File size: 2,213 Bytes
e1a6bcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ff56ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---

base_model: Qwen/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: qwen-2.5-0.5b-r1-countdown
tags:
- generated_from_trainer
- trl
- grpo
licence: license
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
---


# Model Card for qwen-2.5-0.5b-r1-countdown

This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python

from transformers import pipeline



question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"

generator = pipeline("text-generation", model="hyunw3/qwen-2.5-0.5b-r1-countdown", device="cuda")

output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]

print(output["generated_text"])

```

## Training procedure

 


This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).

### Framework versions

- TRL: 0.14.0
- Transformers: 4.48.1
- Pytorch: 2.5.1+cu121
- Datasets: 3.1.0
- Tokenizers: 0.21.0

## Citations

Cite GRPO as:

```bibtex

@article{zhihong2024deepseekmath,

    title        = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},

    author       = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},

    year         = 2024,

    eprint       = {arXiv:2402.03300},

}



```

Cite TRL as:
    

```bibtex

@misc{vonwerra2022trl,

	title        = {{TRL: Transformer Reinforcement Learning}},

	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},

	year         = 2020,

	journal      = {GitHub repository},

	publisher    = {GitHub},

	howpublished = {\url{https://github.com/huggingface/trl}}

}

```