Update README.md
Browse files
README.md
CHANGED
@@ -6,202 +6,146 @@ tags:
|
|
6 |
- flux
|
7 |
- text-to-image
|
8 |
- grpo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
-
|
14 |
|
|
|
15 |
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
<!-- Provide a longer summary of what this model is. -->
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
- **Developed by:** [More Information Needed]
|
26 |
-
- **Funded by [optional]:** [More Information Needed]
|
27 |
-
- **Shared by [optional]:** [More Information Needed]
|
28 |
-
- **Model type:** [More Information Needed]
|
29 |
-
- **Language(s) (NLP):** [More Information Needed]
|
30 |
-
- **License:** [More Information Needed]
|
31 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
32 |
-
|
33 |
-
### Model Sources [optional]
|
34 |
-
|
35 |
-
<!-- Provide the basic links for the model. -->
|
36 |
-
|
37 |
-
- **Repository:** [More Information Needed]
|
38 |
-
- **Paper [optional]:** [More Information Needed]
|
39 |
-
- **Demo [optional]:** [More Information Needed]
|
40 |
-
|
41 |
-
## Uses
|
42 |
-
|
43 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
44 |
-
|
45 |
-
### Direct Use
|
46 |
-
|
47 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
48 |
-
|
49 |
-
[More Information Needed]
|
50 |
-
|
51 |
-
### Downstream Use [optional]
|
52 |
-
|
53 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
54 |
-
|
55 |
-
[More Information Needed]
|
56 |
-
|
57 |
-
### Out-of-Scope Use
|
58 |
-
|
59 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
60 |
-
|
61 |
-
[More Information Needed]
|
62 |
-
|
63 |
-
## Bias, Risks, and Limitations
|
64 |
-
|
65 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
66 |
-
|
67 |
-
[More Information Needed]
|
68 |
-
|
69 |
-
### Recommendations
|
70 |
-
|
71 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
72 |
-
|
73 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
74 |
-
|
75 |
-
## How to Get Started with the Model
|
76 |
-
|
77 |
-
Use the code below to get started with the model.
|
78 |
-
|
79 |
-
[More Information Needed]
|
80 |
|
81 |
## Training Details
|
82 |
|
83 |
-
###
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
##
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
[More Information Needed]
|
205 |
-
### Framework versions
|
206 |
-
|
207 |
-
- PEFT 0.10.0
|
|
|
6 |
- flux
|
7 |
- text-to-image
|
8 |
- grpo
|
9 |
+
- reinforcement-learning
|
10 |
+
- flow-matching
|
11 |
+
- pickscore
|
12 |
+
license: apache-2.0
|
13 |
+
language:
|
14 |
+
- en
|
15 |
+
pipeline_tag: text-to-image
|
16 |
---
|
17 |
|
18 |
+
# FLUX.1-dev LoRA Fine-tuned with Flow-GRPO
|
19 |
|
20 |
+
This LoRA (Low-Rank Adaptation) model is a fine-tuned version of [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) using **Flow-GRPO** (Flow-based Group Relative Policy Optimization), a novel reinforcement learning technique for flow matching models.
|
21 |
|
22 |
+
## Model Description
|
23 |
|
24 |
+
This model was trained using the Flow-GRPO methodology described in the paper ["Flow-GRPO: Training Flow Matching Models via Online RL"](https://arxiv.org/abs/2505.05470). Flow-GRPO integrates online reinforcement learning into flow matching models by:
|
25 |
|
26 |
+
1. **ODE-to-SDE conversion**: Transforms deterministic flow matching into stochastic sampling for RL exploration
|
27 |
+
2. **Denoising reduction**: Uses fewer denoising steps during training while maintaining full quality at inference
|
28 |
+
3. **Human preference optimization**: Trained with PickScore reward to align with human preferences
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## Training Details
|
31 |
|
32 |
+
### Core Configuration
|
33 |
+
- **Base Model**: FLUX.1-dev
|
34 |
+
- **Training Method**: Flow-GRPO with PickScore reward
|
35 |
+
- **Resolution**: 512×512
|
36 |
+
- **Mixed Precision**: bfloat16
|
37 |
+
- **Seed**: 42
|
38 |
+
|
39 |
+
### LoRA Configuration
|
40 |
+
- **LoRA Enabled**: True
|
41 |
+
- **Rank**: Not specified in config (typically 32-64)
|
42 |
+
- **Target Modules**: Transformer layers
|
43 |
+
|
44 |
+
### Training Hyperparameters
|
45 |
+
- **Learning Rate**: 5e-5
|
46 |
+
- **Batch Size**: 1 (with gradient accumulation: 32 steps)
|
47 |
+
- **Optimizer**: 8-bit AdamW
|
48 |
+
- β₁: 0.9
|
49 |
+
- β₂: 0.999
|
50 |
+
- Weight Decay: 1e-4
|
51 |
+
- Epsilon: 1e-8
|
52 |
+
- **Gradient Clipping**: Max norm 1.0
|
53 |
+
- **Max Epochs**: 100,000
|
54 |
+
- **Save Frequency**: Every 100 steps
|
55 |
+
|
56 |
+
### Flow-GRPO Specific
|
57 |
+
- **Reward Function**: PickScore (human preference)
|
58 |
+
- **Beta (KL penalty)**: 0.001
|
59 |
+
- **Clip Range**: 0.2
|
60 |
+
- **Advantage Clipping**: Max 5.0
|
61 |
+
- **Timestep Fraction**: 0.2
|
62 |
+
- **Guidance Scale**: 3.5
|
63 |
+
|
64 |
+
### Sampling Configuration
|
65 |
+
- **Training Steps**: 2 (denoising reduction)
|
66 |
+
- **Evaluation Steps**: 4
|
67 |
+
- **Images per Prompt**: 4
|
68 |
+
- **Batches per Epoch**: 4
|
69 |
+
|
70 |
+
## Usage
|
71 |
+
|
72 |
+
### With Diffusers
|
73 |
+
```python
|
74 |
+
import torch
|
75 |
+
from diffusers import FluxPipeline
|
76 |
+
|
77 |
+
# Load the base model
|
78 |
+
pipe = FluxPipeline.from_pretrained(
|
79 |
+
"black-forest-labs/FLUX.1-dev",
|
80 |
+
torch_dtype=torch.bfloat16,
|
81 |
+
device_map="auto"
|
82 |
+
)
|
83 |
+
|
84 |
+
# Load the LoRA weights
|
85 |
+
pipe.load_lora_weights("ighoshsubho/lora-grpo-flux-dev")
|
86 |
+
|
87 |
+
# Generate an image
|
88 |
+
prompt = "A serene landscape with mountains and a lake at sunset"
|
89 |
+
image = pipe(
|
90 |
+
prompt,
|
91 |
+
height=512,
|
92 |
+
width=512,
|
93 |
+
guidance_scale=3.5,
|
94 |
+
num_inference_steps=20,
|
95 |
+
max_sequence_length=256,
|
96 |
+
).images[0]
|
97 |
+
|
98 |
+
image.save("generated_image.png")
|
99 |
+
```
|
100 |
+
|
101 |
+
### Adjusting LoRA Strength
|
102 |
+
```python
|
103 |
+
# You can adjust the LoRA influence
|
104 |
+
pipe.set_adapters(["default"], adapter_weights=[0.8]) # 80% LoRA influence
|
105 |
+
```
|
106 |
+
|
107 |
+
## Training Data & Objectives
|
108 |
+
|
109 |
+
- **Dataset**: Custom PickScore dataset for human preference alignment
|
110 |
+
- **Prompt Function**: General OCR prompts
|
111 |
+
- **Optimization Target**: Maximizing PickScore while maintaining image quality
|
112 |
+
- **KL Regularization**: Prevents reward hacking and maintains model stability
|
113 |
+
|
114 |
+
## Performance Improvements
|
115 |
+
|
116 |
+
This model demonstrates improvements in:
|
117 |
+
- **Human preference alignment** through PickScore optimization
|
118 |
+
- **Text rendering quality** via OCR-focused training
|
119 |
+
- **Compositional understanding** enhanced by Flow-GRPO's exploration mechanism
|
120 |
+
- **Stable training** with minimal reward hacking due to KL regularization
|
121 |
+
|
122 |
+
## Technical Notes
|
123 |
+
|
124 |
+
- Uses **denoising reduction** during training (2 steps) for efficiency
|
125 |
+
- Maintains full quality with standard inference steps (20-50)
|
126 |
+
- Trained with **mixed precision** (bfloat16) for memory efficiency
|
127 |
+
- **8-bit AdamW** optimizer reduces memory footprint
|
128 |
+
- **Gradient accumulation** (32 steps) enables effective large batch training
|
129 |
+
|
130 |
+
## Limitations
|
131 |
+
|
132 |
+
- Optimized for 512×512 resolution
|
133 |
+
- Focused on PickScore preferences (may not generalize to all aesthetic preferences)
|
134 |
+
- LoRA adaptation may have reduced capacity compared to full fine-tuning
|
135 |
+
|
136 |
+
## Citation
|
137 |
+
|
138 |
+
If you use this model, please cite the Flow-GRPO paper:
|
139 |
+
|
140 |
+
```bibtex
|
141 |
+
@article{liu2025flow,
|
142 |
+
title={Flow-GRPO: Training Flow Matching Models via Online RL},
|
143 |
+
author={Liu, Jie and Liu, Gongye and Liang, Jiajun and Li, Yangguang and Liu, Jiaheng and Wang, Xintao and Wan, Pengfei and Zhang, Di and Ouyang, Wanli},
|
144 |
+
journal={arXiv preprint arXiv:2505.05470},
|
145 |
+
year={2025}
|
146 |
+
}
|
147 |
+
```
|
148 |
+
|
149 |
+
## License
|
150 |
+
|
151 |
+
This model is released under the Apache 2.0 License, following the base FLUX.1-dev model license.
|
|
|
|
|
|
|
|
|
|