--- license: mit tags: - vqvae - image-generation - unsupervised-learning - pytorch - imagenet - generative-model datasets: - imagenet-200 library_name: pytorch model-index: - name: VQ-VAE-ImageNet200 results: - task: type: image-generation name: Image Generation dataset: name: Tiny ImageNet (ImageNet-200) type: image-classification metrics: - name: FID type: frechet-inception-distance value: 102.87 --- # VQ-VAE for Tiny ImageNet (ImageNet-200) This repository contains a **Vector Quantized Variational Autoencoder (VQ-VAE)** trained on the Tiny ImageNet-200 dataset using PyTorch. It is part of an image augmentation and representation learning pipeline for generative modeling and unsupervised learning tasks. --- ## 🧠 Model Details - **Model Type**: Vector Quantized Variational Autoencoder (VQ-VAE) - **Dataset**: Tiny ImageNet (ImageNet-200) - **Epochs**: 35 - **Latent Space**: Discrete codebook (vector quantization) - **Input Size**: 64×64 RGB - **Loss Function**: Mean Squared Error (MSE) + VQ commitment loss - **Final Training Loss**: ~0.0292 - **FID Score**: ~102.87 - **Architecture**: 3-layer CNN Encoder & Decoder with quantization bottleneck --- ## 📦 Files - `generator.pt` — Trained VQ-VAE model weights - `loss_curve.png` — Plot of training loss across 35 epochs - `fid_score.json` — FID evaluation result on 1000 generated samples - `fid_real/` — 1000 real Tiny ImageNet samples used for FID - `fid_fake/` — 1000 VQ-VAE reconstructions used for FID --- ## 🔧 Usage ```python import torch from models.vqvae.model import VQVAE model = VQVAE() model.load_state_dict(torch.load("generator.pt", map_location="cpu")) model.eval()