Create processing_colgranitevision.py
Browse files- processing_colgranitevision.py +396 -0
processing_colgranitevision.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import ClassVar, List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from PIL import Image, ImageOps
|
6 |
+
from transformers import BatchFeature, LlavaNextProcessor
|
7 |
+
|
8 |
+
|
9 |
+
def round_by_factor(number: float, factor: int) -> int:
|
10 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
11 |
+
return round(number / factor) * factor
|
12 |
+
|
13 |
+
|
14 |
+
def ceil_by_factor(number: float, factor: int) -> int:
|
15 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
16 |
+
return math.ceil(number / factor) * factor
|
17 |
+
|
18 |
+
|
19 |
+
def floor_by_factor(number: float, factor: int) -> int:
|
20 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
21 |
+
return math.floor(number / factor) * factor
|
22 |
+
|
23 |
+
|
24 |
+
class ColGraniteVisionProcessor(LlavaNextProcessor):
|
25 |
+
"""
|
26 |
+
Processor for ColPali.
|
27 |
+
"""
|
28 |
+
|
29 |
+
visual_prompt_prefix: ClassVar[str] = "<|user|>\n<image>\nDescribe the image.\n"
|
30 |
+
system_message: ClassVar[
|
31 |
+
str] = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."
|
32 |
+
query_prefix: ClassVar[str] = "Query: "
|
33 |
+
query_start: ClassVar[str] = "<|user|>\n"
|
34 |
+
|
35 |
+
def __init__(self, *args, **kwargs):
|
36 |
+
super().__init__(*args, **kwargs)
|
37 |
+
self.factor = 14
|
38 |
+
self.min_size = 384
|
39 |
+
self.max_size = 384 * 2
|
40 |
+
self.suffix_len = 10
|
41 |
+
self.patch_size = 14
|
42 |
+
|
43 |
+
@property
|
44 |
+
def query_augmentation_token(self) -> str:
|
45 |
+
"""
|
46 |
+
Return the query augmentation token.
|
47 |
+
Query augmentation buffers are used as reasoning buffers during inference.
|
48 |
+
"""
|
49 |
+
return self.tokenizer.pad_token
|
50 |
+
|
51 |
+
@staticmethod
|
52 |
+
def smart_resize_helper(
|
53 |
+
width: int,
|
54 |
+
height: int,
|
55 |
+
factor: int,
|
56 |
+
min_size: int,
|
57 |
+
max_size: int
|
58 |
+
) -> Tuple[int, int]:
|
59 |
+
"""
|
60 |
+
Returns the resized image dimensions such that:
|
61 |
+
1. The smaller dimension is set to 'min_size'.
|
62 |
+
2. The larger dimension is scaled proportionally to maintain aspect ratio.
|
63 |
+
3. If the larger dimension exceeds 'max_size', it is clipped to 'max_size',
|
64 |
+
and the smaller dimension is adjusted accordingly to maintain aspect ratio.
|
65 |
+
4. Both dimensions are divisible by 'factor'.
|
66 |
+
"""
|
67 |
+
|
68 |
+
# Determine scale factor based on min_size
|
69 |
+
if height < width:
|
70 |
+
scale_factor = min_size / height
|
71 |
+
else:
|
72 |
+
scale_factor = min_size / width
|
73 |
+
|
74 |
+
new_width = round(width * scale_factor)
|
75 |
+
new_height = round(height * scale_factor)
|
76 |
+
|
77 |
+
# If the longer dimension exceeds max_size, adjust accordingly
|
78 |
+
if max(new_width, new_height) > max_size:
|
79 |
+
clip_factor = max_size / max(new_width, new_height)
|
80 |
+
new_width = round(new_width * clip_factor)
|
81 |
+
new_height = round(new_height * clip_factor)
|
82 |
+
|
83 |
+
# Ensure dimensions are divisible by factor
|
84 |
+
# new_width = round_by_factor(new_width, factor)
|
85 |
+
# new_height = round_by_factor(new_height, factor)
|
86 |
+
|
87 |
+
return new_width, new_height
|
88 |
+
|
89 |
+
@staticmethod
|
90 |
+
def pad_image_center(image: Image.Image,
|
91 |
+
target_width: int,
|
92 |
+
target_height: int,
|
93 |
+
fill_color=(0, 0, 0)) -> Image.Image:
|
94 |
+
"""
|
95 |
+
Pads the given image to be centered within the target dimensions.
|
96 |
+
|
97 |
+
:param image: PIL Image to be padded.
|
98 |
+
:param target_width: The desired width after padding.
|
99 |
+
:param target_height: The desired height after padding.
|
100 |
+
:param fill_color: Background color (default is black).
|
101 |
+
:return: Padded image with centered content.
|
102 |
+
"""
|
103 |
+
|
104 |
+
# Get original image size
|
105 |
+
img_width, img_height = image.size
|
106 |
+
|
107 |
+
# Compute padding values
|
108 |
+
pad_left = (target_width - img_width) // 2
|
109 |
+
pad_top = (target_height - img_height) // 2
|
110 |
+
pad_right = target_width - img_width - pad_left
|
111 |
+
pad_bottom = target_height - img_height - pad_top
|
112 |
+
|
113 |
+
# Apply padding
|
114 |
+
padded_image = ImageOps.expand(image, (pad_left, pad_top, pad_right, pad_bottom), fill_color).convert("RGB")
|
115 |
+
|
116 |
+
return padded_image
|
117 |
+
|
118 |
+
def smart_resize(self, image: Image.Image) -> Image.Image:
|
119 |
+
"""
|
120 |
+
Resize and convert the image to the required format.
|
121 |
+
"""
|
122 |
+
image_size = image.size
|
123 |
+
resized_height, resized_width = self.smart_resize_helper(
|
124 |
+
width=image_size[0],
|
125 |
+
height=image_size[1],
|
126 |
+
factor=self.factor,
|
127 |
+
min_size=self.min_size,
|
128 |
+
max_size=self.max_size
|
129 |
+
)
|
130 |
+
return image.convert("RGB").resize((resized_width, resized_height))
|
131 |
+
|
132 |
+
def smart_resize_and_pad(self, image: Image.Image) -> Image.Image:
|
133 |
+
"""
|
134 |
+
Resize and pad the image to the required format.
|
135 |
+
"""
|
136 |
+
return self.resize_and_pad_centered(
|
137 |
+
image=image,
|
138 |
+
factor=self.factor,
|
139 |
+
min_size=self.min_size,
|
140 |
+
max_size=self.max_size,
|
141 |
+
fill_color=0
|
142 |
+
)
|
143 |
+
|
144 |
+
def resize_and_pad_centered(self,
|
145 |
+
image: Image.Image,
|
146 |
+
factor: int,
|
147 |
+
min_size: int,
|
148 |
+
max_size: int,
|
149 |
+
fill_color=0
|
150 |
+
) -> Image.Image:
|
151 |
+
"""
|
152 |
+
Resizes and pads an image such that:
|
153 |
+
- The short side is set to `min_size`.
|
154 |
+
- The long side is scaled proportionally but clipped to `max_size`.
|
155 |
+
- The image is centered within the final padded area.
|
156 |
+
|
157 |
+
:param image: PIL Image
|
158 |
+
:param factor: Factor to make dimensions divisible by
|
159 |
+
:param min_size: Minimum size for the short side
|
160 |
+
:param max_size: Maximum allowed size for the long side
|
161 |
+
:param fill_color: Background padding color (default black)
|
162 |
+
:return: Resized and padded image
|
163 |
+
"""
|
164 |
+
|
165 |
+
# Get original size
|
166 |
+
width, height = image.size
|
167 |
+
|
168 |
+
if min_size == -1 or max_size == -1:
|
169 |
+
return image.convert("RGB")
|
170 |
+
|
171 |
+
# Determine scale factor based on the short side (min_size)
|
172 |
+
if width < height:
|
173 |
+
scale_factor = min_size / width
|
174 |
+
target_width = min_size
|
175 |
+
max_scale_factor = min(max_size / height, scale_factor)
|
176 |
+
target_height = round(height * max_scale_factor)
|
177 |
+
else:
|
178 |
+
scale_factor = min_size / height
|
179 |
+
target_height = min_size
|
180 |
+
max_scale_factor = min(max_size / width, scale_factor)
|
181 |
+
target_width = round(width * max_scale_factor)
|
182 |
+
|
183 |
+
# Ensure the longer side does not exceed max_size
|
184 |
+
# if max(target_width, target_height) > max_size:
|
185 |
+
# clip_factor = max_size / max(target_width, target_height)
|
186 |
+
# target_width = round(target_width * clip_factor)
|
187 |
+
# target_height = round(target_height * clip_factor)
|
188 |
+
|
189 |
+
# Ensure dimensions are divisible by factor
|
190 |
+
# target_width = round_by_factor(target_width, factor)
|
191 |
+
# target_height = round_by_factor(target_height, factor)
|
192 |
+
|
193 |
+
# Resize the image
|
194 |
+
resized_image = image.resize((target_width, target_height), Image.LANCZOS)
|
195 |
+
|
196 |
+
# Determine final padded dimensions (aligned to short side)
|
197 |
+
if width < height:
|
198 |
+
final_width, final_height = min_size, max_size
|
199 |
+
else:
|
200 |
+
final_width, final_height = max_size, min_size
|
201 |
+
|
202 |
+
# Compute padding to center the image
|
203 |
+
pad_left = (final_width - target_width) // 2
|
204 |
+
pad_top = (final_height - target_height) // 2
|
205 |
+
pad_right = final_width - target_width - pad_left
|
206 |
+
pad_bottom = final_height - target_height - pad_top
|
207 |
+
|
208 |
+
# Apply centered padding
|
209 |
+
# final_image = ImageOps.expand(resized_image, (pad_left, pad_top, pad_right, pad_bottom), fill_color).convert("RGB")
|
210 |
+
final_image = resized_image.convert("RGB")
|
211 |
+
|
212 |
+
return final_image
|
213 |
+
|
214 |
+
def format_data(self, question, image):
|
215 |
+
return [
|
216 |
+
{
|
217 |
+
"role": "system",
|
218 |
+
"content": [{"type": "text", "text": self.system_message}],
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"role": "user",
|
222 |
+
"content": [
|
223 |
+
{
|
224 |
+
"type": "image",
|
225 |
+
"image": image,
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"type": "text",
|
229 |
+
"text": question,
|
230 |
+
},
|
231 |
+
],
|
232 |
+
}
|
233 |
+
]
|
234 |
+
|
235 |
+
def format_data_wo_role(self, question, image=None):
|
236 |
+
return [
|
237 |
+
{
|
238 |
+
"role": "user",
|
239 |
+
"content": [
|
240 |
+
{
|
241 |
+
"type": "image",
|
242 |
+
"image": image,
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"type": "text",
|
246 |
+
"text": question,
|
247 |
+
},
|
248 |
+
],
|
249 |
+
}
|
250 |
+
]
|
251 |
+
|
252 |
+
def process_images(
|
253 |
+
self,
|
254 |
+
images: List[Image.Image],
|
255 |
+
) -> BatchFeature:
|
256 |
+
"""
|
257 |
+
Process images for ColPali.
|
258 |
+
"""
|
259 |
+
# texts_doc = [self.apply_chat_template(self.format_data_wo_role(self.visual_prompt_prefix, img),tokenize=False ) for img in images]
|
260 |
+
texts_doc = [self.visual_prompt_prefix for _ in images]
|
261 |
+
images = [self.smart_resize_and_pad(image) for image in images]
|
262 |
+
|
263 |
+
batch_doc = self(
|
264 |
+
text=texts_doc,
|
265 |
+
images=images,
|
266 |
+
return_tensors="pt",
|
267 |
+
padding="longest",
|
268 |
+
)
|
269 |
+
return batch_doc
|
270 |
+
|
271 |
+
def process_queries(self, queries, max_length=2048, suffix=None):
|
272 |
+
if suffix is None:
|
273 |
+
suffix = self.query_augmentation_token * self.suffix_len
|
274 |
+
|
275 |
+
processed = []
|
276 |
+
for q in queries:
|
277 |
+
q = self.query_start + self.query_prefix + q
|
278 |
+
# truncate before it eats actual query content
|
279 |
+
if len(q) + len(suffix) > max_length:
|
280 |
+
q = q[: max_length - len(suffix) - 1]
|
281 |
+
q += suffix + "\n"
|
282 |
+
processed.append(q)
|
283 |
+
|
284 |
+
return self(
|
285 |
+
text=processed,
|
286 |
+
images=None,
|
287 |
+
return_tensors="pt",
|
288 |
+
padding="longest",
|
289 |
+
truncation=True,
|
290 |
+
max_length=max_length,
|
291 |
+
)
|
292 |
+
|
293 |
+
def score(
|
294 |
+
self,
|
295 |
+
qs: List[torch.Tensor],
|
296 |
+
ps: List[torch.Tensor],
|
297 |
+
device: Optional[Union[str, torch.device]] = None,
|
298 |
+
**kwargs,
|
299 |
+
) -> torch.Tensor:
|
300 |
+
"""
|
301 |
+
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
|
302 |
+
"""
|
303 |
+
return self.score_multi_vector(qs, ps, device=device, **kwargs)
|
304 |
+
|
305 |
+
def get_n_patches(
|
306 |
+
self,
|
307 |
+
image_size: Tuple[int, int],
|
308 |
+
patch_size: int,
|
309 |
+
) -> Tuple[int, int]:
|
310 |
+
n_patches_x = self.image_processor.size["width"] // patch_size
|
311 |
+
n_patches_y = self.image_processor.size["height"] // patch_size
|
312 |
+
|
313 |
+
return n_patches_x, n_patches_y
|
314 |
+
|
315 |
+
def get_image_mask(self, batch_images: BatchFeature) -> torch.Tensor:
|
316 |
+
return batch_images.input_ids == self.image_token_id
|
317 |
+
|
318 |
+
@staticmethod
|
319 |
+
def score_single_vector(
|
320 |
+
qs: List[torch.Tensor],
|
321 |
+
ps: List[torch.Tensor],
|
322 |
+
device: Optional[Union[str, torch.device]] = None,
|
323 |
+
) -> torch.Tensor:
|
324 |
+
"""
|
325 |
+
Compute the dot product score for the given single-vector query and passage embeddings.
|
326 |
+
"""
|
327 |
+
|
328 |
+
if len(qs) == 0:
|
329 |
+
raise ValueError("No queries provided")
|
330 |
+
if len(ps) == 0:
|
331 |
+
raise ValueError("No passages provided")
|
332 |
+
|
333 |
+
qs_stacked = torch.stack(qs).to(device)
|
334 |
+
ps_stacked = torch.stack(ps).to(device)
|
335 |
+
|
336 |
+
scores = torch.einsum("bd,cd->bc", qs_stacked, ps_stacked)
|
337 |
+
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
|
338 |
+
|
339 |
+
scores = scores.to(torch.float32)
|
340 |
+
return scores
|
341 |
+
|
342 |
+
@staticmethod
|
343 |
+
def score_multi_vector(
|
344 |
+
qs: Union[torch.Tensor, List[torch.Tensor]],
|
345 |
+
ps: Union[torch.Tensor, List[torch.Tensor]],
|
346 |
+
batch_size: int = 128,
|
347 |
+
device: Optional[Union[str, torch.device]] = None,
|
348 |
+
) -> torch.Tensor:
|
349 |
+
"""
|
350 |
+
Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector
|
351 |
+
query embeddings (`qs`) and passage embeddings (`ps`). For ColPali, a passage is the
|
352 |
+
image of a document page.
|
353 |
+
|
354 |
+
Because the embedding tensors are multi-vector and can thus have different shapes, they
|
355 |
+
should be fed as:
|
356 |
+
(1) a list of tensors, where the i-th tensor is of shape (sequence_length_i, embedding_dim)
|
357 |
+
(2) a single tensor of shape (n_passages, max_sequence_length, embedding_dim) -> usually
|
358 |
+
obtained by padding the list of tensors.
|
359 |
+
|
360 |
+
Args:
|
361 |
+
qs (`Union[torch.Tensor, List[torch.Tensor]`): Query embeddings.
|
362 |
+
ps (`Union[torch.Tensor, List[torch.Tensor]`): Passage embeddings.
|
363 |
+
batch_size (`int`, *optional*, defaults to 128): Batch size for computing scores.
|
364 |
+
device (`Union[str, torch.device]`, *optional*): Device to use for computation. If not
|
365 |
+
provided, uses `get_torch_device("auto")`.
|
366 |
+
|
367 |
+
Returns:
|
368 |
+
`torch.Tensor`: A tensor of shape `(n_queries, n_passages)` containing the scores. The score
|
369 |
+
tensor is saved on the "cpu" device.
|
370 |
+
"""
|
371 |
+
|
372 |
+
if len(qs) == 0:
|
373 |
+
raise ValueError("No queries provided")
|
374 |
+
if len(ps) == 0:
|
375 |
+
raise ValueError("No passages provided")
|
376 |
+
|
377 |
+
scores_list: List[torch.Tensor] = []
|
378 |
+
|
379 |
+
for i in range(0, len(qs), batch_size):
|
380 |
+
scores_batch = []
|
381 |
+
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i: i + batch_size], batch_first=True, padding_value=0).to(
|
382 |
+
device
|
383 |
+
)
|
384 |
+
for j in range(0, len(ps), batch_size):
|
385 |
+
ps_batch = torch.nn.utils.rnn.pad_sequence(
|
386 |
+
ps[j: j + batch_size], batch_first=True, padding_value=0
|
387 |
+
).to(device)
|
388 |
+
scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2))
|
389 |
+
scores_batch = torch.cat(scores_batch, dim=1).cpu()
|
390 |
+
scores_list.append(scores_batch)
|
391 |
+
|
392 |
+
scores = torch.cat(scores_list, dim=0)
|
393 |
+
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
|
394 |
+
|
395 |
+
scores = scores.to(torch.float32)
|
396 |
+
return scores
|