ighoshsubho commited on
Commit
69ba9c7
·
verified ·
1 Parent(s): a353678

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +134 -190
README.md CHANGED
@@ -6,202 +6,146 @@ tags:
6
  - flux
7
  - text-to-image
8
  - grpo
 
 
 
 
 
 
 
9
  ---
10
 
11
- # Model Card for Model ID
12
 
13
- <!-- Provide a quick summary of what the model is/does. -->
14
 
 
15
 
 
16
 
17
- ## Model Details
18
-
19
- ### Model Description
20
-
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
-
24
-
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
-
33
- ### Model Sources [optional]
34
-
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
-
41
- ## Uses
42
-
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
- ### Direct Use
46
-
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
-
51
- ### Downstream Use [optional]
52
-
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
-
55
- [More Information Needed]
56
-
57
- ### Out-of-Scope Use
58
-
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
-
63
- ## Bias, Risks, and Limitations
64
-
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
68
-
69
- ### Recommendations
70
-
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
-
75
- ## How to Get Started with the Model
76
-
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
 
81
  ## Training Details
82
 
83
- ### Training Data
84
-
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
-
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
-
102
- #### Speeds, Sizes, Times [optional]
103
-
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
-
146
- ## Environmental Impact
147
-
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
-
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
-
174
- [More Information Needed]
175
-
176
- ## Citation [optional]
177
-
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
-
180
- **BibTeX:**
181
-
182
- [More Information Needed]
183
-
184
- **APA:**
185
-
186
- [More Information Needed]
187
-
188
- ## Glossary [optional]
189
-
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
-
192
- [More Information Needed]
193
-
194
- ## More Information [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Authors [optional]
199
-
200
- [More Information Needed]
201
-
202
- ## Model Card Contact
203
-
204
- [More Information Needed]
205
- ### Framework versions
206
-
207
- - PEFT 0.10.0
 
6
  - flux
7
  - text-to-image
8
  - grpo
9
+ - reinforcement-learning
10
+ - flow-matching
11
+ - pickscore
12
+ license: apache-2.0
13
+ language:
14
+ - en
15
+ pipeline_tag: text-to-image
16
  ---
17
 
18
+ # FLUX.1-dev LoRA Fine-tuned with Flow-GRPO
19
 
20
+ This LoRA (Low-Rank Adaptation) model is a fine-tuned version of [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) using **Flow-GRPO** (Flow-based Group Relative Policy Optimization), a novel reinforcement learning technique for flow matching models.
21
 
22
+ ## Model Description
23
 
24
+ This model was trained using the Flow-GRPO methodology described in the paper ["Flow-GRPO: Training Flow Matching Models via Online RL"](https://arxiv.org/abs/2505.05470). Flow-GRPO integrates online reinforcement learning into flow matching models by:
25
 
26
+ 1. **ODE-to-SDE conversion**: Transforms deterministic flow matching into stochastic sampling for RL exploration
27
+ 2. **Denoising reduction**: Uses fewer denoising steps during training while maintaining full quality at inference
28
+ 3. **Human preference optimization**: Trained with PickScore reward to align with human preferences
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ## Training Details
31
 
32
+ ### Core Configuration
33
+ - **Base Model**: FLUX.1-dev
34
+ - **Training Method**: Flow-GRPO with PickScore reward
35
+ - **Resolution**: 512×512
36
+ - **Mixed Precision**: bfloat16
37
+ - **Seed**: 42
38
+
39
+ ### LoRA Configuration
40
+ - **LoRA Enabled**: True
41
+ - **Rank**: Not specified in config (typically 32-64)
42
+ - **Target Modules**: Transformer layers
43
+
44
+ ### Training Hyperparameters
45
+ - **Learning Rate**: 5e-5
46
+ - **Batch Size**: 1 (with gradient accumulation: 32 steps)
47
+ - **Optimizer**: 8-bit AdamW
48
+ - β₁: 0.9
49
+ - β₂: 0.999
50
+ - Weight Decay: 1e-4
51
+ - Epsilon: 1e-8
52
+ - **Gradient Clipping**: Max norm 1.0
53
+ - **Max Epochs**: 100,000
54
+ - **Save Frequency**: Every 100 steps
55
+
56
+ ### Flow-GRPO Specific
57
+ - **Reward Function**: PickScore (human preference)
58
+ - **Beta (KL penalty)**: 0.001
59
+ - **Clip Range**: 0.2
60
+ - **Advantage Clipping**: Max 5.0
61
+ - **Timestep Fraction**: 0.2
62
+ - **Guidance Scale**: 3.5
63
+
64
+ ### Sampling Configuration
65
+ - **Training Steps**: 2 (denoising reduction)
66
+ - **Evaluation Steps**: 4
67
+ - **Images per Prompt**: 4
68
+ - **Batches per Epoch**: 4
69
+
70
+ ## Usage
71
+
72
+ ### With Diffusers
73
+ ```python
74
+ import torch
75
+ from diffusers import FluxPipeline
76
+
77
+ # Load the base model
78
+ pipe = FluxPipeline.from_pretrained(
79
+ "black-forest-labs/FLUX.1-dev",
80
+ torch_dtype=torch.bfloat16,
81
+ device_map="auto"
82
+ )
83
+
84
+ # Load the LoRA weights
85
+ pipe.load_lora_weights("ighoshsubho/lora-grpo-flux-dev")
86
+
87
+ # Generate an image
88
+ prompt = "A serene landscape with mountains and a lake at sunset"
89
+ image = pipe(
90
+ prompt,
91
+ height=512,
92
+ width=512,
93
+ guidance_scale=3.5,
94
+ num_inference_steps=20,
95
+ max_sequence_length=256,
96
+ ).images[0]
97
+
98
+ image.save("generated_image.png")
99
+ ```
100
+
101
+ ### Adjusting LoRA Strength
102
+ ```python
103
+ # You can adjust the LoRA influence
104
+ pipe.set_adapters(["default"], adapter_weights=[0.8]) # 80% LoRA influence
105
+ ```
106
+
107
+ ## Training Data & Objectives
108
+
109
+ - **Dataset**: Custom PickScore dataset for human preference alignment
110
+ - **Prompt Function**: General OCR prompts
111
+ - **Optimization Target**: Maximizing PickScore while maintaining image quality
112
+ - **KL Regularization**: Prevents reward hacking and maintains model stability
113
+
114
+ ## Performance Improvements
115
+
116
+ This model demonstrates improvements in:
117
+ - **Human preference alignment** through PickScore optimization
118
+ - **Text rendering quality** via OCR-focused training
119
+ - **Compositional understanding** enhanced by Flow-GRPO's exploration mechanism
120
+ - **Stable training** with minimal reward hacking due to KL regularization
121
+
122
+ ## Technical Notes
123
+
124
+ - Uses **denoising reduction** during training (2 steps) for efficiency
125
+ - Maintains full quality with standard inference steps (20-50)
126
+ - Trained with **mixed precision** (bfloat16) for memory efficiency
127
+ - **8-bit AdamW** optimizer reduces memory footprint
128
+ - **Gradient accumulation** (32 steps) enables effective large batch training
129
+
130
+ ## Limitations
131
+
132
+ - Optimized for 512×512 resolution
133
+ - Focused on PickScore preferences (may not generalize to all aesthetic preferences)
134
+ - LoRA adaptation may have reduced capacity compared to full fine-tuning
135
+
136
+ ## Citation
137
+
138
+ If you use this model, please cite the Flow-GRPO paper:
139
+
140
+ ```bibtex
141
+ @article{liu2025flow,
142
+ title={Flow-GRPO: Training Flow Matching Models via Online RL},
143
+ author={Liu, Jie and Liu, Gongye and Liang, Jiajun and Li, Yangguang and Liu, Jiaheng and Wang, Xintao and Wan, Pengfei and Zhang, Di and Ouyang, Wanli},
144
+ journal={arXiv preprint arXiv:2505.05470},
145
+ year={2025}
146
+ }
147
+ ```
148
+
149
+ ## License
150
+
151
+ This model is released under the Apache 2.0 License, following the base FLUX.1-dev model license.