Model save
Browse files- README.md +68 -0
- all_results.json +8 -0
- config.json +1 -1
- generation_config.json +14 -0
- train_results.json +8 -0
- trainer_state.json +3192 -0
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: qwen-2.5-3b-r1-countdown
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- grpo
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for qwen-2.5-3b-r1-countdown
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="iaa01/qwen-2.5-3b-r1-countdown", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/personal-iaa/huggingface/runs/21moehkl)
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.16.0.dev0
|
38 |
+
- Transformers: 4.49.0
|
39 |
+
- Pytorch: 2.5.1+cu121
|
40 |
+
- Datasets: 3.4.1
|
41 |
+
- Tokenizers: 0.21.1
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
Cite GRPO as:
|
46 |
+
|
47 |
+
```bibtex
|
48 |
+
@article{zhihong2024deepseekmath,
|
49 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
50 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
51 |
+
year = 2024,
|
52 |
+
eprint = {arXiv:2402.03300},
|
53 |
+
}
|
54 |
+
|
55 |
+
```
|
56 |
+
|
57 |
+
Cite TRL as:
|
58 |
+
|
59 |
+
```bibtex
|
60 |
+
@misc{vonwerra2022trl,
|
61 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
62 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
63 |
+
year = 2020,
|
64 |
+
journal = {GitHub repository},
|
65 |
+
publisher = {GitHub},
|
66 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
67 |
+
}
|
68 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 0.04409932630071934,
|
4 |
+
"train_runtime": 12236.3143,
|
5 |
+
"train_samples": 45000,
|
6 |
+
"train_samples_per_second": 1.177,
|
7 |
+
"train_steps_per_second": 0.037
|
8 |
+
}
|
config.json
CHANGED
@@ -23,7 +23,7 @@
|
|
23 |
"tie_word_embeddings": true,
|
24 |
"torch_dtype": "bfloat16",
|
25 |
"transformers_version": "4.49.0",
|
26 |
-
"use_cache":
|
27 |
"use_sliding_window": false,
|
28 |
"vocab_size": 151936
|
29 |
}
|
|
|
23 |
"tie_word_embeddings": true,
|
24 |
"torch_dtype": "bfloat16",
|
25 |
"transformers_version": "4.49.0",
|
26 |
+
"use_cache": true,
|
27 |
"use_sliding_window": false,
|
28 |
"vocab_size": 151936
|
29 |
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.49.0"
|
14 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 0.04409932630071934,
|
4 |
+
"train_runtime": 12236.3143,
|
5 |
+
"train_samples": 45000,
|
6 |
+
"train_samples_per_second": 1.177,
|
7 |
+
"train_steps_per_second": 0.037
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.08,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 450,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"clip_ratio": 0.0,
|
13 |
+
"completion_length": 497.109375,
|
14 |
+
"epoch": 0.00035555555555555557,
|
15 |
+
"grad_norm": 1.5540773635891456,
|
16 |
+
"kl": 0.0,
|
17 |
+
"learning_rate": 7.142857142857142e-08,
|
18 |
+
"loss": 0.1037,
|
19 |
+
"reward": 0.328125,
|
20 |
+
"reward_std": 0.4159187823534012,
|
21 |
+
"rewards/equation_reward_func": 0.0625,
|
22 |
+
"rewards/format_reward_func": 0.265625,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"clip_ratio": 0.0,
|
27 |
+
"completion_length": 532.40625,
|
28 |
+
"epoch": 0.0007111111111111111,
|
29 |
+
"grad_norm": 1.2357520393415342,
|
30 |
+
"kl": 0.0007323026657104492,
|
31 |
+
"learning_rate": 1.4285714285714285e-07,
|
32 |
+
"loss": 0.1034,
|
33 |
+
"reward": 0.25,
|
34 |
+
"reward_std": 0.3582531735301018,
|
35 |
+
"rewards/equation_reward_func": 0.0625,
|
36 |
+
"rewards/format_reward_func": 0.1875,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"clip_ratio": 0.0,
|
41 |
+
"completion_length": 501.78125,
|
42 |
+
"epoch": 0.0010666666666666667,
|
43 |
+
"grad_norm": 1.207958912839064,
|
44 |
+
"kl": 0.0007942914962768555,
|
45 |
+
"learning_rate": 2.1428571428571426e-07,
|
46 |
+
"loss": 0.1091,
|
47 |
+
"reward": 0.234375,
|
48 |
+
"reward_std": 0.3534187823534012,
|
49 |
+
"rewards/equation_reward_func": 0.03125,
|
50 |
+
"rewards/format_reward_func": 0.203125,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"clip_ratio": 0.0,
|
55 |
+
"completion_length": 472.109375,
|
56 |
+
"epoch": 0.0014222222222222223,
|
57 |
+
"grad_norm": 1.6667490438178998,
|
58 |
+
"kl": 0.000766754150390625,
|
59 |
+
"learning_rate": 2.857142857142857e-07,
|
60 |
+
"loss": 0.1158,
|
61 |
+
"reward": 0.390625,
|
62 |
+
"reward_std": 0.4387340322136879,
|
63 |
+
"rewards/equation_reward_func": 0.140625,
|
64 |
+
"rewards/format_reward_func": 0.25,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"clip_ratio": 0.0,
|
69 |
+
"completion_length": 508.5,
|
70 |
+
"epoch": 0.0017777777777777779,
|
71 |
+
"grad_norm": 1.7217421147986447,
|
72 |
+
"kl": 0.00079345703125,
|
73 |
+
"learning_rate": 3.5714285714285716e-07,
|
74 |
+
"loss": 0.0744,
|
75 |
+
"reward": 0.375,
|
76 |
+
"reward_std": 0.48542676120996475,
|
77 |
+
"rewards/equation_reward_func": 0.03125,
|
78 |
+
"rewards/format_reward_func": 0.34375,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"clip_ratio": 0.0,
|
83 |
+
"completion_length": 563.03125,
|
84 |
+
"epoch": 0.0021333333333333334,
|
85 |
+
"grad_norm": 1.4870770624622829,
|
86 |
+
"kl": 0.0007028579711914062,
|
87 |
+
"learning_rate": 4.285714285714285e-07,
|
88 |
+
"loss": 0.16,
|
89 |
+
"reward": 0.28125,
|
90 |
+
"reward_std": 0.3846687823534012,
|
91 |
+
"rewards/equation_reward_func": 0.03125,
|
92 |
+
"rewards/format_reward_func": 0.25,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"clip_ratio": 0.0,
|
97 |
+
"completion_length": 463.609375,
|
98 |
+
"epoch": 0.002488888888888889,
|
99 |
+
"grad_norm": 1.7635576195780378,
|
100 |
+
"kl": 0.0008461475372314453,
|
101 |
+
"learning_rate": 5e-07,
|
102 |
+
"loss": 0.0834,
|
103 |
+
"reward": 0.328125,
|
104 |
+
"reward_std": 0.46167195588350296,
|
105 |
+
"rewards/equation_reward_func": 0.03125,
|
106 |
+
"rewards/format_reward_func": 0.296875,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"clip_ratio": 0.0,
|
111 |
+
"completion_length": 485.484375,
|
112 |
+
"epoch": 0.0028444444444444446,
|
113 |
+
"grad_norm": 1.5351814757263196,
|
114 |
+
"kl": 0.0009121894836425781,
|
115 |
+
"learning_rate": 4.999740409224932e-07,
|
116 |
+
"loss": 0.1649,
|
117 |
+
"reward": 0.4375,
|
118 |
+
"reward_std": 0.45151595771312714,
|
119 |
+
"rewards/equation_reward_func": 0.109375,
|
120 |
+
"rewards/format_reward_func": 0.328125,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"clip_ratio": 0.0,
|
125 |
+
"completion_length": 473.578125,
|
126 |
+
"epoch": 0.0032,
|
127 |
+
"grad_norm": 1.790949387851571,
|
128 |
+
"kl": 0.0012161731719970703,
|
129 |
+
"learning_rate": 4.998961690809627e-07,
|
130 |
+
"loss": 0.1101,
|
131 |
+
"reward": 0.40625,
|
132 |
+
"reward_std": 0.5236847400665283,
|
133 |
+
"rewards/equation_reward_func": 0.046875,
|
134 |
+
"rewards/format_reward_func": 0.359375,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"clip_ratio": 0.0,
|
139 |
+
"completion_length": 437.8125,
|
140 |
+
"epoch": 0.0035555555555555557,
|
141 |
+
"grad_norm": 1.8537703194309358,
|
142 |
+
"kl": 0.0023336410522460938,
|
143 |
+
"learning_rate": 4.997664006472578e-07,
|
144 |
+
"loss": 0.1244,
|
145 |
+
"reward": 0.546875,
|
146 |
+
"reward_std": 0.42558756470680237,
|
147 |
+
"rewards/equation_reward_func": 0.046875,
|
148 |
+
"rewards/format_reward_func": 0.5,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"clip_ratio": 0.0,
|
153 |
+
"completion_length": 406.515625,
|
154 |
+
"epoch": 0.003911111111111111,
|
155 |
+
"grad_norm": 1.7394706416500154,
|
156 |
+
"kl": 0.0038557052612304688,
|
157 |
+
"learning_rate": 4.995847625707292e-07,
|
158 |
+
"loss": 0.0125,
|
159 |
+
"reward": 0.59375,
|
160 |
+
"reward_std": 0.5879059880971909,
|
161 |
+
"rewards/equation_reward_func": 0.0625,
|
162 |
+
"rewards/format_reward_func": 0.53125,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"clip_ratio": 0.0,
|
167 |
+
"completion_length": 459.703125,
|
168 |
+
"epoch": 0.004266666666666667,
|
169 |
+
"grad_norm": 1.454676166117581,
|
170 |
+
"kl": 0.004199504852294922,
|
171 |
+
"learning_rate": 4.993512925726318e-07,
|
172 |
+
"loss": 0.0336,
|
173 |
+
"reward": 0.625,
|
174 |
+
"reward_std": 0.40400634706020355,
|
175 |
+
"rewards/equation_reward_func": 0.015625,
|
176 |
+
"rewards/format_reward_func": 0.609375,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"clip_ratio": 0.0,
|
181 |
+
"completion_length": 481.953125,
|
182 |
+
"epoch": 0.004622222222222222,
|
183 |
+
"grad_norm": 1.7838057007741426,
|
184 |
+
"kl": 0.0038619041442871094,
|
185 |
+
"learning_rate": 4.990660391382923e-07,
|
186 |
+
"loss": 0.0952,
|
187 |
+
"reward": 0.765625,
|
188 |
+
"reward_std": 0.34194982051849365,
|
189 |
+
"rewards/equation_reward_func": 0.03125,
|
190 |
+
"rewards/format_reward_func": 0.734375,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"clip_ratio": 0.0,
|
195 |
+
"completion_length": 443.234375,
|
196 |
+
"epoch": 0.004977777777777778,
|
197 |
+
"grad_norm": 2.0657041070771247,
|
198 |
+
"kl": 0.00693511962890625,
|
199 |
+
"learning_rate": 4.987290615070384e-07,
|
200 |
+
"loss": 0.0515,
|
201 |
+
"reward": 0.796875,
|
202 |
+
"reward_std": 0.5276496410369873,
|
203 |
+
"rewards/equation_reward_func": 0.078125,
|
204 |
+
"rewards/format_reward_func": 0.71875,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"clip_ratio": 0.0,
|
209 |
+
"completion_length": 524.359375,
|
210 |
+
"epoch": 0.005333333333333333,
|
211 |
+
"grad_norm": 1.5368658141890732,
|
212 |
+
"kl": 0.007770538330078125,
|
213 |
+
"learning_rate": 4.983404296598978e-07,
|
214 |
+
"loss": 0.1967,
|
215 |
+
"reward": 0.75,
|
216 |
+
"reward_std": 0.5364577993750572,
|
217 |
+
"rewards/equation_reward_func": 0.0625,
|
218 |
+
"rewards/format_reward_func": 0.6875,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"clip_ratio": 0.0,
|
223 |
+
"completion_length": 455.6875,
|
224 |
+
"epoch": 0.005688888888888889,
|
225 |
+
"grad_norm": 1.7349608259853453,
|
226 |
+
"kl": 0.009317398071289062,
|
227 |
+
"learning_rate": 4.979002243050646e-07,
|
228 |
+
"loss": 0.1176,
|
229 |
+
"reward": 0.875,
|
230 |
+
"reward_std": 0.47960907220840454,
|
231 |
+
"rewards/equation_reward_func": 0.109375,
|
232 |
+
"rewards/format_reward_func": 0.765625,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"clip_ratio": 0.0,
|
237 |
+
"completion_length": 477.53125,
|
238 |
+
"epoch": 0.006044444444444444,
|
239 |
+
"grad_norm": 1.2174715114943861,
|
240 |
+
"kl": 0.011419296264648438,
|
241 |
+
"learning_rate": 4.974085368611381e-07,
|
242 |
+
"loss": 0.0599,
|
243 |
+
"reward": 0.96875,
|
244 |
+
"reward_std": 0.3978152498602867,
|
245 |
+
"rewards/equation_reward_func": 0.140625,
|
246 |
+
"rewards/format_reward_func": 0.828125,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"clip_ratio": 0.0,
|
251 |
+
"completion_length": 544.34375,
|
252 |
+
"epoch": 0.0064,
|
253 |
+
"grad_norm": 0.9373070959302399,
|
254 |
+
"kl": 0.009111404418945312,
|
255 |
+
"learning_rate": 4.968654694381379e-07,
|
256 |
+
"loss": 0.0615,
|
257 |
+
"reward": 0.8125,
|
258 |
+
"reward_std": 0.35645299404859543,
|
259 |
+
"rewards/equation_reward_func": 0.03125,
|
260 |
+
"rewards/format_reward_func": 0.78125,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"clip_ratio": 0.0,
|
265 |
+
"completion_length": 522.078125,
|
266 |
+
"epoch": 0.0067555555555555554,
|
267 |
+
"grad_norm": 1.69272651339043,
|
268 |
+
"kl": 0.01029205322265625,
|
269 |
+
"learning_rate": 4.962711348162987e-07,
|
270 |
+
"loss": 0.1866,
|
271 |
+
"reward": 0.84375,
|
272 |
+
"reward_std": 0.5025907382369041,
|
273 |
+
"rewards/equation_reward_func": 0.125,
|
274 |
+
"rewards/format_reward_func": 0.71875,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"clip_ratio": 0.0,
|
279 |
+
"completion_length": 507.984375,
|
280 |
+
"epoch": 0.0071111111111111115,
|
281 |
+
"grad_norm": 1.2015156610010047,
|
282 |
+
"kl": 0.012607574462890625,
|
283 |
+
"learning_rate": 4.956256564226487e-07,
|
284 |
+
"loss": 0.0963,
|
285 |
+
"reward": 1.015625,
|
286 |
+
"reward_std": 0.407927505671978,
|
287 |
+
"rewards/equation_reward_func": 0.140625,
|
288 |
+
"rewards/format_reward_func": 0.875,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"clip_ratio": 0.0,
|
293 |
+
"completion_length": 444.296875,
|
294 |
+
"epoch": 0.007466666666666667,
|
295 |
+
"grad_norm": 1.1020450998312568,
|
296 |
+
"kl": 0.015117645263671875,
|
297 |
+
"learning_rate": 4.949291683053768e-07,
|
298 |
+
"loss": 0.1049,
|
299 |
+
"reward": 0.953125,
|
300 |
+
"reward_std": 0.38331207633018494,
|
301 |
+
"rewards/equation_reward_func": 0.078125,
|
302 |
+
"rewards/format_reward_func": 0.875,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"clip_ratio": 0.0,
|
307 |
+
"completion_length": 467.03125,
|
308 |
+
"epoch": 0.007822222222222222,
|
309 |
+
"grad_norm": 1.4356691747538686,
|
310 |
+
"kl": 0.015163421630859375,
|
311 |
+
"learning_rate": 4.941818151059955e-07,
|
312 |
+
"loss": 0.0563,
|
313 |
+
"reward": 1.0,
|
314 |
+
"reward_std": 0.31069982051849365,
|
315 |
+
"rewards/equation_reward_func": 0.140625,
|
316 |
+
"rewards/format_reward_func": 0.859375,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"clip_ratio": 0.0,
|
321 |
+
"completion_length": 466.1875,
|
322 |
+
"epoch": 0.008177777777777779,
|
323 |
+
"grad_norm": 1.1138441770229877,
|
324 |
+
"kl": 0.014316558837890625,
|
325 |
+
"learning_rate": 4.933837520293017e-07,
|
326 |
+
"loss": 0.0513,
|
327 |
+
"reward": 0.953125,
|
328 |
+
"reward_std": 0.20728103816509247,
|
329 |
+
"rewards/equation_reward_func": 0.03125,
|
330 |
+
"rewards/format_reward_func": 0.921875,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"clip_ratio": 0.0,
|
335 |
+
"completion_length": 483.21875,
|
336 |
+
"epoch": 0.008533333333333334,
|
337 |
+
"grad_norm": 1.5073854647894624,
|
338 |
+
"kl": 0.0155029296875,
|
339 |
+
"learning_rate": 4.925351448111454e-07,
|
340 |
+
"loss": 0.0312,
|
341 |
+
"reward": 0.984375,
|
342 |
+
"reward_std": 0.37053901702165604,
|
343 |
+
"rewards/equation_reward_func": 0.109375,
|
344 |
+
"rewards/format_reward_func": 0.875,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"clip_ratio": 0.0,
|
349 |
+
"completion_length": 441.59375,
|
350 |
+
"epoch": 0.008888888888888889,
|
351 |
+
"grad_norm": 1.0379492454910968,
|
352 |
+
"kl": 0.015254974365234375,
|
353 |
+
"learning_rate": 4.91636169684011e-07,
|
354 |
+
"loss": 0.0637,
|
355 |
+
"reward": 1.015625,
|
356 |
+
"reward_std": 0.24336542934179306,
|
357 |
+
"rewards/equation_reward_func": 0.09375,
|
358 |
+
"rewards/format_reward_func": 0.921875,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"clip_ratio": 0.0,
|
363 |
+
"completion_length": 491.46875,
|
364 |
+
"epoch": 0.009244444444444444,
|
365 |
+
"grad_norm": 1.3198501259898483,
|
366 |
+
"kl": 0.016269683837890625,
|
367 |
+
"learning_rate": 4.906870133404186e-07,
|
368 |
+
"loss": 0.062,
|
369 |
+
"reward": 1.0,
|
370 |
+
"reward_std": 0.31069982051849365,
|
371 |
+
"rewards/equation_reward_func": 0.09375,
|
372 |
+
"rewards/format_reward_func": 0.90625,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"clip_ratio": 0.0,
|
377 |
+
"completion_length": 450.234375,
|
378 |
+
"epoch": 0.0096,
|
379 |
+
"grad_norm": 1.1484527235656556,
|
380 |
+
"kl": 0.021270751953125,
|
381 |
+
"learning_rate": 4.896878728941531e-07,
|
382 |
+
"loss": 0.0533,
|
383 |
+
"reward": 1.015625,
|
384 |
+
"reward_std": 0.408423587679863,
|
385 |
+
"rewards/equation_reward_func": 0.140625,
|
386 |
+
"rewards/format_reward_func": 0.875,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"clip_ratio": 0.0,
|
391 |
+
"completion_length": 408.03125,
|
392 |
+
"epoch": 0.009955555555555556,
|
393 |
+
"grad_norm": 1.0788691812319753,
|
394 |
+
"kl": 0.0235595703125,
|
395 |
+
"learning_rate": 4.886389558393284e-07,
|
396 |
+
"loss": -0.0358,
|
397 |
+
"reward": 1.015625,
|
398 |
+
"reward_std": 0.20728103816509247,
|
399 |
+
"rewards/equation_reward_func": 0.0625,
|
400 |
+
"rewards/format_reward_func": 0.953125,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"clip_ratio": 0.0,
|
405 |
+
"completion_length": 487.09375,
|
406 |
+
"epoch": 0.010311111111111111,
|
407 |
+
"grad_norm": 1.4656646934435877,
|
408 |
+
"kl": 0.02265167236328125,
|
409 |
+
"learning_rate": 4.875404800072976e-07,
|
410 |
+
"loss": 0.0995,
|
411 |
+
"reward": 0.953125,
|
412 |
+
"reward_std": 0.26978103816509247,
|
413 |
+
"rewards/equation_reward_func": 0.046875,
|
414 |
+
"rewards/format_reward_func": 0.90625,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"clip_ratio": 0.0,
|
419 |
+
"completion_length": 435.6875,
|
420 |
+
"epoch": 0.010666666666666666,
|
421 |
+
"grad_norm": 1.1291328060832448,
|
422 |
+
"kl": 0.02149200439453125,
|
423 |
+
"learning_rate": 4.86392673521415e-07,
|
424 |
+
"loss": 0.0992,
|
425 |
+
"reward": 1.046875,
|
426 |
+
"reward_std": 0.1923343911767006,
|
427 |
+
"rewards/equation_reward_func": 0.078125,
|
428 |
+
"rewards/format_reward_func": 0.96875,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"clip_ratio": 0.0,
|
433 |
+
"completion_length": 453.59375,
|
434 |
+
"epoch": 0.011022222222222221,
|
435 |
+
"grad_norm": 0.7889399494362057,
|
436 |
+
"kl": 0.025543212890625,
|
437 |
+
"learning_rate": 4.851957747496606e-07,
|
438 |
+
"loss": 0.0177,
|
439 |
+
"reward": 1.03125,
|
440 |
+
"reward_std": 0.09858439117670059,
|
441 |
+
"rewards/equation_reward_func": 0.046875,
|
442 |
+
"rewards/format_reward_func": 0.984375,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"clip_ratio": 0.0,
|
447 |
+
"completion_length": 413.859375,
|
448 |
+
"epoch": 0.011377777777777778,
|
449 |
+
"grad_norm": 0.8220739984789721,
|
450 |
+
"kl": 0.02587890625,
|
451 |
+
"learning_rate": 4.839500322551386e-07,
|
452 |
+
"loss": 0.0939,
|
453 |
+
"reward": 1.0625,
|
454 |
+
"reward_std": 0.22706207633018494,
|
455 |
+
"rewards/equation_reward_func": 0.09375,
|
456 |
+
"rewards/format_reward_func": 0.96875,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"clip_ratio": 0.0,
|
461 |
+
"completion_length": 394.328125,
|
462 |
+
"epoch": 0.011733333333333333,
|
463 |
+
"grad_norm": 0.3782612004884283,
|
464 |
+
"kl": 0.02734375,
|
465 |
+
"learning_rate": 4.826557047444563e-07,
|
466 |
+
"loss": 0.0026,
|
467 |
+
"reward": 1.015625,
|
468 |
+
"reward_std": 0.09375,
|
469 |
+
"rewards/equation_reward_func": 0.03125,
|
470 |
+
"rewards/format_reward_func": 0.984375,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"clip_ratio": 0.0,
|
475 |
+
"completion_length": 437.765625,
|
476 |
+
"epoch": 0.012088888888888889,
|
477 |
+
"grad_norm": 1.0169159547009763,
|
478 |
+
"kl": 0.0303802490234375,
|
479 |
+
"learning_rate": 4.813130610139993e-07,
|
480 |
+
"loss": 0.1134,
|
481 |
+
"reward": 1.09375,
|
482 |
+
"reward_std": 0.34678421169519424,
|
483 |
+
"rewards/equation_reward_func": 0.15625,
|
484 |
+
"rewards/format_reward_func": 0.9375,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"clip_ratio": 0.0,
|
489 |
+
"completion_length": 395.046875,
|
490 |
+
"epoch": 0.012444444444444444,
|
491 |
+
"grad_norm": 1.1708246723062659,
|
492 |
+
"kl": 0.0349884033203125,
|
493 |
+
"learning_rate": 4.799223798941089e-07,
|
494 |
+
"loss": 0.0274,
|
495 |
+
"reward": 1.0625,
|
496 |
+
"reward_std": 0.1610843911767006,
|
497 |
+
"rewards/equation_reward_func": 0.078125,
|
498 |
+
"rewards/format_reward_func": 0.984375,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"clip_ratio": 0.0,
|
503 |
+
"completion_length": 409.109375,
|
504 |
+
"epoch": 0.0128,
|
505 |
+
"grad_norm": 0.9619605643432636,
|
506 |
+
"kl": 0.041015625,
|
507 |
+
"learning_rate": 4.78483950191177e-07,
|
508 |
+
"loss": 0.0364,
|
509 |
+
"reward": 1.03125,
|
510 |
+
"reward_std": 0.1610843911767006,
|
511 |
+
"rewards/equation_reward_func": 0.0625,
|
512 |
+
"rewards/format_reward_func": 0.96875,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"clip_ratio": 0.0,
|
517 |
+
"completion_length": 406.109375,
|
518 |
+
"epoch": 0.013155555555555556,
|
519 |
+
"grad_norm": 1.5109017153953268,
|
520 |
+
"kl": 0.036956787109375,
|
521 |
+
"learning_rate": 4.769980706276687e-07,
|
522 |
+
"loss": 0.1356,
|
523 |
+
"reward": 1.15625,
|
524 |
+
"reward_std": 0.3713996410369873,
|
525 |
+
"rewards/equation_reward_func": 0.203125,
|
526 |
+
"rewards/format_reward_func": 0.953125,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"clip_ratio": 0.0,
|
531 |
+
"completion_length": 401.671875,
|
532 |
+
"epoch": 0.013511111111111111,
|
533 |
+
"grad_norm": 1.4832479712654314,
|
534 |
+
"kl": 0.0571441650390625,
|
535 |
+
"learning_rate": 4.7546504978008595e-07,
|
536 |
+
"loss": 0.0329,
|
537 |
+
"reward": 1.078125,
|
538 |
+
"reward_std": 0.15625,
|
539 |
+
"rewards/equation_reward_func": 0.109375,
|
540 |
+
"rewards/format_reward_func": 0.96875,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"clip_ratio": 0.0,
|
545 |
+
"completion_length": 383.390625,
|
546 |
+
"epoch": 0.013866666666666666,
|
547 |
+
"grad_norm": 1.6506361354745738,
|
548 |
+
"kl": 0.04904937744140625,
|
549 |
+
"learning_rate": 4.738852060148848e-07,
|
550 |
+
"loss": 0.0359,
|
551 |
+
"reward": 1.109375,
|
552 |
+
"reward_std": 0.1923343911767006,
|
553 |
+
"rewards/equation_reward_func": 0.125,
|
554 |
+
"rewards/format_reward_func": 0.984375,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"clip_ratio": 0.0,
|
559 |
+
"completion_length": 428.203125,
|
560 |
+
"epoch": 0.014222222222222223,
|
561 |
+
"grad_norm": 1.2805072360716652,
|
562 |
+
"kl": 0.0862884521484375,
|
563 |
+
"learning_rate": 4.722588674223593e-07,
|
564 |
+
"loss": 0.0975,
|
565 |
+
"reward": 1.0625,
|
566 |
+
"reward_std": 0.2596687823534012,
|
567 |
+
"rewards/equation_reward_func": 0.109375,
|
568 |
+
"rewards/format_reward_func": 0.953125,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"clip_ratio": 0.0,
|
573 |
+
"completion_length": 334.765625,
|
574 |
+
"epoch": 0.014577777777777778,
|
575 |
+
"grad_norm": 1.5003659203947817,
|
576 |
+
"kl": 0.083343505859375,
|
577 |
+
"learning_rate": 4.70586371748506e-07,
|
578 |
+
"loss": 0.0372,
|
579 |
+
"reward": 1.140625,
|
580 |
+
"reward_std": 0.20200317353010178,
|
581 |
+
"rewards/equation_reward_func": 0.140625,
|
582 |
+
"rewards/format_reward_func": 1.0,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"clip_ratio": 0.0,
|
587 |
+
"completion_length": 375.625,
|
588 |
+
"epoch": 0.014933333333333333,
|
589 |
+
"grad_norm": 1.4069013627610942,
|
590 |
+
"kl": 0.0662841796875,
|
591 |
+
"learning_rate": 4.6886806632488363e-07,
|
592 |
+
"loss": 0.0729,
|
593 |
+
"reward": 1.140625,
|
594 |
+
"reward_std": 0.21694982051849365,
|
595 |
+
"rewards/equation_reward_func": 0.15625,
|
596 |
+
"rewards/format_reward_func": 0.984375,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"clip_ratio": 0.0,
|
601 |
+
"completion_length": 374.171875,
|
602 |
+
"epoch": 0.015288888888888888,
|
603 |
+
"grad_norm": 1.533899888374318,
|
604 |
+
"kl": 0.11968994140625,
|
605 |
+
"learning_rate": 4.6710430799648143e-07,
|
606 |
+
"loss": 0.0581,
|
607 |
+
"reward": 1.15625,
|
608 |
+
"reward_std": 0.2235843911767006,
|
609 |
+
"rewards/equation_reward_func": 0.15625,
|
610 |
+
"rewards/format_reward_func": 1.0,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"clip_ratio": 0.0,
|
615 |
+
"completion_length": 338.90625,
|
616 |
+
"epoch": 0.015644444444444443,
|
617 |
+
"grad_norm": 1.213080736189347,
|
618 |
+
"kl": 0.24658203125,
|
619 |
+
"learning_rate": 4.652954630476127e-07,
|
620 |
+
"loss": 0.0379,
|
621 |
+
"reward": 1.078125,
|
622 |
+
"reward_std": 0.1298343911767006,
|
623 |
+
"rewards/equation_reward_func": 0.078125,
|
624 |
+
"rewards/format_reward_func": 1.0,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"clip_ratio": 0.0,
|
629 |
+
"completion_length": 371.796875,
|
630 |
+
"epoch": 0.016,
|
631 |
+
"grad_norm": 1.709623394747104,
|
632 |
+
"kl": 1.02197265625,
|
633 |
+
"learning_rate": 4.6344190712584713e-07,
|
634 |
+
"loss": -0.0009,
|
635 |
+
"reward": 1.15625,
|
636 |
+
"reward_std": 0.23325317353010178,
|
637 |
+
"rewards/equation_reward_func": 0.15625,
|
638 |
+
"rewards/format_reward_func": 1.0,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"clip_ratio": 0.0,
|
643 |
+
"completion_length": 372.4375,
|
644 |
+
"epoch": 0.016355555555555557,
|
645 |
+
"grad_norm": 1.1039741000193948,
|
646 |
+
"kl": 0.51763916015625,
|
647 |
+
"learning_rate": 4.615440251639995e-07,
|
648 |
+
"loss": 0.0138,
|
649 |
+
"reward": 1.03125,
|
650 |
+
"reward_std": 0.09858439117670059,
|
651 |
+
"rewards/equation_reward_func": 0.046875,
|
652 |
+
"rewards/format_reward_func": 0.984375,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"clip_ratio": 0.0,
|
657 |
+
"completion_length": 383.03125,
|
658 |
+
"epoch": 0.01671111111111111,
|
659 |
+
"grad_norm": 1.0615946335422568,
|
660 |
+
"kl": 0.32763671875,
|
661 |
+
"learning_rate": 4.596022113001894e-07,
|
662 |
+
"loss": 0.0168,
|
663 |
+
"reward": 1.0625,
|
664 |
+
"reward_std": 0.09858439117670059,
|
665 |
+
"rewards/equation_reward_func": 0.0625,
|
666 |
+
"rewards/format_reward_func": 1.0,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"clip_ratio": 0.0,
|
671 |
+
"completion_length": 387.046875,
|
672 |
+
"epoch": 0.017066666666666667,
|
673 |
+
"grad_norm": 1.0567721975237463,
|
674 |
+
"kl": 0.186248779296875,
|
675 |
+
"learning_rate": 4.576168687959895e-07,
|
676 |
+
"loss": 0.014,
|
677 |
+
"reward": 1.125,
|
678 |
+
"reward_std": 0.17075317353010178,
|
679 |
+
"rewards/equation_reward_func": 0.125,
|
680 |
+
"rewards/format_reward_func": 1.0,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"clip_ratio": 0.0,
|
685 |
+
"completion_length": 357.375,
|
686 |
+
"epoch": 0.01742222222222222,
|
687 |
+
"grad_norm": 117.02412491992783,
|
688 |
+
"kl": 8.14306640625,
|
689 |
+
"learning_rate": 4.555884099526793e-07,
|
690 |
+
"loss": 0.0505,
|
691 |
+
"reward": 1.09375,
|
692 |
+
"reward_std": 0.13466878235340118,
|
693 |
+
"rewards/equation_reward_func": 0.09375,
|
694 |
+
"rewards/format_reward_func": 1.0,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"clip_ratio": 0.0,
|
699 |
+
"completion_length": 361.265625,
|
700 |
+
"epoch": 0.017777777777777778,
|
701 |
+
"grad_norm": 1.2109959204361576,
|
702 |
+
"kl": 0.1463623046875,
|
703 |
+
"learning_rate": 4.5351725602562174e-07,
|
704 |
+
"loss": -0.0073,
|
705 |
+
"reward": 1.125,
|
706 |
+
"reward_std": 0.24819982051849365,
|
707 |
+
"rewards/equation_reward_func": 0.140625,
|
708 |
+
"rewards/format_reward_func": 0.984375,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"clip_ratio": 0.0,
|
713 |
+
"completion_length": 374.34375,
|
714 |
+
"epoch": 0.018133333333333335,
|
715 |
+
"grad_norm": 1.3629062892707553,
|
716 |
+
"kl": 0.22503662109375,
|
717 |
+
"learning_rate": 4.514038371367791e-07,
|
718 |
+
"loss": 0.0304,
|
719 |
+
"reward": 1.109375,
|
720 |
+
"reward_std": 0.16591878235340118,
|
721 |
+
"rewards/equation_reward_func": 0.109375,
|
722 |
+
"rewards/format_reward_func": 1.0,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"clip_ratio": 0.0,
|
727 |
+
"completion_length": 355.671875,
|
728 |
+
"epoch": 0.018488888888888888,
|
729 |
+
"grad_norm": 1.066354910378942,
|
730 |
+
"kl": 0.237884521484375,
|
731 |
+
"learning_rate": 4.4924859218538936e-07,
|
732 |
+
"loss": 0.0266,
|
733 |
+
"reward": 1.0625,
|
734 |
+
"reward_std": 0.125,
|
735 |
+
"rewards/equation_reward_func": 0.0625,
|
736 |
+
"rewards/format_reward_func": 1.0,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"clip_ratio": 0.0,
|
741 |
+
"completion_length": 346.40625,
|
742 |
+
"epoch": 0.018844444444444445,
|
743 |
+
"grad_norm": 1.244076703781482,
|
744 |
+
"kl": 0.2713623046875,
|
745 |
+
"learning_rate": 4.470519687568185e-07,
|
746 |
+
"loss": 0.0573,
|
747 |
+
"reward": 1.15625,
|
748 |
+
"reward_std": 0.1610843911767006,
|
749 |
+
"rewards/equation_reward_func": 0.15625,
|
750 |
+
"rewards/format_reward_func": 1.0,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"clip_ratio": 0.0,
|
755 |
+
"completion_length": 343.875,
|
756 |
+
"epoch": 0.0192,
|
757 |
+
"grad_norm": 1.5317514782871564,
|
758 |
+
"kl": 0.193603515625,
|
759 |
+
"learning_rate": 4.4481442302960923e-07,
|
760 |
+
"loss": 0.0681,
|
761 |
+
"reward": 1.125,
|
762 |
+
"reward_std": 0.22178421169519424,
|
763 |
+
"rewards/equation_reward_func": 0.140625,
|
764 |
+
"rewards/format_reward_func": 0.984375,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"clip_ratio": 0.0,
|
769 |
+
"completion_length": 357.453125,
|
770 |
+
"epoch": 0.019555555555555555,
|
771 |
+
"grad_norm": 1.3615194783712425,
|
772 |
+
"kl": 0.257049560546875,
|
773 |
+
"learning_rate": 4.4253641968074505e-07,
|
774 |
+
"loss": 0.0324,
|
775 |
+
"reward": 1.046875,
|
776 |
+
"reward_std": 0.1298343911767006,
|
777 |
+
"rewards/equation_reward_func": 0.0625,
|
778 |
+
"rewards/format_reward_func": 0.984375,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"clip_ratio": 0.0,
|
783 |
+
"completion_length": 330.875,
|
784 |
+
"epoch": 0.019911111111111112,
|
785 |
+
"grad_norm": 1.6404324826318923,
|
786 |
+
"kl": 0.42608642578125,
|
787 |
+
"learning_rate": 4.402184317891501e-07,
|
788 |
+
"loss": 0.0444,
|
789 |
+
"reward": 1.15625,
|
790 |
+
"reward_std": 0.26933756470680237,
|
791 |
+
"rewards/equation_reward_func": 0.171875,
|
792 |
+
"rewards/format_reward_func": 0.984375,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"clip_ratio": 0.0,
|
797 |
+
"completion_length": 327.734375,
|
798 |
+
"epoch": 0.020266666666666665,
|
799 |
+
"grad_norm": 1.1970449285988152,
|
800 |
+
"kl": 0.30352783203125,
|
801 |
+
"learning_rate": 4.37860940737443e-07,
|
802 |
+
"loss": 0.0289,
|
803 |
+
"reward": 1.03125,
|
804 |
+
"reward_std": 0.125,
|
805 |
+
"rewards/equation_reward_func": 0.046875,
|
806 |
+
"rewards/format_reward_func": 0.984375,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"clip_ratio": 0.0,
|
811 |
+
"completion_length": 345.984375,
|
812 |
+
"epoch": 0.020622222222222222,
|
813 |
+
"grad_norm": 3.6830472868585975,
|
814 |
+
"kl": 0.693603515625,
|
815 |
+
"learning_rate": 4.354644361119671e-07,
|
816 |
+
"loss": 0.0444,
|
817 |
+
"reward": 1.03125,
|
818 |
+
"reward_std": 0.15358919650316238,
|
819 |
+
"rewards/equation_reward_func": 0.0625,
|
820 |
+
"rewards/format_reward_func": 0.96875,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"clip_ratio": 0.0,
|
825 |
+
"completion_length": 317.34375,
|
826 |
+
"epoch": 0.02097777777777778,
|
827 |
+
"grad_norm": 0.8803960644083081,
|
828 |
+
"kl": 0.40740966796875,
|
829 |
+
"learning_rate": 4.3302941560111716e-07,
|
830 |
+
"loss": 0.0669,
|
831 |
+
"reward": 1.09375,
|
832 |
+
"reward_std": 0.1875,
|
833 |
+
"rewards/equation_reward_func": 0.09375,
|
834 |
+
"rewards/format_reward_func": 1.0,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"clip_ratio": 0.0,
|
839 |
+
"completion_length": 325.359375,
|
840 |
+
"epoch": 0.021333333333333333,
|
841 |
+
"grad_norm": 1.7222894595317144,
|
842 |
+
"kl": 0.9599609375,
|
843 |
+
"learning_rate": 4.3055638489198236e-07,
|
844 |
+
"loss": 0.021,
|
845 |
+
"reward": 1.0625,
|
846 |
+
"reward_std": 0.1610843911767006,
|
847 |
+
"rewards/equation_reward_func": 0.078125,
|
848 |
+
"rewards/format_reward_func": 0.984375,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"clip_ratio": 0.0,
|
853 |
+
"completion_length": 343.03125,
|
854 |
+
"epoch": 0.02168888888888889,
|
855 |
+
"grad_norm": 3.1092809656603206,
|
856 |
+
"kl": 1.03076171875,
|
857 |
+
"learning_rate": 4.280458575653296e-07,
|
858 |
+
"loss": 0.0242,
|
859 |
+
"reward": 1.09375,
|
860 |
+
"reward_std": 0.1875,
|
861 |
+
"rewards/equation_reward_func": 0.09375,
|
862 |
+
"rewards/format_reward_func": 1.0,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"clip_ratio": 0.0,
|
867 |
+
"completion_length": 311.359375,
|
868 |
+
"epoch": 0.022044444444444443,
|
869 |
+
"grad_norm": 2.3189720464471533,
|
870 |
+
"kl": 0.631591796875,
|
871 |
+
"learning_rate": 4.2549835498894665e-07,
|
872 |
+
"loss": 0.0467,
|
873 |
+
"reward": 1.09375,
|
874 |
+
"reward_std": 0.2235843911767006,
|
875 |
+
"rewards/equation_reward_func": 0.125,
|
876 |
+
"rewards/format_reward_func": 0.96875,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"clip_ratio": 0.0,
|
881 |
+
"completion_length": 307.046875,
|
882 |
+
"epoch": 0.0224,
|
883 |
+
"grad_norm": 0.7441216613827443,
|
884 |
+
"kl": 0.5086669921875,
|
885 |
+
"learning_rate": 4.229144062093679e-07,
|
886 |
+
"loss": -0.0085,
|
887 |
+
"reward": 1.140625,
|
888 |
+
"reward_std": 0.20200317353010178,
|
889 |
+
"rewards/equation_reward_func": 0.140625,
|
890 |
+
"rewards/format_reward_func": 1.0,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"clip_ratio": 0.0,
|
895 |
+
"completion_length": 291.640625,
|
896 |
+
"epoch": 0.022755555555555557,
|
897 |
+
"grad_norm": 1.7398896558997667,
|
898 |
+
"kl": 0.682373046875,
|
899 |
+
"learning_rate": 4.2029454784200675e-07,
|
900 |
+
"loss": 0.0178,
|
901 |
+
"reward": 1.03125,
|
902 |
+
"reward_std": 0.0625,
|
903 |
+
"rewards/equation_reward_func": 0.046875,
|
904 |
+
"rewards/format_reward_func": 0.984375,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"clip_ratio": 0.0,
|
909 |
+
"completion_length": 286.921875,
|
910 |
+
"epoch": 0.02311111111111111,
|
911 |
+
"grad_norm": 1.4445137095871459,
|
912 |
+
"kl": 0.564208984375,
|
913 |
+
"learning_rate": 4.1763932395971433e-07,
|
914 |
+
"loss": 0.0149,
|
915 |
+
"reward": 1.078125,
|
916 |
+
"reward_std": 0.22841878235340118,
|
917 |
+
"rewards/equation_reward_func": 0.109375,
|
918 |
+
"rewards/format_reward_func": 0.96875,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"clip_ratio": 0.0,
|
923 |
+
"completion_length": 299.28125,
|
924 |
+
"epoch": 0.023466666666666667,
|
925 |
+
"grad_norm": 1.082942893318675,
|
926 |
+
"kl": 0.3787841796875,
|
927 |
+
"learning_rate": 4.1494928597979117e-07,
|
928 |
+
"loss": 0.0099,
|
929 |
+
"reward": 1.140625,
|
930 |
+
"reward_std": 0.22841878235340118,
|
931 |
+
"rewards/equation_reward_func": 0.140625,
|
932 |
+
"rewards/format_reward_func": 1.0,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"clip_ratio": 0.0,
|
937 |
+
"completion_length": 298.84375,
|
938 |
+
"epoch": 0.023822222222222224,
|
939 |
+
"grad_norm": 2.813667402859087,
|
940 |
+
"kl": 1.5950927734375,
|
941 |
+
"learning_rate": 4.122249925494726e-07,
|
942 |
+
"loss": 0.0468,
|
943 |
+
"reward": 1.21875,
|
944 |
+
"reward_std": 0.2957531735301018,
|
945 |
+
"rewards/equation_reward_func": 0.21875,
|
946 |
+
"rewards/format_reward_func": 1.0,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"clip_ratio": 0.0,
|
951 |
+
"completion_length": 304.90625,
|
952 |
+
"epoch": 0.024177777777777777,
|
953 |
+
"grad_norm": 1.6133284823417406,
|
954 |
+
"kl": 0.628173828125,
|
955 |
+
"learning_rate": 4.094670094299131e-07,
|
956 |
+
"loss": 0.0012,
|
957 |
+
"reward": 1.0625,
|
958 |
+
"reward_std": 0.09858439117670059,
|
959 |
+
"rewards/equation_reward_func": 0.0625,
|
960 |
+
"rewards/format_reward_func": 1.0,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"clip_ratio": 0.0,
|
965 |
+
"completion_length": 330.609375,
|
966 |
+
"epoch": 0.024533333333333334,
|
967 |
+
"grad_norm": 1.5618980968427136,
|
968 |
+
"kl": 0.620361328125,
|
969 |
+
"learning_rate": 4.066759093786931e-07,
|
970 |
+
"loss": 0.0299,
|
971 |
+
"reward": 1.046875,
|
972 |
+
"reward_std": 0.1298343911767006,
|
973 |
+
"rewards/equation_reward_func": 0.0625,
|
974 |
+
"rewards/format_reward_func": 0.984375,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"clip_ratio": 0.0,
|
979 |
+
"completion_length": 315.84375,
|
980 |
+
"epoch": 0.024888888888888887,
|
981 |
+
"grad_norm": 0.7496675007517801,
|
982 |
+
"kl": 0.5653076171875,
|
983 |
+
"learning_rate": 4.038522720308732e-07,
|
984 |
+
"loss": 0.0383,
|
985 |
+
"reward": 1.046875,
|
986 |
+
"reward_std": 0.06733439117670059,
|
987 |
+
"rewards/equation_reward_func": 0.046875,
|
988 |
+
"rewards/format_reward_func": 1.0,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"clip_ratio": 0.0,
|
993 |
+
"completion_length": 279.46875,
|
994 |
+
"epoch": 0.025244444444444444,
|
995 |
+
"grad_norm": 1.623499251970735,
|
996 |
+
"kl": 0.6290283203125,
|
997 |
+
"learning_rate": 4.009966837786194e-07,
|
998 |
+
"loss": 0.0041,
|
999 |
+
"reward": 1.046875,
|
1000 |
+
"reward_std": 0.09375,
|
1001 |
+
"rewards/equation_reward_func": 0.046875,
|
1002 |
+
"rewards/format_reward_func": 1.0,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"clip_ratio": 0.0,
|
1007 |
+
"completion_length": 301.1875,
|
1008 |
+
"epoch": 0.0256,
|
1009 |
+
"grad_norm": 1.5816454578936159,
|
1010 |
+
"kl": 0.6375732421875,
|
1011 |
+
"learning_rate": 3.981097376494259e-07,
|
1012 |
+
"loss": -0.0138,
|
1013 |
+
"reward": 1.0625,
|
1014 |
+
"reward_std": 0.09858439117670059,
|
1015 |
+
"rewards/equation_reward_func": 0.0625,
|
1016 |
+
"rewards/format_reward_func": 1.0,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"clip_ratio": 0.0,
|
1021 |
+
"completion_length": 286.390625,
|
1022 |
+
"epoch": 0.025955555555555555,
|
1023 |
+
"grad_norm": 0.9976268635346477,
|
1024 |
+
"kl": 0.594970703125,
|
1025 |
+
"learning_rate": 3.951920331829592e-07,
|
1026 |
+
"loss": 0.0283,
|
1027 |
+
"reward": 1.15625,
|
1028 |
+
"reward_std": 0.125,
|
1029 |
+
"rewards/equation_reward_func": 0.15625,
|
1030 |
+
"rewards/format_reward_func": 1.0,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"clip_ratio": 0.0,
|
1035 |
+
"completion_length": 290.21875,
|
1036 |
+
"epoch": 0.02631111111111111,
|
1037 |
+
"grad_norm": 1.453799485818376,
|
1038 |
+
"kl": 1.276611328125,
|
1039 |
+
"learning_rate": 3.922441763065506e-07,
|
1040 |
+
"loss": 0.0691,
|
1041 |
+
"reward": 1.0625,
|
1042 |
+
"reward_std": 0.1610843911767006,
|
1043 |
+
"rewards/equation_reward_func": 0.078125,
|
1044 |
+
"rewards/format_reward_func": 0.984375,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"clip_ratio": 0.0,
|
1049 |
+
"completion_length": 330.203125,
|
1050 |
+
"epoch": 0.02666666666666667,
|
1051 |
+
"grad_norm": 1.4585609222742653,
|
1052 |
+
"kl": 0.7332763671875,
|
1053 |
+
"learning_rate": 3.8926677920936093e-07,
|
1054 |
+
"loss": 0.0235,
|
1055 |
+
"reward": 1.0625,
|
1056 |
+
"reward_std": 0.125,
|
1057 |
+
"rewards/equation_reward_func": 0.0625,
|
1058 |
+
"rewards/format_reward_func": 1.0,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"clip_ratio": 0.0,
|
1063 |
+
"completion_length": 314.703125,
|
1064 |
+
"epoch": 0.027022222222222222,
|
1065 |
+
"grad_norm": 1.2450868511160544,
|
1066 |
+
"kl": 0.74951171875,
|
1067 |
+
"learning_rate": 3.862604602152464e-07,
|
1068 |
+
"loss": 0.0255,
|
1069 |
+
"reward": 1.03125,
|
1070 |
+
"reward_std": 0.0625,
|
1071 |
+
"rewards/equation_reward_func": 0.03125,
|
1072 |
+
"rewards/format_reward_func": 1.0,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"clip_ratio": 0.0,
|
1077 |
+
"completion_length": 313.203125,
|
1078 |
+
"epoch": 0.02737777777777778,
|
1079 |
+
"grad_norm": 1.3495788554258188,
|
1080 |
+
"kl": 0.805908203125,
|
1081 |
+
"learning_rate": 3.8322584365434934e-07,
|
1082 |
+
"loss": 0.0098,
|
1083 |
+
"reward": 1.03125,
|
1084 |
+
"reward_std": 0.09858439117670059,
|
1085 |
+
"rewards/equation_reward_func": 0.046875,
|
1086 |
+
"rewards/format_reward_func": 0.984375,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"clip_ratio": 0.0,
|
1091 |
+
"completion_length": 324.9375,
|
1092 |
+
"epoch": 0.027733333333333332,
|
1093 |
+
"grad_norm": 2.1466128173407117,
|
1094 |
+
"kl": 1.1510009765625,
|
1095 |
+
"learning_rate": 3.8016355973344173e-07,
|
1096 |
+
"loss": 0.09,
|
1097 |
+
"reward": 1.140625,
|
1098 |
+
"reward_std": 0.23808756470680237,
|
1099 |
+
"rewards/equation_reward_func": 0.15625,
|
1100 |
+
"rewards/format_reward_func": 0.984375,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"clip_ratio": 0.0,
|
1105 |
+
"completion_length": 324.859375,
|
1106 |
+
"epoch": 0.02808888888888889,
|
1107 |
+
"grad_norm": 2.204629350726093,
|
1108 |
+
"kl": 1.16015625,
|
1109 |
+
"learning_rate": 3.7707424440504863e-07,
|
1110 |
+
"loss": 0.0803,
|
1111 |
+
"reward": 1.140625,
|
1112 |
+
"reward_std": 0.2548343911767006,
|
1113 |
+
"rewards/equation_reward_func": 0.140625,
|
1114 |
+
"rewards/format_reward_func": 1.0,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"clip_ratio": 0.0,
|
1119 |
+
"completion_length": 302.859375,
|
1120 |
+
"epoch": 0.028444444444444446,
|
1121 |
+
"grad_norm": 1.8398150430903868,
|
1122 |
+
"kl": 1.251708984375,
|
1123 |
+
"learning_rate": 3.739585392353787e-07,
|
1124 |
+
"loss": 0.0197,
|
1125 |
+
"reward": 1.15625,
|
1126 |
+
"reward_std": 0.1610843911767006,
|
1127 |
+
"rewards/equation_reward_func": 0.15625,
|
1128 |
+
"rewards/format_reward_func": 1.0,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"clip_ratio": 0.0,
|
1133 |
+
"completion_length": 292.640625,
|
1134 |
+
"epoch": 0.0288,
|
1135 |
+
"grad_norm": 2.13847808834117,
|
1136 |
+
"kl": 1.3173828125,
|
1137 |
+
"learning_rate": 3.7081709127108767e-07,
|
1138 |
+
"loss": 0.0155,
|
1139 |
+
"reward": 1.1875,
|
1140 |
+
"reward_std": 0.2235843911767006,
|
1141 |
+
"rewards/equation_reward_func": 0.1875,
|
1142 |
+
"rewards/format_reward_func": 1.0,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"clip_ratio": 0.0,
|
1147 |
+
"completion_length": 261.234375,
|
1148 |
+
"epoch": 0.029155555555555556,
|
1149 |
+
"grad_norm": 3.506581199733204,
|
1150 |
+
"kl": 1.736328125,
|
1151 |
+
"learning_rate": 3.6765055290490513e-07,
|
1152 |
+
"loss": -0.0109,
|
1153 |
+
"reward": 1.171875,
|
1154 |
+
"reward_std": 0.28125,
|
1155 |
+
"rewards/equation_reward_func": 0.171875,
|
1156 |
+
"rewards/format_reward_func": 1.0,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"clip_ratio": 0.0,
|
1161 |
+
"completion_length": 302.953125,
|
1162 |
+
"epoch": 0.02951111111111111,
|
1163 |
+
"grad_norm": 2.5724923821581025,
|
1164 |
+
"kl": 6.1572265625,
|
1165 |
+
"learning_rate": 3.644595817401501e-07,
|
1166 |
+
"loss": 0.0332,
|
1167 |
+
"reward": 1.09375,
|
1168 |
+
"reward_std": 0.1610843911767006,
|
1169 |
+
"rewards/equation_reward_func": 0.09375,
|
1170 |
+
"rewards/format_reward_func": 1.0,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"clip_ratio": 0.0,
|
1175 |
+
"completion_length": 280.03125,
|
1176 |
+
"epoch": 0.029866666666666666,
|
1177 |
+
"grad_norm": 1.5126543710719036,
|
1178 |
+
"kl": 1.48974609375,
|
1179 |
+
"learning_rate": 3.6124484045416483e-07,
|
1180 |
+
"loss": 0.0267,
|
1181 |
+
"reward": 1.140625,
|
1182 |
+
"reward_std": 0.1923343911767006,
|
1183 |
+
"rewards/equation_reward_func": 0.140625,
|
1184 |
+
"rewards/format_reward_func": 1.0,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"clip_ratio": 0.0,
|
1189 |
+
"completion_length": 302.546875,
|
1190 |
+
"epoch": 0.030222222222222223,
|
1191 |
+
"grad_norm": 3.4982226449385156,
|
1192 |
+
"kl": 3.032470703125,
|
1193 |
+
"learning_rate": 3.580069966606949e-07,
|
1194 |
+
"loss": 0.0559,
|
1195 |
+
"reward": 1.03125,
|
1196 |
+
"reward_std": 0.1875,
|
1197 |
+
"rewards/equation_reward_func": 0.078125,
|
1198 |
+
"rewards/format_reward_func": 0.953125,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"clip_ratio": 0.0,
|
1203 |
+
"completion_length": 334.515625,
|
1204 |
+
"epoch": 0.030577777777777777,
|
1205 |
+
"grad_norm": 3.0985982569829638,
|
1206 |
+
"kl": 14.5616455078125,
|
1207 |
+
"learning_rate": 3.547467227712444e-07,
|
1208 |
+
"loss": 0.0302,
|
1209 |
+
"reward": 1.03125,
|
1210 |
+
"reward_std": 0.23853103816509247,
|
1211 |
+
"rewards/equation_reward_func": 0.078125,
|
1212 |
+
"rewards/format_reward_func": 0.953125,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"clip_ratio": 0.0,
|
1217 |
+
"completion_length": 300.71875,
|
1218 |
+
"epoch": 0.030933333333333334,
|
1219 |
+
"grad_norm": 10.688658199362251,
|
1220 |
+
"kl": 3.142333984375,
|
1221 |
+
"learning_rate": 3.5146469585543386e-07,
|
1222 |
+
"loss": -0.0049,
|
1223 |
+
"reward": 1.171875,
|
1224 |
+
"reward_std": 0.16591878235340118,
|
1225 |
+
"rewards/equation_reward_func": 0.171875,
|
1226 |
+
"rewards/format_reward_func": 1.0,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"clip_ratio": 0.0,
|
1231 |
+
"completion_length": 292.484375,
|
1232 |
+
"epoch": 0.03128888888888889,
|
1233 |
+
"grad_norm": 6.967303370780864,
|
1234 |
+
"kl": 4.5751953125,
|
1235 |
+
"learning_rate": 3.481615975003922e-07,
|
1236 |
+
"loss": 0.0089,
|
1237 |
+
"reward": 1.125,
|
1238 |
+
"reward_std": 0.13466878235340118,
|
1239 |
+
"rewards/equation_reward_func": 0.15625,
|
1240 |
+
"rewards/format_reward_func": 0.96875,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"clip_ratio": 0.0,
|
1245 |
+
"completion_length": 292.1875,
|
1246 |
+
"epoch": 0.03164444444444445,
|
1247 |
+
"grad_norm": 2.379129578155761,
|
1248 |
+
"kl": 1.24462890625,
|
1249 |
+
"learning_rate": 3.448381136692089e-07,
|
1250 |
+
"loss": 0.0412,
|
1251 |
+
"reward": 1.15625,
|
1252 |
+
"reward_std": 0.1610843911767006,
|
1253 |
+
"rewards/equation_reward_func": 0.15625,
|
1254 |
+
"rewards/format_reward_func": 1.0,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"clip_ratio": 0.0,
|
1259 |
+
"completion_length": 336.0625,
|
1260 |
+
"epoch": 0.032,
|
1261 |
+
"grad_norm": 1.8115427356791605,
|
1262 |
+
"kl": 0.7757568359375,
|
1263 |
+
"learning_rate": 3.4149493455847897e-07,
|
1264 |
+
"loss": 0.0274,
|
1265 |
+
"reward": 1.015625,
|
1266 |
+
"reward_std": 0.09375,
|
1267 |
+
"rewards/equation_reward_func": 0.03125,
|
1268 |
+
"rewards/format_reward_func": 0.984375,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"clip_ratio": 0.0,
|
1273 |
+
"completion_length": 297.34375,
|
1274 |
+
"epoch": 0.032355555555555554,
|
1275 |
+
"grad_norm": 2.279790073120627,
|
1276 |
+
"kl": 0.8720703125,
|
1277 |
+
"learning_rate": 3.3813275445496766e-07,
|
1278 |
+
"loss": 0.0637,
|
1279 |
+
"reward": 1.09375,
|
1280 |
+
"reward_std": 0.1610843911767006,
|
1281 |
+
"rewards/equation_reward_func": 0.09375,
|
1282 |
+
"rewards/format_reward_func": 1.0,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"clip_ratio": 0.0,
|
1287 |
+
"completion_length": 311.6875,
|
1288 |
+
"epoch": 0.032711111111111114,
|
1289 |
+
"grad_norm": 1.9111976240917574,
|
1290 |
+
"kl": 1.3289794921875,
|
1291 |
+
"learning_rate": 3.347522715914262e-07,
|
1292 |
+
"loss": -0.0126,
|
1293 |
+
"reward": 1.0625,
|
1294 |
+
"reward_std": 0.125,
|
1295 |
+
"rewards/equation_reward_func": 0.0625,
|
1296 |
+
"rewards/format_reward_func": 1.0,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"clip_ratio": 0.0,
|
1301 |
+
"completion_length": 284.0625,
|
1302 |
+
"epoch": 0.03306666666666667,
|
1303 |
+
"grad_norm": 48.68973900874978,
|
1304 |
+
"kl": 8.955810546875,
|
1305 |
+
"learning_rate": 3.313541880015877e-07,
|
1306 |
+
"loss": 0.0674,
|
1307 |
+
"reward": 1.171875,
|
1308 |
+
"reward_std": 0.1923343911767006,
|
1309 |
+
"rewards/equation_reward_func": 0.171875,
|
1310 |
+
"rewards/format_reward_func": 1.0,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"clip_ratio": 0.0,
|
1315 |
+
"completion_length": 334.1875,
|
1316 |
+
"epoch": 0.03342222222222222,
|
1317 |
+
"grad_norm": 0.3837227064051435,
|
1318 |
+
"kl": 0.7593994140625,
|
1319 |
+
"learning_rate": 3.279392093743747e-07,
|
1320 |
+
"loss": 0.0074,
|
1321 |
+
"reward": 1.015625,
|
1322 |
+
"reward_std": 0.03125,
|
1323 |
+
"rewards/equation_reward_func": 0.015625,
|
1324 |
+
"rewards/format_reward_func": 1.0,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"clip_ratio": 0.0,
|
1329 |
+
"completion_length": 276.140625,
|
1330 |
+
"epoch": 0.033777777777777775,
|
1331 |
+
"grad_norm": 2.2048786067003374,
|
1332 |
+
"kl": 0.738037109375,
|
1333 |
+
"learning_rate": 3.245080449073459e-07,
|
1334 |
+
"loss": 0.0079,
|
1335 |
+
"reward": 1.1875,
|
1336 |
+
"reward_std": 0.2596687823534012,
|
1337 |
+
"rewards/equation_reward_func": 0.1875,
|
1338 |
+
"rewards/format_reward_func": 1.0,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"clip_ratio": 0.0,
|
1343 |
+
"completion_length": 324.796875,
|
1344 |
+
"epoch": 0.034133333333333335,
|
1345 |
+
"grad_norm": 1.4988476602299554,
|
1346 |
+
"kl": 0.73046875,
|
1347 |
+
"learning_rate": 3.210614071594162e-07,
|
1348 |
+
"loss": 0.0788,
|
1349 |
+
"reward": 1.125,
|
1350 |
+
"reward_std": 0.19716878235340118,
|
1351 |
+
"rewards/equation_reward_func": 0.125,
|
1352 |
+
"rewards/format_reward_func": 1.0,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"clip_ratio": 0.0,
|
1357 |
+
"completion_length": 260.8125,
|
1358 |
+
"epoch": 0.03448888888888889,
|
1359 |
+
"grad_norm": 3.9875059912502744,
|
1360 |
+
"kl": 1.3214111328125,
|
1361 |
+
"learning_rate": 3.1760001190287695e-07,
|
1362 |
+
"loss": 0.0088,
|
1363 |
+
"reward": 1.140625,
|
1364 |
+
"reward_std": 0.1923343911767006,
|
1365 |
+
"rewards/equation_reward_func": 0.140625,
|
1366 |
+
"rewards/format_reward_func": 1.0,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"clip_ratio": 0.0,
|
1371 |
+
"completion_length": 278.03125,
|
1372 |
+
"epoch": 0.03484444444444444,
|
1373 |
+
"grad_norm": 2.1591229522344846,
|
1374 |
+
"kl": 0.6678466796875,
|
1375 |
+
"learning_rate": 3.141245779747502e-07,
|
1376 |
+
"loss": 0.0746,
|
1377 |
+
"reward": 1.203125,
|
1378 |
+
"reward_std": 0.30058756470680237,
|
1379 |
+
"rewards/equation_reward_func": 0.203125,
|
1380 |
+
"rewards/format_reward_func": 1.0,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"clip_ratio": 0.0,
|
1385 |
+
"completion_length": 333.765625,
|
1386 |
+
"epoch": 0.0352,
|
1387 |
+
"grad_norm": 3.410997217745853,
|
1388 |
+
"kl": 0.9820556640625,
|
1389 |
+
"learning_rate": 3.106358271275056e-07,
|
1390 |
+
"loss": 0.0738,
|
1391 |
+
"reward": 1.09375,
|
1392 |
+
"reward_std": 0.2596687823534012,
|
1393 |
+
"rewards/equation_reward_func": 0.125,
|
1394 |
+
"rewards/format_reward_func": 0.96875,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"clip_ratio": 0.0,
|
1399 |
+
"completion_length": 327.84375,
|
1400 |
+
"epoch": 0.035555555555555556,
|
1401 |
+
"grad_norm": 2.2453024821477534,
|
1402 |
+
"kl": 1.880126953125,
|
1403 |
+
"learning_rate": 3.0713448387917227e-07,
|
1404 |
+
"loss": -0.0002,
|
1405 |
+
"reward": 1.046875,
|
1406 |
+
"reward_std": 0.09375,
|
1407 |
+
"rewards/equation_reward_func": 0.046875,
|
1408 |
+
"rewards/format_reward_func": 1.0,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"clip_ratio": 0.0,
|
1413 |
+
"completion_length": 311.515625,
|
1414 |
+
"epoch": 0.03591111111111111,
|
1415 |
+
"grad_norm": 2.3752697048728186,
|
1416 |
+
"kl": 2.144775390625,
|
1417 |
+
"learning_rate": 3.0362127536287636e-07,
|
1418 |
+
"loss": 0.0192,
|
1419 |
+
"reward": 1.09375,
|
1420 |
+
"reward_std": 0.18569982051849365,
|
1421 |
+
"rewards/equation_reward_func": 0.109375,
|
1422 |
+
"rewards/format_reward_func": 0.984375,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"clip_ratio": 0.0,
|
1427 |
+
"completion_length": 284.3125,
|
1428 |
+
"epoch": 0.03626666666666667,
|
1429 |
+
"grad_norm": 135.00953365889976,
|
1430 |
+
"kl": 28.689697265625,
|
1431 |
+
"learning_rate": 3.0009693117583523e-07,
|
1432 |
+
"loss": 0.0403,
|
1433 |
+
"reward": 1.0625,
|
1434 |
+
"reward_std": 0.09858439117670059,
|
1435 |
+
"rewards/equation_reward_func": 0.0625,
|
1436 |
+
"rewards/format_reward_func": 1.0,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"clip_ratio": 0.0,
|
1441 |
+
"completion_length": 299.71875,
|
1442 |
+
"epoch": 0.03662222222222222,
|
1443 |
+
"grad_norm": 1.8674915516374395,
|
1444 |
+
"kl": 2.016845703125,
|
1445 |
+
"learning_rate": 2.965621832278401e-07,
|
1446 |
+
"loss": 0.049,
|
1447 |
+
"reward": 1.109375,
|
1448 |
+
"reward_std": 0.13950317353010178,
|
1449 |
+
"rewards/equation_reward_func": 0.109375,
|
1450 |
+
"rewards/format_reward_func": 1.0,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"clip_ratio": 0.0,
|
1455 |
+
"completion_length": 334.296875,
|
1456 |
+
"epoch": 0.036977777777777776,
|
1457 |
+
"grad_norm": 1.6829162960798076,
|
1458 |
+
"kl": 2.673828125,
|
1459 |
+
"learning_rate": 2.9301776558925875e-07,
|
1460 |
+
"loss": 0.0532,
|
1461 |
+
"reward": 1.0625,
|
1462 |
+
"reward_std": 0.12717358767986298,
|
1463 |
+
"rewards/equation_reward_func": 0.078125,
|
1464 |
+
"rewards/format_reward_func": 0.984375,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"clip_ratio": 0.0,
|
1469 |
+
"completion_length": 342.4375,
|
1470 |
+
"epoch": 0.037333333333333336,
|
1471 |
+
"grad_norm": 0.8086021793065252,
|
1472 |
+
"kl": 1.893310546875,
|
1473 |
+
"learning_rate": 2.894644143385885e-07,
|
1474 |
+
"loss": 0.0337,
|
1475 |
+
"reward": 1.078125,
|
1476 |
+
"reward_std": 0.09375,
|
1477 |
+
"rewards/equation_reward_func": 0.078125,
|
1478 |
+
"rewards/format_reward_func": 1.0,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"clip_ratio": 0.0,
|
1483 |
+
"completion_length": 307.765625,
|
1484 |
+
"epoch": 0.03768888888888889,
|
1485 |
+
"grad_norm": 2.4643376957229237,
|
1486 |
+
"kl": 1.91650390625,
|
1487 |
+
"learning_rate": 2.859028674095937e-07,
|
1488 |
+
"loss": 0.0027,
|
1489 |
+
"reward": 1.203125,
|
1490 |
+
"reward_std": 0.30058756470680237,
|
1491 |
+
"rewards/equation_reward_func": 0.203125,
|
1492 |
+
"rewards/format_reward_func": 1.0,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"clip_ratio": 0.0,
|
1497 |
+
"completion_length": 298.515625,
|
1498 |
+
"epoch": 0.03804444444444444,
|
1499 |
+
"grad_norm": 3.029946510557144,
|
1500 |
+
"kl": 1.754638671875,
|
1501 |
+
"learning_rate": 2.823338644380566e-07,
|
1502 |
+
"loss": 0.022,
|
1503 |
+
"reward": 1.15625,
|
1504 |
+
"reward_std": 0.17075317353010178,
|
1505 |
+
"rewards/equation_reward_func": 0.15625,
|
1506 |
+
"rewards/format_reward_func": 1.0,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"clip_ratio": 0.0,
|
1511 |
+
"completion_length": 315.765625,
|
1512 |
+
"epoch": 0.0384,
|
1513 |
+
"grad_norm": 1.810123541436162,
|
1514 |
+
"kl": 1.518310546875,
|
1515 |
+
"learning_rate": 2.7875814660817504e-07,
|
1516 |
+
"loss": -0.0159,
|
1517 |
+
"reward": 1.078125,
|
1518 |
+
"reward_std": 0.1298343911767006,
|
1519 |
+
"rewards/equation_reward_func": 0.09375,
|
1520 |
+
"rewards/format_reward_func": 0.984375,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"clip_ratio": 0.0,
|
1525 |
+
"completion_length": 269.6875,
|
1526 |
+
"epoch": 0.03875555555555556,
|
1527 |
+
"grad_norm": 2.337741190093351,
|
1528 |
+
"kl": 1.03564453125,
|
1529 |
+
"learning_rate": 2.751764564986396e-07,
|
1530 |
+
"loss": 0.0113,
|
1531 |
+
"reward": 1.140625,
|
1532 |
+
"reward_std": 0.22841878235340118,
|
1533 |
+
"rewards/equation_reward_func": 0.140625,
|
1534 |
+
"rewards/format_reward_func": 1.0,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"clip_ratio": 0.0,
|
1539 |
+
"completion_length": 329.484375,
|
1540 |
+
"epoch": 0.03911111111111111,
|
1541 |
+
"grad_norm": 0.7489189831580635,
|
1542 |
+
"kl": 1.310302734375,
|
1543 |
+
"learning_rate": 2.715895379284194e-07,
|
1544 |
+
"loss": 0.0084,
|
1545 |
+
"reward": 1.015625,
|
1546 |
+
"reward_std": 0.03125,
|
1547 |
+
"rewards/equation_reward_func": 0.015625,
|
1548 |
+
"rewards/format_reward_func": 1.0,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"clip_ratio": 0.0,
|
1553 |
+
"completion_length": 306.265625,
|
1554 |
+
"epoch": 0.039466666666666664,
|
1555 |
+
"grad_norm": 0.8093400893734075,
|
1556 |
+
"kl": 1.0770263671875,
|
1557 |
+
"learning_rate": 2.6799813580229174e-07,
|
1558 |
+
"loss": 0.0144,
|
1559 |
+
"reward": 1.015625,
|
1560 |
+
"reward_std": 0.03125,
|
1561 |
+
"rewards/equation_reward_func": 0.015625,
|
1562 |
+
"rewards/format_reward_func": 1.0,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"clip_ratio": 0.0,
|
1567 |
+
"completion_length": 286.640625,
|
1568 |
+
"epoch": 0.039822222222222224,
|
1569 |
+
"grad_norm": 1.6055403629730776,
|
1570 |
+
"kl": 1.1387939453125,
|
1571 |
+
"learning_rate": 2.6440299595614606e-07,
|
1572 |
+
"loss": 0.0386,
|
1573 |
+
"reward": 1.09375,
|
1574 |
+
"reward_std": 0.1610843911767006,
|
1575 |
+
"rewards/equation_reward_func": 0.09375,
|
1576 |
+
"rewards/format_reward_func": 1.0,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"clip_ratio": 0.0,
|
1581 |
+
"completion_length": 304.046875,
|
1582 |
+
"epoch": 0.04017777777777778,
|
1583 |
+
"grad_norm": 2.0302718515892164,
|
1584 |
+
"kl": 1.0672607421875,
|
1585 |
+
"learning_rate": 2.6080486500209347e-07,
|
1586 |
+
"loss": 0.0873,
|
1587 |
+
"reward": 1.1875,
|
1588 |
+
"reward_std": 0.2596687823534012,
|
1589 |
+
"rewards/equation_reward_func": 0.203125,
|
1590 |
+
"rewards/format_reward_func": 0.984375,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"clip_ratio": 0.0,
|
1595 |
+
"completion_length": 332.578125,
|
1596 |
+
"epoch": 0.04053333333333333,
|
1597 |
+
"grad_norm": 109.08080062943176,
|
1598 |
+
"kl": 12.7587890625,
|
1599 |
+
"learning_rate": 2.572044901734166e-07,
|
1600 |
+
"loss": 0.0036,
|
1601 |
+
"reward": 1.09375,
|
1602 |
+
"reward_std": 0.14961542934179306,
|
1603 |
+
"rewards/equation_reward_func": 0.109375,
|
1604 |
+
"rewards/format_reward_func": 0.984375,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"clip_ratio": 0.0,
|
1609 |
+
"completion_length": 361.203125,
|
1610 |
+
"epoch": 0.04088888888888889,
|
1611 |
+
"grad_norm": 3.7661219080037074,
|
1612 |
+
"kl": 2.75927734375,
|
1613 |
+
"learning_rate": 2.536026191693893e-07,
|
1614 |
+
"loss": 0.1178,
|
1615 |
+
"reward": 1.140625,
|
1616 |
+
"reward_std": 0.2645031735301018,
|
1617 |
+
"rewards/equation_reward_func": 0.171875,
|
1618 |
+
"rewards/format_reward_func": 0.96875,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"clip_ratio": 0.0,
|
1623 |
+
"completion_length": 325.75,
|
1624 |
+
"epoch": 0.041244444444444445,
|
1625 |
+
"grad_norm": 2.0246518816727224,
|
1626 |
+
"kl": 1.3505859375,
|
1627 |
+
"learning_rate": 2.5e-07,
|
1628 |
+
"loss": 0.0314,
|
1629 |
+
"reward": 1.15625,
|
1630 |
+
"reward_std": 0.20683756470680237,
|
1631 |
+
"rewards/equation_reward_func": 0.15625,
|
1632 |
+
"rewards/format_reward_func": 1.0,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"clip_ratio": 0.0,
|
1637 |
+
"completion_length": 301.09375,
|
1638 |
+
"epoch": 0.0416,
|
1639 |
+
"grad_norm": 3.4777576883520958,
|
1640 |
+
"kl": 1.7216796875,
|
1641 |
+
"learning_rate": 2.4639738083061073e-07,
|
1642 |
+
"loss": 0.0796,
|
1643 |
+
"reward": 1.140625,
|
1644 |
+
"reward_std": 0.28911860287189484,
|
1645 |
+
"rewards/equation_reward_func": 0.171875,
|
1646 |
+
"rewards/format_reward_func": 0.96875,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"clip_ratio": 0.0,
|
1651 |
+
"completion_length": 323.640625,
|
1652 |
+
"epoch": 0.04195555555555556,
|
1653 |
+
"grad_norm": 2.269233789387794,
|
1654 |
+
"kl": 1.789794921875,
|
1655 |
+
"learning_rate": 2.4279550982658345e-07,
|
1656 |
+
"loss": 0.0343,
|
1657 |
+
"reward": 1.0625,
|
1658 |
+
"reward_std": 0.1610843911767006,
|
1659 |
+
"rewards/equation_reward_func": 0.09375,
|
1660 |
+
"rewards/format_reward_func": 0.96875,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"clip_ratio": 0.0,
|
1665 |
+
"completion_length": 285.75,
|
1666 |
+
"epoch": 0.04231111111111111,
|
1667 |
+
"grad_norm": 3.232143067478558,
|
1668 |
+
"kl": 1.150146484375,
|
1669 |
+
"learning_rate": 2.3919513499790646e-07,
|
1670 |
+
"loss": 0.0351,
|
1671 |
+
"reward": 1.109375,
|
1672 |
+
"reward_std": 0.24733919650316238,
|
1673 |
+
"rewards/equation_reward_func": 0.125,
|
1674 |
+
"rewards/format_reward_func": 0.984375,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"clip_ratio": 0.0,
|
1679 |
+
"completion_length": 301.1875,
|
1680 |
+
"epoch": 0.042666666666666665,
|
1681 |
+
"grad_norm": 3.9490792042976843,
|
1682 |
+
"kl": 1.3486328125,
|
1683 |
+
"learning_rate": 2.3559700404385394e-07,
|
1684 |
+
"loss": 0.0803,
|
1685 |
+
"reward": 1.140625,
|
1686 |
+
"reward_std": 0.2909187823534012,
|
1687 |
+
"rewards/equation_reward_func": 0.171875,
|
1688 |
+
"rewards/format_reward_func": 0.96875,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"clip_ratio": 0.0,
|
1693 |
+
"completion_length": 290.25,
|
1694 |
+
"epoch": 0.043022222222222226,
|
1695 |
+
"grad_norm": 3.0823221892184796,
|
1696 |
+
"kl": 2.60009765625,
|
1697 |
+
"learning_rate": 2.3200186419770823e-07,
|
1698 |
+
"loss": 0.019,
|
1699 |
+
"reward": 1.125,
|
1700 |
+
"reward_std": 0.2596687823534012,
|
1701 |
+
"rewards/equation_reward_func": 0.140625,
|
1702 |
+
"rewards/format_reward_func": 0.984375,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"clip_ratio": 0.0,
|
1707 |
+
"completion_length": 330.953125,
|
1708 |
+
"epoch": 0.04337777777777778,
|
1709 |
+
"grad_norm": 8.855287463518104,
|
1710 |
+
"kl": 4.67138671875,
|
1711 |
+
"learning_rate": 2.284104620715807e-07,
|
1712 |
+
"loss": -0.002,
|
1713 |
+
"reward": 1.03125,
|
1714 |
+
"reward_std": 0.125,
|
1715 |
+
"rewards/equation_reward_func": 0.046875,
|
1716 |
+
"rewards/format_reward_func": 0.984375,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"clip_ratio": 0.0,
|
1721 |
+
"completion_length": 289.71875,
|
1722 |
+
"epoch": 0.04373333333333333,
|
1723 |
+
"grad_norm": 9.922124025430394,
|
1724 |
+
"kl": 7.11962890625,
|
1725 |
+
"learning_rate": 2.2482354350136043e-07,
|
1726 |
+
"loss": 0.0296,
|
1727 |
+
"reward": 1.046875,
|
1728 |
+
"reward_std": 0.09375,
|
1729 |
+
"rewards/equation_reward_func": 0.0625,
|
1730 |
+
"rewards/format_reward_func": 0.984375,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"clip_ratio": 0.0,
|
1735 |
+
"completion_length": 347.328125,
|
1736 |
+
"epoch": 0.044088888888888886,
|
1737 |
+
"grad_norm": 4.9145352811838805,
|
1738 |
+
"kl": 2.637939453125,
|
1739 |
+
"learning_rate": 2.2124185339182496e-07,
|
1740 |
+
"loss": 0.1017,
|
1741 |
+
"reward": 1.140625,
|
1742 |
+
"reward_std": 0.28911860287189484,
|
1743 |
+
"rewards/equation_reward_func": 0.171875,
|
1744 |
+
"rewards/format_reward_func": 0.96875,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"clip_ratio": 0.0,
|
1749 |
+
"completion_length": 308.96875,
|
1750 |
+
"epoch": 0.044444444444444446,
|
1751 |
+
"grad_norm": 2.1751878201806485,
|
1752 |
+
"kl": 3.7567138671875,
|
1753 |
+
"learning_rate": 2.1766613556194344e-07,
|
1754 |
+
"loss": 0.0106,
|
1755 |
+
"reward": 1.0625,
|
1756 |
+
"reward_std": 0.1875,
|
1757 |
+
"rewards/equation_reward_func": 0.078125,
|
1758 |
+
"rewards/format_reward_func": 0.984375,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"clip_ratio": 0.0,
|
1763 |
+
"completion_length": 304.1875,
|
1764 |
+
"epoch": 0.0448,
|
1765 |
+
"grad_norm": 0.5379516641958847,
|
1766 |
+
"kl": 1.821044921875,
|
1767 |
+
"learning_rate": 2.1409713259040628e-07,
|
1768 |
+
"loss": 0.0195,
|
1769 |
+
"reward": 1.0625,
|
1770 |
+
"reward_std": 0.0625,
|
1771 |
+
"rewards/equation_reward_func": 0.0625,
|
1772 |
+
"rewards/format_reward_func": 1.0,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"clip_ratio": 0.0,
|
1777 |
+
"completion_length": 309.921875,
|
1778 |
+
"epoch": 0.04515555555555555,
|
1779 |
+
"grad_norm": 1.5422659826295908,
|
1780 |
+
"kl": 2.447998046875,
|
1781 |
+
"learning_rate": 2.105355856614115e-07,
|
1782 |
+
"loss": 0.0521,
|
1783 |
+
"reward": 1.1875,
|
1784 |
+
"reward_std": 0.25,
|
1785 |
+
"rewards/equation_reward_func": 0.1875,
|
1786 |
+
"rewards/format_reward_func": 1.0,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"clip_ratio": 0.0,
|
1791 |
+
"completion_length": 312.9375,
|
1792 |
+
"epoch": 0.04551111111111111,
|
1793 |
+
"grad_norm": 1.881389397761525,
|
1794 |
+
"kl": 4.099609375,
|
1795 |
+
"learning_rate": 2.069822344107413e-07,
|
1796 |
+
"loss": -0.0096,
|
1797 |
+
"reward": 1.09375,
|
1798 |
+
"reward_std": 0.1610843911767006,
|
1799 |
+
"rewards/equation_reward_func": 0.09375,
|
1800 |
+
"rewards/format_reward_func": 1.0,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"clip_ratio": 0.0,
|
1805 |
+
"completion_length": 339.296875,
|
1806 |
+
"epoch": 0.04586666666666667,
|
1807 |
+
"grad_norm": 2.7062053922429947,
|
1808 |
+
"kl": 2.461669921875,
|
1809 |
+
"learning_rate": 2.034378167721599e-07,
|
1810 |
+
"loss": 0.0942,
|
1811 |
+
"reward": 1.140625,
|
1812 |
+
"reward_std": 0.20200317353010178,
|
1813 |
+
"rewards/equation_reward_func": 0.140625,
|
1814 |
+
"rewards/format_reward_func": 1.0,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"clip_ratio": 0.0,
|
1819 |
+
"completion_length": 309.84375,
|
1820 |
+
"epoch": 0.04622222222222222,
|
1821 |
+
"grad_norm": 3.420752165914464,
|
1822 |
+
"kl": 1.4273681640625,
|
1823 |
+
"learning_rate": 1.9990306882416485e-07,
|
1824 |
+
"loss": 0.0293,
|
1825 |
+
"reward": 1.109375,
|
1826 |
+
"reward_std": 0.22841878235340118,
|
1827 |
+
"rewards/equation_reward_func": 0.125,
|
1828 |
+
"rewards/format_reward_func": 0.984375,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"clip_ratio": 0.0,
|
1833 |
+
"completion_length": 330.09375,
|
1834 |
+
"epoch": 0.04657777777777778,
|
1835 |
+
"grad_norm": 1.4438609155615563,
|
1836 |
+
"kl": 3.030517578125,
|
1837 |
+
"learning_rate": 1.9637872463712362e-07,
|
1838 |
+
"loss": 0.0386,
|
1839 |
+
"reward": 1.078125,
|
1840 |
+
"reward_std": 0.1298343911767006,
|
1841 |
+
"rewards/equation_reward_func": 0.078125,
|
1842 |
+
"rewards/format_reward_func": 1.0,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"clip_ratio": 0.0,
|
1847 |
+
"completion_length": 293.234375,
|
1848 |
+
"epoch": 0.046933333333333334,
|
1849 |
+
"grad_norm": 3.756782187930511,
|
1850 |
+
"kl": 1.635498046875,
|
1851 |
+
"learning_rate": 1.9286551612082773e-07,
|
1852 |
+
"loss": 0.0679,
|
1853 |
+
"reward": 1.15625,
|
1854 |
+
"reward_std": 0.32036860287189484,
|
1855 |
+
"rewards/equation_reward_func": 0.1875,
|
1856 |
+
"rewards/format_reward_func": 0.96875,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"clip_ratio": 0.0,
|
1861 |
+
"completion_length": 355.5625,
|
1862 |
+
"epoch": 0.04728888888888889,
|
1863 |
+
"grad_norm": 5.013875423554075,
|
1864 |
+
"kl": 2.47119140625,
|
1865 |
+
"learning_rate": 1.8936417287249446e-07,
|
1866 |
+
"loss": 0.0631,
|
1867 |
+
"reward": 1.0625,
|
1868 |
+
"reward_std": 0.27461542934179306,
|
1869 |
+
"rewards/equation_reward_func": 0.109375,
|
1870 |
+
"rewards/format_reward_func": 0.953125,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"clip_ratio": 0.0,
|
1875 |
+
"completion_length": 310.15625,
|
1876 |
+
"epoch": 0.04764444444444445,
|
1877 |
+
"grad_norm": 0.5561076088635254,
|
1878 |
+
"kl": 1.971435546875,
|
1879 |
+
"learning_rate": 1.8587542202524985e-07,
|
1880 |
+
"loss": 0.0363,
|
1881 |
+
"reward": 1.0625,
|
1882 |
+
"reward_std": 0.09858439117670059,
|
1883 |
+
"rewards/equation_reward_func": 0.0625,
|
1884 |
+
"rewards/format_reward_func": 1.0,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"clip_ratio": 0.0,
|
1889 |
+
"completion_length": 337.90625,
|
1890 |
+
"epoch": 0.048,
|
1891 |
+
"grad_norm": 2.53746279303349,
|
1892 |
+
"kl": 4.04541015625,
|
1893 |
+
"learning_rate": 1.82399988097123e-07,
|
1894 |
+
"loss": 0.0317,
|
1895 |
+
"reward": 1.109375,
|
1896 |
+
"reward_std": 0.1923343911767006,
|
1897 |
+
"rewards/equation_reward_func": 0.125,
|
1898 |
+
"rewards/format_reward_func": 0.984375,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"clip_ratio": 0.0,
|
1903 |
+
"completion_length": 333.828125,
|
1904 |
+
"epoch": 0.048355555555555554,
|
1905 |
+
"grad_norm": 2.2242108525324134,
|
1906 |
+
"kl": 3.0537109375,
|
1907 |
+
"learning_rate": 1.7893859284058378e-07,
|
1908 |
+
"loss": 0.0213,
|
1909 |
+
"reward": 1.0,
|
1910 |
+
"reward_std": 0.17603103816509247,
|
1911 |
+
"rewards/equation_reward_func": 0.046875,
|
1912 |
+
"rewards/format_reward_func": 0.953125,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"clip_ratio": 0.0,
|
1917 |
+
"completion_length": 303.53125,
|
1918 |
+
"epoch": 0.04871111111111111,
|
1919 |
+
"grad_norm": 2.6756650642649373,
|
1920 |
+
"kl": 2.84130859375,
|
1921 |
+
"learning_rate": 1.7549195509265407e-07,
|
1922 |
+
"loss": 0.0452,
|
1923 |
+
"reward": 1.109375,
|
1924 |
+
"reward_std": 0.1923343911767006,
|
1925 |
+
"rewards/equation_reward_func": 0.125,
|
1926 |
+
"rewards/format_reward_func": 0.984375,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"clip_ratio": 0.0,
|
1931 |
+
"completion_length": 282.046875,
|
1932 |
+
"epoch": 0.04906666666666667,
|
1933 |
+
"grad_norm": 73.95606383267277,
|
1934 |
+
"kl": 28.233154296875,
|
1935 |
+
"learning_rate": 1.7206079062562536e-07,
|
1936 |
+
"loss": 0.0546,
|
1937 |
+
"reward": 1.109375,
|
1938 |
+
"reward_std": 0.15625,
|
1939 |
+
"rewards/equation_reward_func": 0.109375,
|
1940 |
+
"rewards/format_reward_func": 1.0,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"clip_ratio": 0.0,
|
1945 |
+
"completion_length": 325.859375,
|
1946 |
+
"epoch": 0.04942222222222222,
|
1947 |
+
"grad_norm": 1.7788841527513326,
|
1948 |
+
"kl": 29.791015625,
|
1949 |
+
"learning_rate": 1.6864581199841226e-07,
|
1950 |
+
"loss": 0.0807,
|
1951 |
+
"reward": 1.09375,
|
1952 |
+
"reward_std": 0.19716878235340118,
|
1953 |
+
"rewards/equation_reward_func": 0.109375,
|
1954 |
+
"rewards/format_reward_func": 0.984375,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"clip_ratio": 0.0,
|
1959 |
+
"completion_length": 298.21875,
|
1960 |
+
"epoch": 0.049777777777777775,
|
1961 |
+
"grad_norm": 1.5764903296991766,
|
1962 |
+
"kl": 3.01513671875,
|
1963 |
+
"learning_rate": 1.6524772840857388e-07,
|
1964 |
+
"loss": 0.0145,
|
1965 |
+
"reward": 1.140625,
|
1966 |
+
"reward_std": 0.15625,
|
1967 |
+
"rewards/equation_reward_func": 0.140625,
|
1968 |
+
"rewards/format_reward_func": 1.0,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"clip_ratio": 0.0,
|
1973 |
+
"completion_length": 309.125,
|
1974 |
+
"epoch": 0.050133333333333335,
|
1975 |
+
"grad_norm": 7.596181720979034,
|
1976 |
+
"kl": 4.2314453125,
|
1977 |
+
"learning_rate": 1.6186724554503237e-07,
|
1978 |
+
"loss": -0.0037,
|
1979 |
+
"reward": 1.140625,
|
1980 |
+
"reward_std": 0.20200317353010178,
|
1981 |
+
"rewards/equation_reward_func": 0.140625,
|
1982 |
+
"rewards/format_reward_func": 1.0,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"clip_ratio": 0.0,
|
1987 |
+
"completion_length": 290.640625,
|
1988 |
+
"epoch": 0.05048888888888889,
|
1989 |
+
"grad_norm": 2.848445546750997,
|
1990 |
+
"kl": 3.4404296875,
|
1991 |
+
"learning_rate": 1.5850506544152103e-07,
|
1992 |
+
"loss": 0.0475,
|
1993 |
+
"reward": 1.125,
|
1994 |
+
"reward_std": 0.19716878235340118,
|
1995 |
+
"rewards/equation_reward_func": 0.125,
|
1996 |
+
"rewards/format_reward_func": 1.0,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"clip_ratio": 0.0,
|
2001 |
+
"completion_length": 294.75,
|
2002 |
+
"epoch": 0.05084444444444444,
|
2003 |
+
"grad_norm": 1.415636309836905,
|
2004 |
+
"kl": 1.5673828125,
|
2005 |
+
"learning_rate": 1.5516188633079107e-07,
|
2006 |
+
"loss": 0.0296,
|
2007 |
+
"reward": 1.046875,
|
2008 |
+
"reward_std": 0.06733439117670059,
|
2009 |
+
"rewards/equation_reward_func": 0.046875,
|
2010 |
+
"rewards/format_reward_func": 1.0,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"clip_ratio": 0.0,
|
2015 |
+
"completion_length": 335.703125,
|
2016 |
+
"epoch": 0.0512,
|
2017 |
+
"grad_norm": 1.949097702749259,
|
2018 |
+
"kl": 2.3369140625,
|
2019 |
+
"learning_rate": 1.5183840249960784e-07,
|
2020 |
+
"loss": 0.0612,
|
2021 |
+
"reward": 1.09375,
|
2022 |
+
"reward_std": 0.19716878235340118,
|
2023 |
+
"rewards/equation_reward_func": 0.109375,
|
2024 |
+
"rewards/format_reward_func": 0.984375,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"clip_ratio": 0.0,
|
2029 |
+
"completion_length": 280.515625,
|
2030 |
+
"epoch": 0.051555555555555556,
|
2031 |
+
"grad_norm": 2.8460028252876772,
|
2032 |
+
"kl": 1.85888671875,
|
2033 |
+
"learning_rate": 1.4853530414456612e-07,
|
2034 |
+
"loss": 0.0418,
|
2035 |
+
"reward": 1.125,
|
2036 |
+
"reward_std": 0.2235843911767006,
|
2037 |
+
"rewards/equation_reward_func": 0.125,
|
2038 |
+
"rewards/format_reward_func": 1.0,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"clip_ratio": 0.0,
|
2043 |
+
"completion_length": 271.75,
|
2044 |
+
"epoch": 0.05191111111111111,
|
2045 |
+
"grad_norm": 1.6592349286689605,
|
2046 |
+
"kl": 2.0166015625,
|
2047 |
+
"learning_rate": 1.4525327722875568e-07,
|
2048 |
+
"loss": 0.0283,
|
2049 |
+
"reward": 1.09375,
|
2050 |
+
"reward_std": 0.13466878235340118,
|
2051 |
+
"rewards/equation_reward_func": 0.09375,
|
2052 |
+
"rewards/format_reward_func": 1.0,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"clip_ratio": 0.0,
|
2057 |
+
"completion_length": 254.75,
|
2058 |
+
"epoch": 0.05226666666666667,
|
2059 |
+
"grad_norm": 2.3645749075795472,
|
2060 |
+
"kl": 1.789794921875,
|
2061 |
+
"learning_rate": 1.4199300333930515e-07,
|
2062 |
+
"loss": 0.0835,
|
2063 |
+
"reward": 1.1875,
|
2064 |
+
"reward_std": 0.3221687823534012,
|
2065 |
+
"rewards/equation_reward_func": 0.203125,
|
2066 |
+
"rewards/format_reward_func": 0.984375,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"clip_ratio": 0.0,
|
2071 |
+
"completion_length": 319.671875,
|
2072 |
+
"epoch": 0.05262222222222222,
|
2073 |
+
"grad_norm": 4.343843945416777,
|
2074 |
+
"kl": 2.50732421875,
|
2075 |
+
"learning_rate": 1.3875515954583523e-07,
|
2076 |
+
"loss": 0.0624,
|
2077 |
+
"reward": 1.109375,
|
2078 |
+
"reward_std": 0.2645031735301018,
|
2079 |
+
"rewards/equation_reward_func": 0.140625,
|
2080 |
+
"rewards/format_reward_func": 0.96875,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"clip_ratio": 0.0,
|
2085 |
+
"completion_length": 306.578125,
|
2086 |
+
"epoch": 0.052977777777777776,
|
2087 |
+
"grad_norm": 2.377005295350322,
|
2088 |
+
"kl": 1.9296875,
|
2089 |
+
"learning_rate": 1.3554041825985e-07,
|
2090 |
+
"loss": 0.0352,
|
2091 |
+
"reward": 1.09375,
|
2092 |
+
"reward_std": 0.2992308586835861,
|
2093 |
+
"rewards/equation_reward_func": 0.140625,
|
2094 |
+
"rewards/format_reward_func": 0.953125,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"clip_ratio": 0.0,
|
2099 |
+
"completion_length": 321.609375,
|
2100 |
+
"epoch": 0.05333333333333334,
|
2101 |
+
"grad_norm": 2.611273886267531,
|
2102 |
+
"kl": 2.335693359375,
|
2103 |
+
"learning_rate": 1.323494470950949e-07,
|
2104 |
+
"loss": 0.0688,
|
2105 |
+
"reward": 1.0625,
|
2106 |
+
"reward_std": 0.2235843911767006,
|
2107 |
+
"rewards/equation_reward_func": 0.09375,
|
2108 |
+
"rewards/format_reward_func": 0.96875,
|
2109 |
+
"step": 300
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"clip_ratio": 0.0,
|
2113 |
+
"completion_length": 298.859375,
|
2114 |
+
"epoch": 0.05368888888888889,
|
2115 |
+
"grad_norm": 2.213608739672042,
|
2116 |
+
"kl": 2.317138671875,
|
2117 |
+
"learning_rate": 1.2918290872891236e-07,
|
2118 |
+
"loss": 0.045,
|
2119 |
+
"reward": 1.046875,
|
2120 |
+
"reward_std": 0.15625,
|
2121 |
+
"rewards/equation_reward_func": 0.0625,
|
2122 |
+
"rewards/format_reward_func": 0.984375,
|
2123 |
+
"step": 302
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"clip_ratio": 0.0,
|
2127 |
+
"completion_length": 319.390625,
|
2128 |
+
"epoch": 0.054044444444444444,
|
2129 |
+
"grad_norm": 1.1361079950653166,
|
2130 |
+
"kl": 2.716796875,
|
2131 |
+
"learning_rate": 1.260414607646213e-07,
|
2132 |
+
"loss": 0.0547,
|
2133 |
+
"reward": 1.015625,
|
2134 |
+
"reward_std": 0.09375,
|
2135 |
+
"rewards/equation_reward_func": 0.03125,
|
2136 |
+
"rewards/format_reward_func": 0.984375,
|
2137 |
+
"step": 304
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"clip_ratio": 0.0,
|
2141 |
+
"completion_length": 315.734375,
|
2142 |
+
"epoch": 0.0544,
|
2143 |
+
"grad_norm": 2.694956280462497,
|
2144 |
+
"kl": 3.01123046875,
|
2145 |
+
"learning_rate": 1.2292575559495143e-07,
|
2146 |
+
"loss": 0.0712,
|
2147 |
+
"reward": 1.078125,
|
2148 |
+
"reward_std": 0.21694982051849365,
|
2149 |
+
"rewards/equation_reward_func": 0.109375,
|
2150 |
+
"rewards/format_reward_func": 0.96875,
|
2151 |
+
"step": 306
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"clip_ratio": 0.0,
|
2155 |
+
"completion_length": 314.15625,
|
2156 |
+
"epoch": 0.05475555555555556,
|
2157 |
+
"grad_norm": 1.6293408130888805,
|
2158 |
+
"kl": 2.3837890625,
|
2159 |
+
"learning_rate": 1.1983644026655835e-07,
|
2160 |
+
"loss": 0.0147,
|
2161 |
+
"reward": 1.125,
|
2162 |
+
"reward_std": 0.13466878235340118,
|
2163 |
+
"rewards/equation_reward_func": 0.125,
|
2164 |
+
"rewards/format_reward_func": 1.0,
|
2165 |
+
"step": 308
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"clip_ratio": 0.0,
|
2169 |
+
"completion_length": 273.125,
|
2170 |
+
"epoch": 0.05511111111111111,
|
2171 |
+
"grad_norm": 2.1302515062721126,
|
2172 |
+
"kl": 2.05712890625,
|
2173 |
+
"learning_rate": 1.1677415634565066e-07,
|
2174 |
+
"loss": 0.0406,
|
2175 |
+
"reward": 1.15625,
|
2176 |
+
"reward_std": 0.19716878235340118,
|
2177 |
+
"rewards/equation_reward_func": 0.15625,
|
2178 |
+
"rewards/format_reward_func": 1.0,
|
2179 |
+
"step": 310
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"clip_ratio": 0.0,
|
2183 |
+
"completion_length": 337.59375,
|
2184 |
+
"epoch": 0.055466666666666664,
|
2185 |
+
"grad_norm": 15.014740699660255,
|
2186 |
+
"kl": 7.84521484375,
|
2187 |
+
"learning_rate": 1.1373953978475353e-07,
|
2188 |
+
"loss": 0.0368,
|
2189 |
+
"reward": 1.0625,
|
2190 |
+
"reward_std": 0.125,
|
2191 |
+
"rewards/equation_reward_func": 0.0625,
|
2192 |
+
"rewards/format_reward_func": 1.0,
|
2193 |
+
"step": 312
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"clip_ratio": 0.0,
|
2197 |
+
"completion_length": 312.1875,
|
2198 |
+
"epoch": 0.055822222222222224,
|
2199 |
+
"grad_norm": 2.0788629281112727,
|
2200 |
+
"kl": 4.335693359375,
|
2201 |
+
"learning_rate": 1.1073322079063913e-07,
|
2202 |
+
"loss": 0.0683,
|
2203 |
+
"reward": 1.15625,
|
2204 |
+
"reward_std": 0.2235843911767006,
|
2205 |
+
"rewards/equation_reward_func": 0.15625,
|
2206 |
+
"rewards/format_reward_func": 1.0,
|
2207 |
+
"step": 314
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"clip_ratio": 0.0,
|
2211 |
+
"completion_length": 276.34375,
|
2212 |
+
"epoch": 0.05617777777777778,
|
2213 |
+
"grad_norm": 11.038251821932738,
|
2214 |
+
"kl": 4.507568359375,
|
2215 |
+
"learning_rate": 1.0775582369344946e-07,
|
2216 |
+
"loss": 0.0259,
|
2217 |
+
"reward": 1.09375,
|
2218 |
+
"reward_std": 0.1610843911767006,
|
2219 |
+
"rewards/equation_reward_func": 0.09375,
|
2220 |
+
"rewards/format_reward_func": 1.0,
|
2221 |
+
"step": 316
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"clip_ratio": 0.0,
|
2225 |
+
"completion_length": 285.59375,
|
2226 |
+
"epoch": 0.05653333333333333,
|
2227 |
+
"grad_norm": 4.009960857728169,
|
2228 |
+
"kl": 2.4130859375,
|
2229 |
+
"learning_rate": 1.0480796681704077e-07,
|
2230 |
+
"loss": -0.0194,
|
2231 |
+
"reward": 1.125,
|
2232 |
+
"reward_std": 0.125,
|
2233 |
+
"rewards/equation_reward_func": 0.125,
|
2234 |
+
"rewards/format_reward_func": 1.0,
|
2235 |
+
"step": 318
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"clip_ratio": 0.0,
|
2239 |
+
"completion_length": 277.296875,
|
2240 |
+
"epoch": 0.05688888888888889,
|
2241 |
+
"grad_norm": 4.499177733550329,
|
2242 |
+
"kl": 5.369873046875,
|
2243 |
+
"learning_rate": 1.018902623505741e-07,
|
2244 |
+
"loss": 0.0504,
|
2245 |
+
"reward": 1.078125,
|
2246 |
+
"reward_std": 0.1298343911767006,
|
2247 |
+
"rewards/equation_reward_func": 0.078125,
|
2248 |
+
"rewards/format_reward_func": 1.0,
|
2249 |
+
"step": 320
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"clip_ratio": 0.0,
|
2253 |
+
"completion_length": 316.578125,
|
2254 |
+
"epoch": 0.057244444444444445,
|
2255 |
+
"grad_norm": 3.3047156898766272,
|
2256 |
+
"kl": 3.43701171875,
|
2257 |
+
"learning_rate": 9.900331622138063e-08,
|
2258 |
+
"loss": 0.0595,
|
2259 |
+
"reward": 1.078125,
|
2260 |
+
"reward_std": 0.16591878235340118,
|
2261 |
+
"rewards/equation_reward_func": 0.09375,
|
2262 |
+
"rewards/format_reward_func": 0.984375,
|
2263 |
+
"step": 322
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"clip_ratio": 0.0,
|
2267 |
+
"completion_length": 297.765625,
|
2268 |
+
"epoch": 0.0576,
|
2269 |
+
"grad_norm": 4.938077502561252,
|
2270 |
+
"kl": 2.2734375,
|
2271 |
+
"learning_rate": 9.614772796912681e-08,
|
2272 |
+
"loss": 0.02,
|
2273 |
+
"reward": 1.15625,
|
2274 |
+
"reward_std": 0.1610843911767006,
|
2275 |
+
"rewards/equation_reward_func": 0.15625,
|
2276 |
+
"rewards/format_reward_func": 1.0,
|
2277 |
+
"step": 324
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"clip_ratio": 0.0,
|
2281 |
+
"completion_length": 337.640625,
|
2282 |
+
"epoch": 0.05795555555555556,
|
2283 |
+
"grad_norm": 3.2448715644280974,
|
2284 |
+
"kl": 2.689453125,
|
2285 |
+
"learning_rate": 9.332409062130686e-08,
|
2286 |
+
"loss": 0.0284,
|
2287 |
+
"reward": 1.0625,
|
2288 |
+
"reward_std": 0.1610843911767006,
|
2289 |
+
"rewards/equation_reward_func": 0.078125,
|
2290 |
+
"rewards/format_reward_func": 0.984375,
|
2291 |
+
"step": 326
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"clip_ratio": 0.0,
|
2295 |
+
"completion_length": 297.21875,
|
2296 |
+
"epoch": 0.05831111111111111,
|
2297 |
+
"grad_norm": 3.6089469790675452,
|
2298 |
+
"kl": 1.907470703125,
|
2299 |
+
"learning_rate": 9.053299057008699e-08,
|
2300 |
+
"loss": 0.0125,
|
2301 |
+
"reward": 0.96875,
|
2302 |
+
"reward_std": 0.125,
|
2303 |
+
"rewards/equation_reward_func": 0.015625,
|
2304 |
+
"rewards/format_reward_func": 0.953125,
|
2305 |
+
"step": 328
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"clip_ratio": 0.0,
|
2309 |
+
"completion_length": 298.953125,
|
2310 |
+
"epoch": 0.058666666666666666,
|
2311 |
+
"grad_norm": 3.9902002814055497,
|
2312 |
+
"kl": 2.693603515625,
|
2313 |
+
"learning_rate": 8.777500745052743e-08,
|
2314 |
+
"loss": 0.054,
|
2315 |
+
"reward": 1.109375,
|
2316 |
+
"reward_std": 0.1923343911767006,
|
2317 |
+
"rewards/equation_reward_func": 0.125,
|
2318 |
+
"rewards/format_reward_func": 0.984375,
|
2319 |
+
"step": 330
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"clip_ratio": 0.0,
|
2323 |
+
"completion_length": 310.515625,
|
2324 |
+
"epoch": 0.05902222222222222,
|
2325 |
+
"grad_norm": 2.3258942923733033,
|
2326 |
+
"kl": 1.953857421875,
|
2327 |
+
"learning_rate": 8.505071402020892e-08,
|
2328 |
+
"loss": 0.0404,
|
2329 |
+
"reward": 1.078125,
|
2330 |
+
"reward_std": 0.22841878235340118,
|
2331 |
+
"rewards/equation_reward_func": 0.109375,
|
2332 |
+
"rewards/format_reward_func": 0.96875,
|
2333 |
+
"step": 332
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"clip_ratio": 0.0,
|
2337 |
+
"completion_length": 306.328125,
|
2338 |
+
"epoch": 0.05937777777777778,
|
2339 |
+
"grad_norm": 2.105282555937082,
|
2340 |
+
"kl": 2.130615234375,
|
2341 |
+
"learning_rate": 8.236067604028562e-08,
|
2342 |
+
"loss": 0.0711,
|
2343 |
+
"reward": 1.0625,
|
2344 |
+
"reward_std": 0.1610843911767006,
|
2345 |
+
"rewards/equation_reward_func": 0.078125,
|
2346 |
+
"rewards/format_reward_func": 0.984375,
|
2347 |
+
"step": 334
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"clip_ratio": 0.0,
|
2351 |
+
"completion_length": 333.03125,
|
2352 |
+
"epoch": 0.05973333333333333,
|
2353 |
+
"grad_norm": 1.6921617524371768,
|
2354 |
+
"kl": 2.76611328125,
|
2355 |
+
"learning_rate": 7.970545215799327e-08,
|
2356 |
+
"loss": -0.0171,
|
2357 |
+
"reward": 1.09375,
|
2358 |
+
"reward_std": 0.19716878235340118,
|
2359 |
+
"rewards/equation_reward_func": 0.109375,
|
2360 |
+
"rewards/format_reward_func": 0.984375,
|
2361 |
+
"step": 336
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"clip_ratio": 0.0,
|
2365 |
+
"completion_length": 295.71875,
|
2366 |
+
"epoch": 0.060088888888888886,
|
2367 |
+
"grad_norm": 2.2366407518555658,
|
2368 |
+
"kl": 2.571533203125,
|
2369 |
+
"learning_rate": 7.708559379063204e-08,
|
2370 |
+
"loss": 0.0171,
|
2371 |
+
"reward": 1.078125,
|
2372 |
+
"reward_std": 0.15625,
|
2373 |
+
"rewards/equation_reward_func": 0.09375,
|
2374 |
+
"rewards/format_reward_func": 0.984375,
|
2375 |
+
"step": 338
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"clip_ratio": 0.0,
|
2379 |
+
"completion_length": 296.125,
|
2380 |
+
"epoch": 0.060444444444444446,
|
2381 |
+
"grad_norm": 1.7453930694713657,
|
2382 |
+
"kl": 1.99072265625,
|
2383 |
+
"learning_rate": 7.45016450110534e-08,
|
2384 |
+
"loss": 0.086,
|
2385 |
+
"reward": 1.078125,
|
2386 |
+
"reward_std": 0.2548343911767006,
|
2387 |
+
"rewards/equation_reward_func": 0.125,
|
2388 |
+
"rewards/format_reward_func": 0.953125,
|
2389 |
+
"step": 340
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"clip_ratio": 0.0,
|
2393 |
+
"completion_length": 287.390625,
|
2394 |
+
"epoch": 0.0608,
|
2395 |
+
"grad_norm": 2.7894086215156477,
|
2396 |
+
"kl": 3.01318359375,
|
2397 |
+
"learning_rate": 7.195414243467029e-08,
|
2398 |
+
"loss": 0.0482,
|
2399 |
+
"reward": 1.171875,
|
2400 |
+
"reward_std": 0.22841878235340118,
|
2401 |
+
"rewards/equation_reward_func": 0.171875,
|
2402 |
+
"rewards/format_reward_func": 1.0,
|
2403 |
+
"step": 342
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"clip_ratio": 0.0,
|
2407 |
+
"completion_length": 317.40625,
|
2408 |
+
"epoch": 0.06115555555555555,
|
2409 |
+
"grad_norm": 0.931178773836098,
|
2410 |
+
"kl": 1.2216796875,
|
2411 |
+
"learning_rate": 6.944361510801763e-08,
|
2412 |
+
"loss": -0.0173,
|
2413 |
+
"reward": 1.015625,
|
2414 |
+
"reward_std": 0.09375,
|
2415 |
+
"rewards/equation_reward_func": 0.03125,
|
2416 |
+
"rewards/format_reward_func": 0.984375,
|
2417 |
+
"step": 344
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"clip_ratio": 0.0,
|
2421 |
+
"completion_length": 299.359375,
|
2422 |
+
"epoch": 0.061511111111111114,
|
2423 |
+
"grad_norm": 3.753569436457584,
|
2424 |
+
"kl": 2.353759765625,
|
2425 |
+
"learning_rate": 6.697058439888283e-08,
|
2426 |
+
"loss": 0.0152,
|
2427 |
+
"reward": 1.078125,
|
2428 |
+
"reward_std": 0.10341878235340118,
|
2429 |
+
"rewards/equation_reward_func": 0.078125,
|
2430 |
+
"rewards/format_reward_func": 1.0,
|
2431 |
+
"step": 346
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"clip_ratio": 0.0,
|
2435 |
+
"completion_length": 260.09375,
|
2436 |
+
"epoch": 0.06186666666666667,
|
2437 |
+
"grad_norm": 2.9761032955845192,
|
2438 |
+
"kl": 1.854736328125,
|
2439 |
+
"learning_rate": 6.453556388803288e-08,
|
2440 |
+
"loss": 0.025,
|
2441 |
+
"reward": 1.078125,
|
2442 |
+
"reward_std": 0.1923343911767006,
|
2443 |
+
"rewards/equation_reward_func": 0.09375,
|
2444 |
+
"rewards/format_reward_func": 0.984375,
|
2445 |
+
"step": 348
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"clip_ratio": 0.0,
|
2449 |
+
"completion_length": 306.0625,
|
2450 |
+
"epoch": 0.06222222222222222,
|
2451 |
+
"grad_norm": 2.583072279031626,
|
2452 |
+
"kl": 1.90185546875,
|
2453 |
+
"learning_rate": 6.213905926255697e-08,
|
2454 |
+
"loss": -0.0007,
|
2455 |
+
"reward": 1.09375,
|
2456 |
+
"reward_std": 0.1610843911767006,
|
2457 |
+
"rewards/equation_reward_func": 0.09375,
|
2458 |
+
"rewards/format_reward_func": 1.0,
|
2459 |
+
"step": 350
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"clip_ratio": 0.0,
|
2463 |
+
"completion_length": 284.453125,
|
2464 |
+
"epoch": 0.06257777777777777,
|
2465 |
+
"grad_norm": 2.5644083370227495,
|
2466 |
+
"kl": 10.295654296875,
|
2467 |
+
"learning_rate": 5.978156821084987e-08,
|
2468 |
+
"loss": 0.011,
|
2469 |
+
"reward": 1.0625,
|
2470 |
+
"reward_std": 0.1610843911767006,
|
2471 |
+
"rewards/equation_reward_func": 0.078125,
|
2472 |
+
"rewards/format_reward_func": 0.984375,
|
2473 |
+
"step": 352
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"clip_ratio": 0.0,
|
2477 |
+
"completion_length": 304.84375,
|
2478 |
+
"epoch": 0.06293333333333333,
|
2479 |
+
"grad_norm": 3.260671051240977,
|
2480 |
+
"kl": 7.114013671875,
|
2481 |
+
"learning_rate": 5.7463580319254853e-08,
|
2482 |
+
"loss": 0.078,
|
2483 |
+
"reward": 1.09375,
|
2484 |
+
"reward_std": 0.2235843911767006,
|
2485 |
+
"rewards/equation_reward_func": 0.109375,
|
2486 |
+
"rewards/format_reward_func": 0.984375,
|
2487 |
+
"step": 354
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"clip_ratio": 0.0,
|
2491 |
+
"completion_length": 281.296875,
|
2492 |
+
"epoch": 0.0632888888888889,
|
2493 |
+
"grad_norm": 2.0339670428860477,
|
2494 |
+
"kl": 2.173095703125,
|
2495 |
+
"learning_rate": 5.518557697039081e-08,
|
2496 |
+
"loss": 0.0621,
|
2497 |
+
"reward": 1.140625,
|
2498 |
+
"reward_std": 0.20200317353010178,
|
2499 |
+
"rewards/equation_reward_func": 0.171875,
|
2500 |
+
"rewards/format_reward_func": 0.96875,
|
2501 |
+
"step": 356
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"clip_ratio": 0.0,
|
2505 |
+
"completion_length": 294.5625,
|
2506 |
+
"epoch": 0.06364444444444445,
|
2507 |
+
"grad_norm": 3.3851967041509154,
|
2508 |
+
"kl": 2.346923828125,
|
2509 |
+
"learning_rate": 5.294803124318145e-08,
|
2510 |
+
"loss": -0.008,
|
2511 |
+
"reward": 1.046875,
|
2512 |
+
"reward_std": 0.06733439117670059,
|
2513 |
+
"rewards/equation_reward_func": 0.046875,
|
2514 |
+
"rewards/format_reward_func": 1.0,
|
2515 |
+
"step": 358
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"clip_ratio": 0.0,
|
2519 |
+
"completion_length": 319.390625,
|
2520 |
+
"epoch": 0.064,
|
2521 |
+
"grad_norm": 1.6809943974752608,
|
2522 |
+
"kl": 2.185791015625,
|
2523 |
+
"learning_rate": 5.07514078146106e-08,
|
2524 |
+
"loss": 0.0332,
|
2525 |
+
"reward": 1.109375,
|
2526 |
+
"reward_std": 0.19053421169519424,
|
2527 |
+
"rewards/equation_reward_func": 0.125,
|
2528 |
+
"rewards/format_reward_func": 0.984375,
|
2529 |
+
"step": 360
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"clip_ratio": 0.0,
|
2533 |
+
"completion_length": 261.21875,
|
2534 |
+
"epoch": 0.06435555555555555,
|
2535 |
+
"grad_norm": 1.105930554758287,
|
2536 |
+
"kl": 1.884521484375,
|
2537 |
+
"learning_rate": 4.859616286322094e-08,
|
2538 |
+
"loss": 0.0335,
|
2539 |
+
"reward": 1.0625,
|
2540 |
+
"reward_std": 0.09858439117670059,
|
2541 |
+
"rewards/equation_reward_func": 0.0625,
|
2542 |
+
"rewards/format_reward_func": 1.0,
|
2543 |
+
"step": 362
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"clip_ratio": 0.0,
|
2547 |
+
"completion_length": 293.71875,
|
2548 |
+
"epoch": 0.06471111111111111,
|
2549 |
+
"grad_norm": 2.075449397863208,
|
2550 |
+
"kl": 2.149169921875,
|
2551 |
+
"learning_rate": 4.648274397437829e-08,
|
2552 |
+
"loss": -0.0078,
|
2553 |
+
"reward": 1.109375,
|
2554 |
+
"reward_std": 0.15625,
|
2555 |
+
"rewards/equation_reward_func": 0.109375,
|
2556 |
+
"rewards/format_reward_func": 1.0,
|
2557 |
+
"step": 364
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"clip_ratio": 0.0,
|
2561 |
+
"completion_length": 299.0625,
|
2562 |
+
"epoch": 0.06506666666666666,
|
2563 |
+
"grad_norm": 2.440666439161297,
|
2564 |
+
"kl": 2.136474609375,
|
2565 |
+
"learning_rate": 4.4411590047320617e-08,
|
2566 |
+
"loss": 0.0491,
|
2567 |
+
"reward": 1.140625,
|
2568 |
+
"reward_std": 0.20200317353010178,
|
2569 |
+
"rewards/equation_reward_func": 0.140625,
|
2570 |
+
"rewards/format_reward_func": 1.0,
|
2571 |
+
"step": 366
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"clip_ratio": 0.0,
|
2575 |
+
"completion_length": 320.890625,
|
2576 |
+
"epoch": 0.06542222222222223,
|
2577 |
+
"grad_norm": 4.619211137682817,
|
2578 |
+
"kl": 1.549072265625,
|
2579 |
+
"learning_rate": 4.2383131204010494e-08,
|
2580 |
+
"loss": 0.0484,
|
2581 |
+
"reward": 1.078125,
|
2582 |
+
"reward_std": 0.26978103816509247,
|
2583 |
+
"rewards/equation_reward_func": 0.109375,
|
2584 |
+
"rewards/format_reward_func": 0.96875,
|
2585 |
+
"step": 368
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"clip_ratio": 0.0,
|
2589 |
+
"completion_length": 288.234375,
|
2590 |
+
"epoch": 0.06577777777777778,
|
2591 |
+
"grad_norm": 2.1383834468441396,
|
2592 |
+
"kl": 1.26123046875,
|
2593 |
+
"learning_rate": 4.039778869981064e-08,
|
2594 |
+
"loss": 0.017,
|
2595 |
+
"reward": 1.078125,
|
2596 |
+
"reward_std": 0.1298343911767006,
|
2597 |
+
"rewards/equation_reward_func": 0.078125,
|
2598 |
+
"rewards/format_reward_func": 1.0,
|
2599 |
+
"step": 370
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"clip_ratio": 0.0,
|
2603 |
+
"completion_length": 316.71875,
|
2604 |
+
"epoch": 0.06613333333333334,
|
2605 |
+
"grad_norm": 2.9751121792977497,
|
2606 |
+
"kl": 1.9384765625,
|
2607 |
+
"learning_rate": 3.845597483600049e-08,
|
2608 |
+
"loss": 0.0462,
|
2609 |
+
"reward": 1.0625,
|
2610 |
+
"reward_std": 0.125,
|
2611 |
+
"rewards/equation_reward_func": 0.0625,
|
2612 |
+
"rewards/format_reward_func": 1.0,
|
2613 |
+
"step": 372
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"clip_ratio": 0.0,
|
2617 |
+
"completion_length": 302.296875,
|
2618 |
+
"epoch": 0.06648888888888889,
|
2619 |
+
"grad_norm": 1.7788468837628437,
|
2620 |
+
"kl": 1.295654296875,
|
2621 |
+
"learning_rate": 3.655809287415284e-08,
|
2622 |
+
"loss": -0.0181,
|
2623 |
+
"reward": 1.09375,
|
2624 |
+
"reward_std": 0.2235843911767006,
|
2625 |
+
"rewards/equation_reward_func": 0.109375,
|
2626 |
+
"rewards/format_reward_func": 0.984375,
|
2627 |
+
"step": 374
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"clip_ratio": 0.0,
|
2631 |
+
"completion_length": 282.734375,
|
2632 |
+
"epoch": 0.06684444444444444,
|
2633 |
+
"grad_norm": 1.7936851877118818,
|
2634 |
+
"kl": 1.361083984375,
|
2635 |
+
"learning_rate": 3.4704536952387285e-08,
|
2636 |
+
"loss": 0.0238,
|
2637 |
+
"reward": 1.078125,
|
2638 |
+
"reward_std": 0.16591878235340118,
|
2639 |
+
"rewards/equation_reward_func": 0.09375,
|
2640 |
+
"rewards/format_reward_func": 0.984375,
|
2641 |
+
"step": 376
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"clip_ratio": 0.0,
|
2645 |
+
"completion_length": 310.375,
|
2646 |
+
"epoch": 0.0672,
|
2647 |
+
"grad_norm": 4.685423790152177,
|
2648 |
+
"kl": 3.947998046875,
|
2649 |
+
"learning_rate": 3.2895692003518575e-08,
|
2650 |
+
"loss": 0.0234,
|
2651 |
+
"reward": 1.03125,
|
2652 |
+
"reward_std": 0.125,
|
2653 |
+
"rewards/equation_reward_func": 0.046875,
|
2654 |
+
"rewards/format_reward_func": 0.984375,
|
2655 |
+
"step": 378
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"clip_ratio": 0.0,
|
2659 |
+
"completion_length": 298.34375,
|
2660 |
+
"epoch": 0.06755555555555555,
|
2661 |
+
"grad_norm": 3.1205307234975543,
|
2662 |
+
"kl": 1.413330078125,
|
2663 |
+
"learning_rate": 3.113193367511635e-08,
|
2664 |
+
"loss": 0.0445,
|
2665 |
+
"reward": 1.046875,
|
2666 |
+
"reward_std": 0.21875,
|
2667 |
+
"rewards/equation_reward_func": 0.078125,
|
2668 |
+
"rewards/format_reward_func": 0.96875,
|
2669 |
+
"step": 380
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"clip_ratio": 0.0,
|
2673 |
+
"completion_length": 319.703125,
|
2674 |
+
"epoch": 0.06791111111111112,
|
2675 |
+
"grad_norm": 1.1720140167792736,
|
2676 |
+
"kl": 1.87060546875,
|
2677 |
+
"learning_rate": 2.9413628251493934e-08,
|
2678 |
+
"loss": 0.0189,
|
2679 |
+
"reward": 1.03125,
|
2680 |
+
"reward_std": 0.125,
|
2681 |
+
"rewards/equation_reward_func": 0.046875,
|
2682 |
+
"rewards/format_reward_func": 0.984375,
|
2683 |
+
"step": 382
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"clip_ratio": 0.0,
|
2687 |
+
"completion_length": 310.0,
|
2688 |
+
"epoch": 0.06826666666666667,
|
2689 |
+
"grad_norm": 2.6084931637781725,
|
2690 |
+
"kl": 3.1181640625,
|
2691 |
+
"learning_rate": 2.774113257764066e-08,
|
2692 |
+
"loss": 0.0243,
|
2693 |
+
"reward": 1.046875,
|
2694 |
+
"reward_std": 0.06733439117670059,
|
2695 |
+
"rewards/equation_reward_func": 0.046875,
|
2696 |
+
"rewards/format_reward_func": 1.0,
|
2697 |
+
"step": 384
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"clip_ratio": 0.0,
|
2701 |
+
"completion_length": 313.3125,
|
2702 |
+
"epoch": 0.06862222222222222,
|
2703 |
+
"grad_norm": 4.358043629813717,
|
2704 |
+
"kl": 2.083251953125,
|
2705 |
+
"learning_rate": 2.611479398511518e-08,
|
2706 |
+
"loss": 0.0497,
|
2707 |
+
"reward": 1.15625,
|
2708 |
+
"reward_std": 0.2235843911767006,
|
2709 |
+
"rewards/equation_reward_func": 0.171875,
|
2710 |
+
"rewards/format_reward_func": 0.984375,
|
2711 |
+
"step": 386
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"clip_ratio": 0.0,
|
2715 |
+
"completion_length": 311.5625,
|
2716 |
+
"epoch": 0.06897777777777778,
|
2717 |
+
"grad_norm": 1.7314295380277487,
|
2718 |
+
"kl": 2.2861328125,
|
2719 |
+
"learning_rate": 2.4534950219914057e-08,
|
2720 |
+
"loss": 0.0184,
|
2721 |
+
"reward": 1.03125,
|
2722 |
+
"reward_std": 0.0625,
|
2723 |
+
"rewards/equation_reward_func": 0.03125,
|
2724 |
+
"rewards/format_reward_func": 1.0,
|
2725 |
+
"step": 388
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"clip_ratio": 0.0,
|
2729 |
+
"completion_length": 315.078125,
|
2730 |
+
"epoch": 0.06933333333333333,
|
2731 |
+
"grad_norm": 3.085044311379691,
|
2732 |
+
"kl": 1.55078125,
|
2733 |
+
"learning_rate": 2.300192937233128e-08,
|
2734 |
+
"loss": 0.0237,
|
2735 |
+
"reward": 1.125,
|
2736 |
+
"reward_std": 0.1610843911767006,
|
2737 |
+
"rewards/equation_reward_func": 0.140625,
|
2738 |
+
"rewards/format_reward_func": 0.984375,
|
2739 |
+
"step": 390
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"clip_ratio": 0.0,
|
2743 |
+
"completion_length": 321.1875,
|
2744 |
+
"epoch": 0.06968888888888888,
|
2745 |
+
"grad_norm": 2.1144825124318696,
|
2746 |
+
"kl": 1.6259765625,
|
2747 |
+
"learning_rate": 2.1516049808822935e-08,
|
2748 |
+
"loss": 0.0228,
|
2749 |
+
"reward": 1.078125,
|
2750 |
+
"reward_std": 0.1923343911767006,
|
2751 |
+
"rewards/equation_reward_func": 0.09375,
|
2752 |
+
"rewards/format_reward_func": 0.984375,
|
2753 |
+
"step": 392
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"clip_ratio": 0.0,
|
2757 |
+
"completion_length": 296.390625,
|
2758 |
+
"epoch": 0.07004444444444445,
|
2759 |
+
"grad_norm": 2.2495222116539715,
|
2760 |
+
"kl": 1.490234375,
|
2761 |
+
"learning_rate": 2.007762010589098e-08,
|
2762 |
+
"loss": 0.0232,
|
2763 |
+
"reward": 1.078125,
|
2764 |
+
"reward_std": 0.1923343911767006,
|
2765 |
+
"rewards/equation_reward_func": 0.09375,
|
2766 |
+
"rewards/format_reward_func": 0.984375,
|
2767 |
+
"step": 394
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"clip_ratio": 0.0,
|
2771 |
+
"completion_length": 286.09375,
|
2772 |
+
"epoch": 0.0704,
|
2773 |
+
"grad_norm": 3.5477202571420716,
|
2774 |
+
"kl": 3.229248046875,
|
2775 |
+
"learning_rate": 1.8686938986000627e-08,
|
2776 |
+
"loss": -0.0136,
|
2777 |
+
"reward": 1.109375,
|
2778 |
+
"reward_std": 0.20200317353010178,
|
2779 |
+
"rewards/equation_reward_func": 0.125,
|
2780 |
+
"rewards/format_reward_func": 0.984375,
|
2781 |
+
"step": 396
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"clip_ratio": 0.0,
|
2785 |
+
"completion_length": 292.890625,
|
2786 |
+
"epoch": 0.07075555555555556,
|
2787 |
+
"grad_norm": 3.401342482083026,
|
2788 |
+
"kl": 1.608642578125,
|
2789 |
+
"learning_rate": 1.734429525554365e-08,
|
2790 |
+
"loss": -0.0173,
|
2791 |
+
"reward": 1.015625,
|
2792 |
+
"reward_std": 0.08228103816509247,
|
2793 |
+
"rewards/equation_reward_func": 0.03125,
|
2794 |
+
"rewards/format_reward_func": 0.984375,
|
2795 |
+
"step": 398
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"clip_ratio": 0.0,
|
2799 |
+
"completion_length": 290.140625,
|
2800 |
+
"epoch": 0.07111111111111111,
|
2801 |
+
"grad_norm": 2.4346116264171203,
|
2802 |
+
"kl": 2.428955078125,
|
2803 |
+
"learning_rate": 1.604996774486145e-08,
|
2804 |
+
"loss": 0.0619,
|
2805 |
+
"reward": 1.046875,
|
2806 |
+
"reward_std": 0.1298343911767006,
|
2807 |
+
"rewards/equation_reward_func": 0.0625,
|
2808 |
+
"rewards/format_reward_func": 0.984375,
|
2809 |
+
"step": 400
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"clip_ratio": 0.0,
|
2813 |
+
"completion_length": 327.09375,
|
2814 |
+
"epoch": 0.07146666666666666,
|
2815 |
+
"grad_norm": 1.4096767097340954,
|
2816 |
+
"kl": 2.732421875,
|
2817 |
+
"learning_rate": 1.4804225250339281e-08,
|
2818 |
+
"loss": 0.0063,
|
2819 |
+
"reward": 1.09375,
|
2820 |
+
"reward_std": 0.09858439117670059,
|
2821 |
+
"rewards/equation_reward_func": 0.09375,
|
2822 |
+
"rewards/format_reward_func": 1.0,
|
2823 |
+
"step": 402
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"clip_ratio": 0.0,
|
2827 |
+
"completion_length": 308.53125,
|
2828 |
+
"epoch": 0.07182222222222222,
|
2829 |
+
"grad_norm": 11.032142152384289,
|
2830 |
+
"kl": 3.81396484375,
|
2831 |
+
"learning_rate": 1.360732647858498e-08,
|
2832 |
+
"loss": 0.0763,
|
2833 |
+
"reward": 1.203125,
|
2834 |
+
"reward_std": 0.2645031735301018,
|
2835 |
+
"rewards/equation_reward_func": 0.203125,
|
2836 |
+
"rewards/format_reward_func": 1.0,
|
2837 |
+
"step": 404
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"clip_ratio": 0.0,
|
2841 |
+
"completion_length": 308.3125,
|
2842 |
+
"epoch": 0.07217777777777777,
|
2843 |
+
"grad_norm": 2.3580842283452412,
|
2844 |
+
"kl": 2.40478515625,
|
2845 |
+
"learning_rate": 1.2459519992702311e-08,
|
2846 |
+
"loss": 0.0281,
|
2847 |
+
"reward": 1.015625,
|
2848 |
+
"reward_std": 0.09375,
|
2849 |
+
"rewards/equation_reward_func": 0.03125,
|
2850 |
+
"rewards/format_reward_func": 0.984375,
|
2851 |
+
"step": 406
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"clip_ratio": 0.0,
|
2855 |
+
"completion_length": 276.265625,
|
2856 |
+
"epoch": 0.07253333333333334,
|
2857 |
+
"grad_norm": 1.807591388336414,
|
2858 |
+
"kl": 2.02685546875,
|
2859 |
+
"learning_rate": 1.1361044160671629e-08,
|
2860 |
+
"loss": 0.0073,
|
2861 |
+
"reward": 1.15625,
|
2862 |
+
"reward_std": 0.19716878235340118,
|
2863 |
+
"rewards/equation_reward_func": 0.15625,
|
2864 |
+
"rewards/format_reward_func": 1.0,
|
2865 |
+
"step": 408
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"clip_ratio": 0.0,
|
2869 |
+
"completion_length": 305.59375,
|
2870 |
+
"epoch": 0.07288888888888889,
|
2871 |
+
"grad_norm": 397.3498098291439,
|
2872 |
+
"kl": 50.008544921875,
|
2873 |
+
"learning_rate": 1.0312127105846947e-08,
|
2874 |
+
"loss": 0.1459,
|
2875 |
+
"reward": 1.03125,
|
2876 |
+
"reward_std": 0.23853103816509247,
|
2877 |
+
"rewards/equation_reward_func": 0.078125,
|
2878 |
+
"rewards/format_reward_func": 0.953125,
|
2879 |
+
"step": 410
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"clip_ratio": 0.0,
|
2883 |
+
"completion_length": 307.015625,
|
2884 |
+
"epoch": 0.07324444444444445,
|
2885 |
+
"grad_norm": 2.197104654614589,
|
2886 |
+
"kl": 2.2783203125,
|
2887 |
+
"learning_rate": 9.312986659581301e-09,
|
2888 |
+
"loss": 0.0373,
|
2889 |
+
"reward": 1.09375,
|
2890 |
+
"reward_std": 0.1610843911767006,
|
2891 |
+
"rewards/equation_reward_func": 0.09375,
|
2892 |
+
"rewards/format_reward_func": 1.0,
|
2893 |
+
"step": 412
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"clip_ratio": 0.0,
|
2897 |
+
"completion_length": 307.390625,
|
2898 |
+
"epoch": 0.0736,
|
2899 |
+
"grad_norm": 2.2032918507669015,
|
2900 |
+
"kl": 1.651611328125,
|
2901 |
+
"learning_rate": 8.363830315988945e-09,
|
2902 |
+
"loss": 0.0537,
|
2903 |
+
"reward": 1.078125,
|
2904 |
+
"reward_std": 0.1298343911767006,
|
2905 |
+
"rewards/equation_reward_func": 0.09375,
|
2906 |
+
"rewards/format_reward_func": 0.984375,
|
2907 |
+
"step": 414
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"clip_ratio": 0.0,
|
2911 |
+
"completion_length": 296.71875,
|
2912 |
+
"epoch": 0.07395555555555555,
|
2913 |
+
"grad_norm": 2.6002311285352175,
|
2914 |
+
"kl": 2.895751953125,
|
2915 |
+
"learning_rate": 7.46485518885462e-09,
|
2916 |
+
"loss": 0.0162,
|
2917 |
+
"reward": 1.09375,
|
2918 |
+
"reward_std": 0.125,
|
2919 |
+
"rewards/equation_reward_func": 0.09375,
|
2920 |
+
"rewards/format_reward_func": 1.0,
|
2921 |
+
"step": 416
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"clip_ratio": 0.0,
|
2925 |
+
"completion_length": 314.734375,
|
2926 |
+
"epoch": 0.0743111111111111,
|
2927 |
+
"grad_norm": 1.4366325174606742,
|
2928 |
+
"kl": 1.68115234375,
|
2929 |
+
"learning_rate": 6.616247970698319e-09,
|
2930 |
+
"loss": 0.0527,
|
2931 |
+
"reward": 1.0625,
|
2932 |
+
"reward_std": 0.22575797885656357,
|
2933 |
+
"rewards/equation_reward_func": 0.109375,
|
2934 |
+
"rewards/format_reward_func": 0.953125,
|
2935 |
+
"step": 418
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"clip_ratio": 0.0,
|
2939 |
+
"completion_length": 274.125,
|
2940 |
+
"epoch": 0.07466666666666667,
|
2941 |
+
"grad_norm": 2.832174519961065,
|
2942 |
+
"kl": 1.653076171875,
|
2943 |
+
"learning_rate": 5.8181848940044855e-09,
|
2944 |
+
"loss": 0.0479,
|
2945 |
+
"reward": 1.15625,
|
2946 |
+
"reward_std": 0.25,
|
2947 |
+
"rewards/equation_reward_func": 0.15625,
|
2948 |
+
"rewards/format_reward_func": 1.0,
|
2949 |
+
"step": 420
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"clip_ratio": 0.0,
|
2953 |
+
"completion_length": 293.578125,
|
2954 |
+
"epoch": 0.07502222222222223,
|
2955 |
+
"grad_norm": 3.2917629073928247,
|
2956 |
+
"kl": 1.63916015625,
|
2957 |
+
"learning_rate": 5.070831694623135e-09,
|
2958 |
+
"loss": 0.0314,
|
2959 |
+
"reward": 1.1875,
|
2960 |
+
"reward_std": 0.3221687823534012,
|
2961 |
+
"rewards/equation_reward_func": 0.1875,
|
2962 |
+
"rewards/format_reward_func": 1.0,
|
2963 |
+
"step": 422
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"clip_ratio": 0.0,
|
2967 |
+
"completion_length": 268.71875,
|
2968 |
+
"epoch": 0.07537777777777778,
|
2969 |
+
"grad_norm": 1.3697523023561404,
|
2970 |
+
"kl": 2.22021484375,
|
2971 |
+
"learning_rate": 4.374343577351336e-09,
|
2972 |
+
"loss": 0.0136,
|
2973 |
+
"reward": 1.046875,
|
2974 |
+
"reward_std": 0.1298343911767006,
|
2975 |
+
"rewards/equation_reward_func": 0.0625,
|
2976 |
+
"rewards/format_reward_func": 0.984375,
|
2977 |
+
"step": 424
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"clip_ratio": 0.0,
|
2981 |
+
"completion_length": 312.59375,
|
2982 |
+
"epoch": 0.07573333333333333,
|
2983 |
+
"grad_norm": 2.896324603562049,
|
2984 |
+
"kl": 1.552734375,
|
2985 |
+
"learning_rate": 3.7288651837012745e-09,
|
2986 |
+
"loss": 0.0834,
|
2987 |
+
"reward": 1.140625,
|
2988 |
+
"reward_std": 0.2909187823534012,
|
2989 |
+
"rewards/equation_reward_func": 0.15625,
|
2990 |
+
"rewards/format_reward_func": 0.984375,
|
2991 |
+
"step": 426
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"clip_ratio": 0.0,
|
2995 |
+
"completion_length": 279.921875,
|
2996 |
+
"epoch": 0.07608888888888889,
|
2997 |
+
"grad_norm": 2.2563282918149166,
|
2998 |
+
"kl": 2.084228515625,
|
2999 |
+
"learning_rate": 3.134530561862081e-09,
|
3000 |
+
"loss": 0.0184,
|
3001 |
+
"reward": 1.109375,
|
3002 |
+
"reward_std": 0.10341878235340118,
|
3003 |
+
"rewards/equation_reward_func": 0.125,
|
3004 |
+
"rewards/format_reward_func": 0.984375,
|
3005 |
+
"step": 428
|
3006 |
+
},
|
3007 |
+
{
|
3008 |
+
"clip_ratio": 0.0,
|
3009 |
+
"completion_length": 299.8125,
|
3010 |
+
"epoch": 0.07644444444444444,
|
3011 |
+
"grad_norm": 2.805702161500462,
|
3012 |
+
"kl": 1.2802734375,
|
3013 |
+
"learning_rate": 2.5914631388619103e-09,
|
3014 |
+
"loss": 0.022,
|
3015 |
+
"reward": 1.0625,
|
3016 |
+
"reward_std": 0.0625,
|
3017 |
+
"rewards/equation_reward_func": 0.0625,
|
3018 |
+
"rewards/format_reward_func": 1.0,
|
3019 |
+
"step": 430
|
3020 |
+
},
|
3021 |
+
{
|
3022 |
+
"clip_ratio": 0.0,
|
3023 |
+
"completion_length": 280.1875,
|
3024 |
+
"epoch": 0.0768,
|
3025 |
+
"grad_norm": 2.3897542479107328,
|
3026 |
+
"kl": 1.429931640625,
|
3027 |
+
"learning_rate": 2.0997756949353297e-09,
|
3028 |
+
"loss": 0.0494,
|
3029 |
+
"reward": 1.109375,
|
3030 |
+
"reward_std": 0.24336542934179306,
|
3031 |
+
"rewards/equation_reward_func": 0.140625,
|
3032 |
+
"rewards/format_reward_func": 0.96875,
|
3033 |
+
"step": 432
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"clip_ratio": 0.0,
|
3037 |
+
"completion_length": 309.828125,
|
3038 |
+
"epoch": 0.07715555555555556,
|
3039 |
+
"grad_norm": 3.547940603348454,
|
3040 |
+
"kl": 1.690185546875,
|
3041 |
+
"learning_rate": 1.6595703401020844e-09,
|
3042 |
+
"loss": 0.0557,
|
3043 |
+
"reward": 1.109375,
|
3044 |
+
"reward_std": 0.1923343911767006,
|
3045 |
+
"rewards/equation_reward_func": 0.109375,
|
3046 |
+
"rewards/format_reward_func": 1.0,
|
3047 |
+
"step": 434
|
3048 |
+
},
|
3049 |
+
{
|
3050 |
+
"clip_ratio": 0.0,
|
3051 |
+
"completion_length": 295.828125,
|
3052 |
+
"epoch": 0.07751111111111111,
|
3053 |
+
"grad_norm": 109.41721675323444,
|
3054 |
+
"kl": 28.513916015625,
|
3055 |
+
"learning_rate": 1.2709384929615596e-09,
|
3056 |
+
"loss": 0.0721,
|
3057 |
+
"reward": 1.09375,
|
3058 |
+
"reward_std": 0.13466878235340118,
|
3059 |
+
"rewards/equation_reward_func": 0.09375,
|
3060 |
+
"rewards/format_reward_func": 1.0,
|
3061 |
+
"step": 436
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"clip_ratio": 0.0,
|
3065 |
+
"completion_length": 280.578125,
|
3066 |
+
"epoch": 0.07786666666666667,
|
3067 |
+
"grad_norm": 1.9228717734559753,
|
3068 |
+
"kl": 2.058837890625,
|
3069 |
+
"learning_rate": 9.339608617077165e-10,
|
3070 |
+
"loss": -0.034,
|
3071 |
+
"reward": 1.015625,
|
3072 |
+
"reward_std": 0.09375,
|
3073 |
+
"rewards/equation_reward_func": 0.03125,
|
3074 |
+
"rewards/format_reward_func": 0.984375,
|
3075 |
+
"step": 438
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"clip_ratio": 0.0,
|
3079 |
+
"completion_length": 292.5,
|
3080 |
+
"epoch": 0.07822222222222222,
|
3081 |
+
"grad_norm": 3.2983736045582552,
|
3082 |
+
"kl": 1.70654296875,
|
3083 |
+
"learning_rate": 6.487074273681114e-10,
|
3084 |
+
"loss": 0.0022,
|
3085 |
+
"reward": 1.140625,
|
3086 |
+
"reward_std": 0.22841878235340118,
|
3087 |
+
"rewards/equation_reward_func": 0.140625,
|
3088 |
+
"rewards/format_reward_func": 1.0,
|
3089 |
+
"step": 440
|
3090 |
+
},
|
3091 |
+
{
|
3092 |
+
"clip_ratio": 0.0,
|
3093 |
+
"completion_length": 280.296875,
|
3094 |
+
"epoch": 0.07857777777777777,
|
3095 |
+
"grad_norm": 2.7643778642220154,
|
3096 |
+
"kl": 1.887939453125,
|
3097 |
+
"learning_rate": 4.152374292708538e-10,
|
3098 |
+
"loss": 0.0083,
|
3099 |
+
"reward": 1.140625,
|
3100 |
+
"reward_std": 0.1923343911767006,
|
3101 |
+
"rewards/equation_reward_func": 0.140625,
|
3102 |
+
"rewards/format_reward_func": 1.0,
|
3103 |
+
"step": 442
|
3104 |
+
},
|
3105 |
+
{
|
3106 |
+
"clip_ratio": 0.0,
|
3107 |
+
"completion_length": 287.140625,
|
3108 |
+
"epoch": 0.07893333333333333,
|
3109 |
+
"grad_norm": 2.995996483175849,
|
3110 |
+
"kl": 1.871337890625,
|
3111 |
+
"learning_rate": 2.3359935274214204e-10,
|
3112 |
+
"loss": 0.0448,
|
3113 |
+
"reward": 1.265625,
|
3114 |
+
"reward_std": 0.33667195588350296,
|
3115 |
+
"rewards/equation_reward_func": 0.28125,
|
3116 |
+
"rewards/format_reward_func": 0.984375,
|
3117 |
+
"step": 444
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"clip_ratio": 0.0,
|
3121 |
+
"completion_length": 307.890625,
|
3122 |
+
"epoch": 0.0792888888888889,
|
3123 |
+
"grad_norm": 2.600208741694735,
|
3124 |
+
"kl": 2.14111328125,
|
3125 |
+
"learning_rate": 1.0383091903720665e-10,
|
3126 |
+
"loss": 0.0051,
|
3127 |
+
"reward": 1.0,
|
3128 |
+
"reward_std": 0.0625,
|
3129 |
+
"rewards/equation_reward_func": 0.015625,
|
3130 |
+
"rewards/format_reward_func": 0.984375,
|
3131 |
+
"step": 446
|
3132 |
+
},
|
3133 |
+
{
|
3134 |
+
"clip_ratio": 0.0,
|
3135 |
+
"completion_length": 283.359375,
|
3136 |
+
"epoch": 0.07964444444444445,
|
3137 |
+
"grad_norm": 2.5889730669425286,
|
3138 |
+
"kl": 377.768310546875,
|
3139 |
+
"learning_rate": 2.595907750671533e-11,
|
3140 |
+
"loss": 0.4151,
|
3141 |
+
"reward": 1.046875,
|
3142 |
+
"reward_std": 0.20728103816509247,
|
3143 |
+
"rewards/equation_reward_func": 0.078125,
|
3144 |
+
"rewards/format_reward_func": 0.96875,
|
3145 |
+
"step": 448
|
3146 |
+
},
|
3147 |
+
{
|
3148 |
+
"clip_ratio": 0.0,
|
3149 |
+
"completion_length": 283.171875,
|
3150 |
+
"epoch": 0.08,
|
3151 |
+
"grad_norm": 2.8580107740928953,
|
3152 |
+
"kl": 2.1181640625,
|
3153 |
+
"learning_rate": 0.0,
|
3154 |
+
"loss": 0.0826,
|
3155 |
+
"reward": 1.125,
|
3156 |
+
"reward_std": 0.2235843911767006,
|
3157 |
+
"rewards/equation_reward_func": 0.125,
|
3158 |
+
"rewards/format_reward_func": 1.0,
|
3159 |
+
"step": 450
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 0.08,
|
3163 |
+
"step": 450,
|
3164 |
+
"total_flos": 0.0,
|
3165 |
+
"train_loss": 0.04409932630071934,
|
3166 |
+
"train_runtime": 12236.3143,
|
3167 |
+
"train_samples_per_second": 1.177,
|
3168 |
+
"train_steps_per_second": 0.037
|
3169 |
+
}
|
3170 |
+
],
|
3171 |
+
"logging_steps": 2,
|
3172 |
+
"max_steps": 450,
|
3173 |
+
"num_input_tokens_seen": 0,
|
3174 |
+
"num_train_epochs": 1,
|
3175 |
+
"save_steps": 25,
|
3176 |
+
"stateful_callbacks": {
|
3177 |
+
"TrainerControl": {
|
3178 |
+
"args": {
|
3179 |
+
"should_epoch_stop": false,
|
3180 |
+
"should_evaluate": false,
|
3181 |
+
"should_log": false,
|
3182 |
+
"should_save": true,
|
3183 |
+
"should_training_stop": true
|
3184 |
+
},
|
3185 |
+
"attributes": {}
|
3186 |
+
}
|
3187 |
+
},
|
3188 |
+
"total_flos": 0.0,
|
3189 |
+
"train_batch_size": 4,
|
3190 |
+
"trial_name": null,
|
3191 |
+
"trial_params": null
|
3192 |
+
}
|