File size: 19,371 Bytes
2ded547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
---
base_model: thenlper/gte-base
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:206874
- loss:ContrastiveLoss
widget:
- source_sentence: 'Cardiac silhouette size is top normal. Aorta is tortuous and demonstrates
    mild atherosclerotic calcifications diffusely. Hilar contours are normal. Pulmonary
    vasculature is normal. Lungs are clear. No pleural effusion or pneumothorax is
    present. No acute osseous abnormality is detected.  '
  sentences:
  - 'No acute cardiopulmonary process. '
  - 'No acute cardiopulmonary abnormality. '
  - 'Normal chest radiographs. '
- source_sentence: 'The lungs are mildly hyperexpanded but clear. No pleural effusion
    or pneumothorax is seen. The cardiac and mediastinal silhouettes are unremarkable.  '
  sentences:
  - 'Findings worrisome for early/mild left lower lobe pneumonia. '
  - 'No acute cardiopulmonary process. The mediastinum is not widened. '
  - 'No radiographic evidence of acute cardiopulmonary disease. '
- source_sentence: 'Lung volumes are slightly low. The cardiomediastinal silhouette
    and pulmonary vasculature a similar to the prior examination, and unremarkable,
    accounting for low lung volumes. Midline sternal wires are intact and well aligned.
    Mediastinal clips and anastomotic markers are noted. The lungs are clear. There
    is no pleural effusion or pneumothorax. Bilateral shoulder prostheses are partially
    imaged.  '
  sentences:
  - 'No acute cardiopulmonary process. '
  - 'No acute intrathoracic abnormality. '
  - 'Pulmonary edema, increasing pleural effusions, known mass in the right lower
    lung. '
- source_sentence: 'The left hemi thorax remains opacified. The right lung is now
    clear. The right mediastinal silhouette is unchanged. An endotracheal tube feeding
    tube and right internal jugular catheter remain in place.  '
  sentences:
  - 'The right lung now appears clear. No other significant change. '
  - 'No acute cardiopulmonary abnormality. '
  - 'Chest findings within normal limits, no secondary metastases suspicious lesions
    identified. '
- source_sentence: 'The atient is status post coronary artery bypass graft surgery.
    The heart is mildly enlarged. There is a large hiatal hernia with an air-fluid
    level. Otherwise, the mediastinal and hilar contours are unremarkable. The lungs
    appear clear. The chest is hyperinflated. There is no pleural effusion or pneumothorax.
    Bony structures are unremarkable.  '
  sentences:
  - '1. Left apical pneumothorax still small, but considerably larger. Left base pneumothorax
    also slightly larger. 2. Minimal lucency adjacent to the the aortic knob may also
    represent part of the left lung pneumothorax. Attention to this area on followup
    films to exclude any mediastinal air is requested. 3. Extensive subcutaneous emphysema,
    equivocally slightly greater than on the prior film. 4. Minimal interval change
    in position of the left chest tube. 5. Right pneumothorax also increased, still
    small in width, but now seen not only at the right lung apex, but also along the
    right lateral chest wall and at the right costophrenic angle in the adjoining
    lung base. '
  - 'No evidence of acute disease. Normal cardiac size. '
  - 'No evidence of acute disease. Hyperinflation. Large hiatal hernia. Status post
    coronary artery bypass graft surgery. '
model-index:
- name: SentenceTransformer based on thenlper/gte-base
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: validation
      type: validation
    metrics:
    - type: pearson_cosine
      value: 0.8022517557853334
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.810529949353046
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8243043367211444
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8105359053829688
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.824484835649088
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8105299161732425
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.802251755767147
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8105299280214241
      name: Spearman Dot
    - type: pearson_max
      value: 0.824484835649088
      name: Pearson Max
    - type: spearman_max
      value: 0.8105359053829688
      name: Spearman Max
---

# SentenceTransformer based on thenlper/gte-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-base](https://huggingface.co/thenlper/gte-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [thenlper/gte-base](https://huggingface.co/thenlper/gte-base) <!-- at revision 5e95d41db6721e7cbd5006e99c7508f0083223d6 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("hyojuuun/gte_base_MIMICCXR_FT")
# Run inference
sentences = [
    'The atient is status post coronary artery bypass graft surgery. The heart is mildly enlarged. There is a large hiatal hernia with an air-fluid level. Otherwise, the mediastinal and hilar contours are unremarkable. The lungs appear clear. The chest is hyperinflated. There is no pleural effusion or pneumothorax. Bony structures are unremarkable.  ',
    'No evidence of acute disease. Hyperinflation. Large hiatal hernia. Status post coronary artery bypass graft surgery. ',
    '1. Left apical pneumothorax still small, but considerably larger. Left base pneumothorax also slightly larger. 2. Minimal lucency adjacent to the the aortic knob may also represent part of the left lung pneumothorax. Attention to this area on followup films to exclude any mediastinal air is requested. 3. Extensive subcutaneous emphysema, equivocally slightly greater than on the prior film. 4. Minimal interval change in position of the left chest tube. 5. Right pneumothorax also increased, still small in width, but now seen not only at the right lung apex, but also along the right lateral chest wall and at the right costophrenic angle in the adjoining lung base. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `validation`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.8023     |
| spearman_cosine    | 0.8105     |
| pearson_manhattan  | 0.8243     |
| spearman_manhattan | 0.8105     |
| pearson_euclidean  | 0.8245     |
| spearman_euclidean | 0.8105     |
| pearson_dot        | 0.8023     |
| spearman_dot       | 0.8105     |
| pearson_max        | 0.8245     |
| **spearman_max**   | **0.8105** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 206,874 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                         | sentence_1                                                                         | label                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                         |
  | details | <ul><li>min: 3 tokens</li><li>mean: 78.31 tokens</li><li>max: 324 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.68 tokens</li><li>max: 165 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                                                                                                                                                                               | sentence_1                                                                      | label            |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-----------------|
  | <code>The lung volumes are low which accentuates the linear and interstitial opacities. An ill-defined opacity in the left lung in the third/fourth interspace has increased since the prior can be early pneumonia. No pneumothorax. Mild to moderate gastric and small bowel distension partially visualized.  </code> | <code>No evidence of acute cardiopulmonary disease. </code>                     | <code>0.0</code> |
  | <code>PA and lateral views of the chest were provided demonstrating no focal consolidation, effusion or pneumothorax. The cardiomediastinal silhouette is normal. Bony structures are intact. No free air below the right hemidiaphragm.  </code>                                                                        | <code>No acute intrathoracic process. </code>                                   | <code>1.0</code> |
  | <code>Previously seen right-sided PICC is no longer seen. Enlargement of the cardiomediastinal silhouette is grossly stable. There are low lung volumes, which accentuate the bronchovascular markings. No focal consolidation is seen. There is no pleural effusion or pneumothorax.  </code>                           | <code>Low lung volumes but no focal consolidation to suggest pneumonia. </code> | <code>1.0</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
  ```json
  {
      "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
      "margin": 0.5,
      "size_average": true
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 96
- `per_device_eval_batch_size`: 96
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 96
- `per_device_eval_batch_size`: 96
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | Training Loss | validation_spearman_max |
|:------:|:----:|:-------------:|:-----------------------:|
| 0.0464 | 100  | -             | 0.6178                  |
| 0.0928 | 200  | -             | 0.6904                  |
| 0.1392 | 300  | -             | 0.7290                  |
| 0.1856 | 400  | -             | 0.7596                  |
| 0.2320 | 500  | 0.0191        | 0.7715                  |
| 0.2784 | 600  | -             | 0.7783                  |
| 0.3248 | 700  | -             | 0.7851                  |
| 0.3712 | 800  | -             | 0.7885                  |
| 0.4176 | 900  | -             | 0.7942                  |
| 0.4640 | 1000 | 0.0118        | 0.7965                  |
| 0.5104 | 1100 | -             | 0.8061                  |
| 0.5568 | 1200 | -             | 0.8035                  |
| 0.6032 | 1300 | -             | 0.8082                  |
| 0.6497 | 1400 | -             | 0.8105                  |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### ContrastiveLoss
```bibtex
@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->