 5.2456 | 0.0377 | 2132.3223 | 7.6650 |
| 5.3929 | 0.9155 | 480000 | 188.8477 | 5.2409 | 0.0376 | 2122.3287 | 7.6603 |
| 5.405 | 0.9251 | 485000 | 187.7804 | 5.2353 | 0.0374 | 2107.0023 | 7.6530 |
| 5.4504 | 0.9346 | 490000 | 187.0694 | 5.2315 | 0.0374 | 2111.6347 | 7.6552 |
| 5.4217 | 0.9441 | 495000 | 186.9062 | 5.2306 | 0.0374 | 2110.7966 | 7.6548 |
| 5.4109 | 0.9537 | 500000 | 185.9346 | 5.2254 | 0.0372 | 2099.9909 | 7.6497 |
| 5.3892 | 1.0095 | 505000 | 185.5628 | 5.2234 | 0.0374 | 2097.9349 | 7.6487 |
| 5.3806 | 1.0191 | 510000 | 184.9853 | 5.2203 | 0.0374 | 2092.8939 | 7.6463 |
| 5.4174 | 1.0286 | 515000 | 184.8205 | 5.2194 | 0.0375 | 2090.1261 | 7.6450 |
| 5.4017 | 1.0381 | 520000 | 184.6505 | 5.2185 | 0.0374 | 2090.0473 | 7.6449 |
### Framework versions
- Transformers 4.57.0.dev0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
|