ikiransuryavanshi commited on
Commit
fc47731
·
verified ·
1 Parent(s): dcf71c5

End of training

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-sa-4.0
4
+ base_model: microsoft/layoutlmv3-base
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-ap7_6_stitched_16_batch
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # layoutlmv3-ap7_6_stitched_16_batch
21
+
22
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.0400
25
+ - Precision: 1.0
26
+ - Recall: 0.6552
27
+ - F1: 0.7917
28
+ - Accuracy: 0.9958
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 1e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 16
50
+ - seed: 42
51
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_ratio: 0.1
54
+ - training_steps: 1000
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 0.5011 | 50.0 | 250 | 0.0575 | 0.2222 | 0.0690 | 0.1053 | 0.9888 |
62
+ | 0.0267 | 100.0 | 500 | 0.0423 | 0.6818 | 0.5172 | 0.5882 | 0.9942 |
63
+ | 0.0121 | 150.0 | 750 | 0.0404 | 0.7727 | 0.5862 | 0.6667 | 0.9952 |
64
+ | 0.0087 | 200.0 | 1000 | 0.0400 | 1.0 | 0.6552 | 0.7917 | 0.9958 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.49.0
70
+ - Pytorch 2.6.0+cu124
71
+ - Datasets 3.4.1
72
+ - Tokenizers 0.21.1