# Copyright (c) IBM Corp. 2024. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# transformers: https://github.com/huggingface/transformers
# --------------------------------------------------------

from functools import partial
from typing import List, Tuple

import logging
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from timm.layers import to_2tuple
from timm.models.vision_transformer import Block


def get_3d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
    """
    Create 3D sin/cos positional embeddings.

    Args:
        embed_dim (int):
            Embedding dimension.
        grid_size (tuple[int, int, int] | list[int]):
            The grid depth, height and width.
        add_cls_token (bool, *optional*, defaults to False):
            Whether or not to add a classification (CLS) token.

    Returns:
        (`torch.FloatTensor` of shape (grid_size[0]*grid_size[1]*grid_size[2], embed_dim) or
        (1+grid_size[0]*grid_size[1]*grid_size[2], embed_dim): the position embeddings (with or without cls token)
    """

    assert embed_dim % 16 == 0

    t_size, h_size, w_size = grid_size

    w_embed_dim = embed_dim // 16 * 6
    h_embed_dim = embed_dim // 16 * 6
    t_embed_dim = embed_dim // 16 * 4

    w_pos_embed = get_1d_sincos_pos_embed_from_grid(w_embed_dim, np.arange(w_size))
    h_pos_embed = get_1d_sincos_pos_embed_from_grid(h_embed_dim, np.arange(h_size))
    t_pos_embed = get_1d_sincos_pos_embed_from_grid(t_embed_dim, np.arange(t_size))

    w_pos_embed = np.tile(w_pos_embed, (t_size * h_size, 1))
    h_pos_embed = np.tile(np.repeat(h_pos_embed, w_size, axis=0), (t_size, 1))
    t_pos_embed = np.repeat(t_pos_embed, h_size * w_size, axis=0)

    pos_embed = np.concatenate((w_pos_embed, h_pos_embed, t_pos_embed), axis=1)

    if add_cls_token:
        pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
    """
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be even")

    omega = np.arange(embed_dim // 2, dtype=float)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


def _get_1d_sincos_embed_from_grid_torch(embed_dim: int, pos: torch.Tensor):
    """ This is the torch version of *get_1d_sincos_pos_embed_from_grid()*. However,
        it was modified to cast omega values to pos.dtype which must be float (and not int as in
        regular positional embeddings). This was required in order to allow for native FSDP mixed
        precision support: modify omega to appropriate dtype (pos carries the correct float dtype),
        instead of manually forcing float32.

        embed_dim: output dimension for each position
        pos: a list of positions to be encoded: size (M,) - must be float dtype!
        out: (M, D)
    """
    assert embed_dim % 2 == 0
    assert pos.dtype in [torch.float32, torch.float16, torch.bfloat16]

    omega = torch.arange(embed_dim // 2, dtype=pos.dtype).to(pos.device)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = torch.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = torch.sin(out)  # (M, D/2)
    emb_cos = torch.cos(out)  # (M, D/2)

    emb = torch.cat([emb_sin, emb_cos], dim=1)  # (M, D)

    return emb


def _init_weights(module):
    """Initialize the weights"""
    if isinstance(module, nn.Linear):
        nn.init.xavier_uniform_(module.weight)
        if module.bias is not None:
            module.bias.data.zero_()
    elif isinstance(module, nn.LayerNorm):
        module.bias.data.zero_()
        module.weight.data.fill_(1.0)


class PatchEmbed(nn.Module):
    """3D version of timm.models.vision_transformer.PatchEmbed"""
    def __init__(
            self,
            input_size: Tuple[int, int, int] = (1, 224, 224),
            patch_size: Tuple[int, int, int] = (1, 16, 16),
            in_chans: int = 3,
            embed_dim: int = 768,
            norm_layer: nn.Module | None = None,
            flatten: bool = True,
            bias: bool = True,
    ):
        super().__init__()
        self.input_size = input_size
        self.patch_size = patch_size
        self.grid_size = [s // p for s, p in zip(self.input_size, self.patch_size)]
        self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
        self.flatten = flatten

        self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, T, H, W = x.shape

        if T / self.patch_size[0] % 1 or H / self.patch_size[1] % 1 or W / self.patch_size[2] % 1:
            logging.warning(f"Input {x.shape[-3:]} is not divisible by patch size {self.patch_size}."
                            f"The border will be ignored, add backbone_padding for pixel-wise tasks.")

        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # B,C,T,H,W -> B,C,L -> B,L,C
        x = self.norm(x)
        return x


class TemporalEncoder(nn.Module):
    def __init__(self, embed_dim: int, trainable_scale: bool = False):
        super().__init__()
        self.embed_dim = embed_dim
        self.year_embed_dim = embed_dim // 2
        self.julian_day_embed_dim = embed_dim - self.year_embed_dim

        # If trainable, initialize scale with small number
        if trainable_scale:
            self.scale = nn.Parameter(torch.full((1,), 0.1))
        else:
            self.register_buffer('scale', torch.ones(1))

    def forward(self, temporal_coords: torch.Tensor, tokens_per_frame: int | None = None):
        """
        temporal_coords: year and day-of-year info with shape (B, T, 2).
        tokens_per_frame: number of tokens for each frame in the sample. If provided, embeddings will be
            repeated over T dimension, and final shape is (B, T*tokens_per_frame, embed_dim).
        """
        shape = temporal_coords.shape[:2] + (-1,)  # B, T, -1

        year = _get_1d_sincos_embed_from_grid_torch(
            self.year_embed_dim, temporal_coords[:, :, 0].flatten()).reshape(shape)
        julian_day = _get_1d_sincos_embed_from_grid_torch(
            self.julian_day_embed_dim, temporal_coords[:, :, 1].flatten()).reshape(shape)

        embedding = self.scale * torch.cat([year, julian_day], dim=-1)

        if tokens_per_frame is not None:
            embedding = torch.repeat_interleave(embedding, tokens_per_frame, dim=1)

        return embedding  # B, T*tokens_per_frame, embed_dim


class LocationEncoder(nn.Module):
    def __init__(self, embed_dim: int, trainable_scale: bool = False):
        super().__init__()
        self.embed_dim = embed_dim
        self.lat_embed_dim = embed_dim // 2
        self.lon_embed_dim = embed_dim - self.lat_embed_dim

        # If trainable, initialize scale with small number
        if trainable_scale:
            self.scale = nn.Parameter(torch.full((1,), 0.1))
        else:
            self.register_buffer('scale', torch.ones(1))

    def forward(self, location_coords: torch.Tensor):
        """
        location_coords: lat and lon info with shape (B, 2).
        """
        shape = location_coords.shape[:1] + (1, -1)  # B, 1, -1

        lat = _get_1d_sincos_embed_from_grid_torch(
                self.lat_embed_dim, location_coords[:, 0].flatten()).reshape(shape)
        lon = _get_1d_sincos_embed_from_grid_torch(
                self.lon_embed_dim, location_coords[:, 1].flatten()).reshape(shape)

        embedding = self.scale * torch.cat([lat, lon], dim=-1)

        return embedding  # B, 1, embed_dim


class PrithviViT(nn.Module):
    """ Prithvi ViT Encoder"""
    def __init__(self,
                 img_size: int | Tuple[int, int] = 224,
                 patch_size: int | Tuple[int, int, int] = (1, 16, 16),
                 num_frames: int = 1,
                 in_chans: int = 3,
                 embed_dim: int = 1024,
                 depth: int = 24,
                 num_heads: int = 16,
                 mlp_ratio: float = 4.,
                 norm_layer: nn.Module = partial(torch.nn.LayerNorm, eps=1e-6),
                 coords_encoding: List[str] | None = None,
                 coords_scale_learn: bool = False,
                 encoder_only: bool = True,  # needed for timm
                 ** kwargs,
                ):
        super().__init__()

        self.feature_info = []
        self.encoder_only = encoder_only
        self.in_chans = in_chans
        self.num_frames = num_frames
        self.embed_dim = embed_dim
        self.img_size = to_2tuple(img_size)
        if isinstance(patch_size, int):
            patch_size = (1, patch_size, patch_size)

        # 3D patch embedding
        self.patch_embed = PatchEmbed(
            input_size=(num_frames,) + self.img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
        )

        # Optional temporal and location embedding
        coords_encoding = coords_encoding or []
        self.temporal_encoding = 'time' in coords_encoding
        self.location_encoding = 'location' in coords_encoding
        if self.temporal_encoding:
            assert patch_size[0] == 1, f"With temporal encoding, patch_size[0] must be 1, received {patch_size[0]}"
            self.temporal_embed_enc = TemporalEncoder(embed_dim, coords_scale_learn)
        if self.location_encoding:
            self.location_embed_enc = LocationEncoder(embed_dim, coords_scale_learn)

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.register_buffer("pos_embed", torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim))

        # Transformer layers
        self.blocks = []
        for i in range(depth):
            self.blocks.append(Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer))
            self.feature_info.append(
                {"num_chs": embed_dim * self.patch_embed.patch_size[0], "reduction": 1, "module": f"blocks.{i}"}
            )
        self.blocks = nn.ModuleList(self.blocks)

        self.norm = norm_layer(embed_dim)

        self.initialize_weights()

    def initialize_weights(self):
        # initialize (and freeze) position embeddings by sin-cos embedding
        pos_embed = get_3d_sincos_pos_embed(
            self.pos_embed.shape[-1], self.patch_embed.grid_size, add_cls_token=True
        )
        self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

        # initialize patch_embeddings like nn.Linear (instead of nn.Conv2d)
        w = self.patch_embed.proj.weight.data
        torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

        # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
        torch.nn.init.normal_(self.cls_token, std=0.02)
        self.apply(_init_weights)

    def random_masking(self, sequence, mask_ratio, noise=None):
        """
        Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random
        noise.

        Args:
            sequence (`torch.FloatTensor` of shape `(batch_size, sequence_length, dim)`)
            mask_ratio (float): mask ratio to use.
            noise (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*) which is
                mainly used for testing purposes to control randomness and maintain the reproducibility
        """
        batch_size, seq_length, dim = sequence.shape
        len_keep = int(seq_length * (1 - mask_ratio))

        if noise is None:
            noise = torch.rand(batch_size, seq_length, device=sequence.device)  # noise in [0, 1]

        # sort noise for each sample
        ids_shuffle = torch.argsort(noise, dim=1).to(sequence.device)  # ascend: small is keep, large is remove
        ids_restore = torch.argsort(ids_shuffle, dim=1).to(sequence.device)

        # keep the first subset
        ids_keep = ids_shuffle[:, :len_keep]
        sequence_unmasked = torch.gather(sequence, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, dim))

        # generate the binary mask: 0 is keep, 1 is remove
        mask = torch.ones([batch_size, seq_length], device=sequence.device)
        mask[:, :len_keep] = 0
        # unshuffle to get the binary mask
        mask = torch.gather(mask, dim=1, index=ids_restore)

        return sequence_unmasked, mask, ids_restore

    def _get_pos_embed(self, x):
        t, h, w = x.shape[-3:]

        pos_embed = torch.from_numpy(get_3d_sincos_pos_embed(
            self.embed_dim,
            (
                t // self.patch_embed.patch_size[0],
                h // self.patch_embed.patch_size[1],
                w // self.patch_embed.patch_size[2],
            ),
            add_cls_token=True,
        )).float().unsqueeze(0).to(x)

        return pos_embed


    def forward(
        self, x: torch.Tensor,
        temporal_coords: None | torch.Tensor = None,
        location_coords: None | torch.Tensor = None,
        mask_ratio=0.75
    ):
        if x.shape[-3:] != self.patch_embed.input_size:
            # changed input size
            pos_embed = self._get_pos_embed(x)
        else:
            pos_embed = self.pos_embed

        # embed patches
        x = self.patch_embed(x)

        # add pos embed w/o cls token
        x = x + pos_embed[:, 1:, :]

        if self.temporal_encoding:
            num_tokens_per_frame = x.shape[1] // self.num_frames
            temporal_encoding = self.temporal_embed_enc(temporal_coords, num_tokens_per_frame)
            x = x + temporal_encoding
        if self.location_encoding:
            location_encoding = self.location_embed_enc(location_coords)
            x = x + location_encoding

        # masking: length -> length * mask_ratio
        x, mask, ids_restore = self.random_masking(x, mask_ratio)

        # append cls token
        cls_token = self.cls_token + pos_embed[:, :1, :]
        cls_tokens = cls_token.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # apply Transformer blocks
        for block in self.blocks:
            x = block(x)
        x = self.norm(x)

        return x, mask, ids_restore

    def forward_features(
        self,
        x: torch.Tensor,
        temporal_coords: None | torch.Tensor = None,
        location_coords: None | torch.Tensor = None,
    ) -> list[torch.Tensor]:
        if len(x.shape) == 4 and self.patch_embed.input_size[0] == 1:
            # add time dim
            x = x.unsqueeze(2)

        if x.shape[-3:] != self.patch_embed.input_size:
            pos_embed = self._get_pos_embed(x)
        else:
            pos_embed = self.pos_embed

        # embed patches
        x = self.patch_embed(x)

        # add pos embed w/o cls token
        x = x + pos_embed[:, 1:, :]

        if self.temporal_encoding:
            num_tokens_per_frame = x.shape[1] // self.patch_embed.num_frames
            temporal_encoding = self.temporal_embed_enc(temporal_coords, num_tokens_per_frame)
            x = x + temporal_encoding
        if self.location_encoding:
            location_encoding = self.location_embed_enc(location_coords)
            x = x + location_encoding

        # append cls token
        cls_token = self.cls_token + pos_embed[:, :1, :]
        cls_tokens = cls_token.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # apply Transformer blocks
        out = []
        for block in self.blocks:
            x = block(x)
            out.append(x.clone())

        x = self.norm(x)
        out[-1] = x
        return out

    def prepare_features_for_image_model(self, features: list[torch.Tensor]) -> list[torch.Tensor]:
        out = []
        effective_time_dim = self.patch_embed.input_size[0] // self.patch_embed.patch_size[0]
        for x in features:
            x_no_token = x[:, 1:, :]
            number_of_tokens = x_no_token.shape[1]
            tokens_per_timestep = number_of_tokens // effective_time_dim
            h = int(np.sqrt(tokens_per_timestep))
            encoded = rearrange(
                x_no_token,
                "batch (t h w) e -> batch (t e) h w",
                e=self.embed_dim,
                t=effective_time_dim,
                h=h,
            )
            out.append(encoded)
        return out


class MAEDecoder(nn.Module):
    """ Transformer Decoder used in the Prithvi MAE"""
    def __init__(self,
                 patch_size: int | Tuple[int, int, int] = (1, 16, 16),
                 grid_size: List[int] | Tuple[int, int, int] = (3, 14, 14),
                 in_chans: int = 3,
                 encoder_embed_dim: int = 1024,
                 decoder_embed_dim: int = 512,
                 depth: int = 8,
                 num_heads: int = 16,
                 mlp_ratio: float = 4.,
                 norm_layer: nn.Module = nn.LayerNorm,
                 coords_encoding: List[str] | None = None,
                 coords_scale_learn: bool = False,
                 ):
        super().__init__()

        self.decoder_embed = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=True)
        self.decoder_embed_dim = decoder_embed_dim
        self.grid_size = grid_size
        if isinstance(patch_size, int):
            patch_size = (1, patch_size, patch_size)
        self.patch_size = patch_size
        self.num_frames = self.grid_size[0] * patch_size[0]
        num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]

        # Optional temporal and location embedding
        coords_encoding = coords_encoding or []
        self.temporal_encoding = 'time' in coords_encoding
        self.location_encoding = 'location' in coords_encoding
        if self.temporal_encoding:
            self.temporal_embed_dec = TemporalEncoder(decoder_embed_dim, coords_scale_learn)
        if self.location_encoding:
            self.location_embed_dec = LocationEncoder(decoder_embed_dim, coords_scale_learn)

        self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))

        self.register_buffer("decoder_pos_embed", torch.zeros(1, num_patches + 1, decoder_embed_dim))

        self.decoder_blocks = nn.ModuleList(
            [Block(decoder_embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer) for _ in range(depth)]
        )

        self.decoder_norm = norm_layer(decoder_embed_dim)
        self.decoder_pred = nn.Linear(decoder_embed_dim,
                                      patch_size[0] * patch_size[1] * patch_size[2] * in_chans,
                                      bias=True)

        self.initialize_weights()

    def initialize_weights(self):
        # initialize (and freeze) position embeddings by sin-cos embedding
        decoder_pos_embed = get_3d_sincos_pos_embed(
            self.decoder_pos_embed.shape[-1], self.grid_size, add_cls_token=True
        )
        self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))

        # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
        torch.nn.init.normal_(self.mask_token, std=0.02)
        self.apply(_init_weights)

    def forward(
        self,
        hidden_states: torch.Tensor,
        ids_restore: torch.Tensor,
        temporal_coords: None | torch.Tensor = None,
        location_coords: None | torch.Tensor = None,
        input_size: list[int] = None,
    ):
        # embed tokens
        x = self.decoder_embed(hidden_states)

        t, h, w = input_size[-3:]
        decoder_pos_embed = torch.from_numpy(
            get_3d_sincos_pos_embed(
                self.decoder_embed_dim,
                (
                    t // self.patch_size[0],
                    h // self.patch_size[1],
                    w // self.patch_size[2],
                ),
                add_cls_token=True,
            )
        ).to(x)

        # append mask tokens to sequence
        mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1)
        x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1)  # no cls token
        # unshuffle
        x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]).to(x_.device))
        x = torch.cat([x[:, :1, :], x_], dim=1)  # append cls token
        # add pos embed
        x = x + decoder_pos_embed

        # remove cls token
        x_ = x[:, 1:, :]

        if self.temporal_encoding:
            num_tokens_per_frame = x_.shape[1] // self.num_frames
            temporal_encoding = self.temporal_embed_dec(temporal_coords, num_tokens_per_frame)
            # Add temporal encoding w/o cls token
            x_ = x_ + temporal_encoding
        if self.location_encoding:
            location_encoding = self.location_embed_dec(location_coords)
            # Add location encoding w/o cls token
            x_ = x_ + location_encoding

        # append cls token
        x = torch.cat([x[:, :1, :], x_], dim=1)

        # apply Transformer layers (blocks)
        for block in self.decoder_blocks:
            x = block(x)
        x = self.decoder_norm(x)

        # predictor projection
        pred = self.decoder_pred(x)

        # remove cls token
        pred = pred[:, 1:, :]

        return pred


class PrithviMAE(nn.Module):
    """ Prithvi Masked Autoencoder"""

    def __init__(self,
                 img_size: int | Tuple[int, int] = 224,
                 patch_size: int | Tuple[int, int, int] = (1, 16, 16),
                 num_frames: int = 3,
                 in_chans: int = 3,
                 embed_dim: int = 1024,
                 depth: int = 24,
                 num_heads: int = 16,
                 decoder_embed_dim: int = 512,
                 decoder_depth: int = 8,
                 decoder_num_heads: int = 16,
                 mlp_ratio: float = 4.,
                 norm_layer: nn.Module = partial(torch.nn.LayerNorm, eps=1e-6),
                 norm_pix_loss: bool = False,
                 coords_encoding: List[str] | None = None,
                 coords_scale_learn: bool = False,
                 encoder_only: bool = False,
                 **kwargs,
                 ):
        super().__init__()

        self.encoder = PrithviViT(
            img_size=img_size,
            num_frames=num_frames,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            depth=depth,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio,
            norm_layer=norm_layer,
            coords_encoding=coords_encoding,
            coords_scale_learn=coords_scale_learn,
        )

        self.encoder_only = encoder_only

        if not encoder_only:
            self.decoder = MAEDecoder(
                patch_size=patch_size,
                grid_size=self.encoder.patch_embed.grid_size,
                in_chans=in_chans,
                encoder_embed_dim=embed_dim,
                decoder_embed_dim=decoder_embed_dim,
                depth=decoder_depth,
                num_heads=decoder_num_heads,
                mlp_ratio=mlp_ratio,
                norm_layer=norm_layer,
                coords_encoding=coords_encoding,
                coords_scale_learn=coords_scale_learn,
            )
        else:
            self.decoder = nn.Identity()

        self.norm_pix_loss = norm_pix_loss

    def patchify(self, pixel_values):
        """
        Args:
            pixel_values (torch.FloatTensor of shape `(batch_size, num_channels, time, height, width)`):
                Pixel values.

        Returns:
            torch.FloatTensor of shape `(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
                Patchified pixel values.
        """
        patch_size_t, patch_size_h, patch_size_w = self.encoder.patch_embed.patch_size
        num_channels = self.encoder.in_chans

        # patchify
        patchified_pixel_values = rearrange(pixel_values, 'b c (t s) (h p) (w q) -> b (t h w) (s p q c)',
                                            c=num_channels, s=patch_size_t, p=patch_size_h, q=patch_size_w)


        return patchified_pixel_values

    def unpatchify(self, patchified_pixel_values, image_size: Tuple[int, int] | None = None):
        """
        Args:
            patchified_pixel_values (`torch.FloatTensor` of shape
                `(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
                Patchified pixel values.
            image_size (`Tuple[int, int]`, *optional*):
                Original image size.

        Returns:
            `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`:
                Pixel values.
        """
        patch_size_t, patch_size_h, patch_size_w = self.encoder.patch_embed.patch_size
        image_size = to_2tuple(image_size) if image_size is not None else self.encoder.img_size
        original_height, original_width = image_size
        num_patches_h = original_height // patch_size_h
        num_patches_w = original_width // patch_size_w
        num_channels = self.encoder.in_chans

        pixel_values = rearrange(patchified_pixel_values, 'b (t h w) (s p q c) -> b c (t s) (h p) (w q)',
                                 c=num_channels, h=num_patches_h, w=num_patches_w,
                                 s=patch_size_t, p=patch_size_h, q=patch_size_w)
        return pixel_values

    def forward_loss(self, pixel_values, pred, mask):
        """
        Args:
            pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, time, height, width)`):
                Pixel values.
            pred (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
                Predicted pixel values.
            mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
                Tensor indicating which patches are masked (1) and which are not (0).

        Returns:
            `torch.FloatTensor`: Pixel reconstruction loss.
        """
        target = self.patchify(pixel_values)
        if self.norm_pix_loss:
            mean = target.mean(dim=-1, keepdim=True)
            var = target.var(dim=-1, keepdim=True)
            target = (target - mean) / (var + 1.0e-6) ** 0.5

        loss = (pred - target) ** 2
        loss = loss.mean(dim=-1)  # [N, L], mean loss per patch
        loss = (loss * mask).sum() / mask.sum()  # mean loss on removed patches
        return loss

    def forward(
        self,
        pixel_values: torch.Tensor,
        temporal_coords: None | torch.Tensor = None,
        location_coords: None | torch.Tensor = None,
        mask_ratio: float = 0.75
    ):
        if len(pixel_values.shape) == 4 and self.encoder.patch_embed.input_size[0] == 1:
            # add time dim
            pixel_values = pixel_values.unsqueeze(2)

        latent, mask, ids_restore = self.encoder(pixel_values, temporal_coords, location_coords, mask_ratio)
        pred = self.decoder(latent, ids_restore, temporal_coords, location_coords, input_size=pixel_values.shape)
        loss = self.forward_loss(pixel_values, pred, mask)
        return loss, pred, mask

    def forward_features(
        self,
        x: torch.Tensor,
        temporal_coords: None | torch.Tensor = None,
        location_coords: None | torch.Tensor = None,
    ) -> List[torch.Tensor]:
        return self.encoder.forward_features(x, temporal_coords, location_coords)