diff --git "a/README.md" "b/README.md"
new file mode 100644--- /dev/null
+++ "b/README.md"
@@ -0,0 +1,1874 @@
+---
+tags:
+- ColBERT
+- PyLate
+- sentence-transformers
+- sentence-similarity
+- feature-extraction
+- generated_from_trainer
+- dataset_size:640000
+- loss:Distillation
+base_model: Alibaba-NLP/gte-modernbert-base
+pipeline_tag: sentence-similarity
+library_name: PyLate
+metrics:
+- MaxSim_accuracy@1
+- MaxSim_accuracy@3
+- MaxSim_accuracy@5
+- MaxSim_accuracy@10
+- MaxSim_precision@1
+- MaxSim_precision@3
+- MaxSim_precision@5
+- MaxSim_precision@10
+- MaxSim_recall@1
+- MaxSim_recall@3
+- MaxSim_recall@5
+- MaxSim_recall@10
+- MaxSim_ndcg@10
+- MaxSim_mrr@10
+- MaxSim_map@100
+model-index:
+- name: PyLate model based on Alibaba-NLP/gte-modernbert-base
+ results:
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoClimateFEVER
+ type: NanoClimateFEVER
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.36
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.62
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.78
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.86
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.36
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.2333333333333333
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.20799999999999996
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.12799999999999997
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.18333333333333332
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.289
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.41566666666666663
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.49566666666666664
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.41477895139843374
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.526579365079365
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.33473812643311207
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoDBPedia
+ type: NanoDBPedia
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.88
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.94
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.96
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.98
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.88
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.7133333333333334
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.6560000000000001
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.572
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.11798996781634019
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.23074158968531658
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.2961618059276896
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.4145532152487909
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.7295518860528665
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.9168571428571428
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.5883869727264871
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoFEVER
+ type: NanoFEVER
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.92
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.98
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.98
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 1.0
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.92
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.35999999999999993
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.21599999999999994
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.10999999999999999
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.8566666666666667
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.96
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.96
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.98
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.9451911044041129
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.9522222222222223
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.9270501207729468
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoFiQA2018
+ type: NanoFiQA2018
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.56
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.66
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.74
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.8
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.56
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.32666666666666666
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.25599999999999995
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.15199999999999997
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.30924603174603177
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.47840476190476194
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.5751746031746031
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.6411984126984127
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.5669909336903424
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.6359444444444444
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.5031998196513616
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoHotpotQA
+ type: NanoHotpotQA
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.92
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 1.0
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 1.0
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 1.0
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.92
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.58
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.35999999999999993
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.18599999999999994
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.46
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.87
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.9
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.93
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.9011747095216048
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.96
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.8591508921772081
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoMSMARCO
+ type: NanoMSMARCO
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.54
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.68
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.74
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.92
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.54
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.22666666666666666
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.14800000000000002
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.092
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.54
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.68
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.74
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.92
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.7088869908160952
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.6446507936507936
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.6496349206349206
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoNFCorpus
+ type: NanoNFCorpus
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.56
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.68
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.74
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.76
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.56
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.43333333333333335
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.39199999999999996
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.304
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.06640185752724687
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.10198877096622012
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.12839743828750172
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.15658989769166
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.3957047406068243
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.627
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.1917924344366858
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoNQ
+ type: NanoNQ
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.64
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.82
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.86
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.9
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.64
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.2866666666666666
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.17999999999999997
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.1
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.61
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.78
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.82
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.88
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.7645227466201794
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.7390000000000001
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.7239323294755705
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoQuoraRetrieval
+ type: NanoQuoraRetrieval
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.96
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 1.0
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 1.0
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 1.0
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.96
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.4
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.25599999999999995
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.13399999999999998
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.8473333333333334
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.9453333333333334
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.9693333333333334
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.9893333333333334
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.9691448095973965
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.9766666666666667
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.9551871794871795
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoSCIDOCS
+ type: NanoSCIDOCS
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.48
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.74
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.78
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.84
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.48
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.3999999999999999
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.292
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.19399999999999995
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.10066666666666667
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.24666666666666665
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.29966666666666664
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.39666666666666667
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.3986767701602276
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.6137222222222222
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.3163385555719993
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoArguAna
+ type: NanoArguAna
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.3
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.62
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.7
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.82
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.3
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.20666666666666667
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.14
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.08199999999999999
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.3
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.62
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.7
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.82
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.5609089627577635
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.4774603174603175
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.4824361431413148
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoSciFact
+ type: NanoSciFact
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.74
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.86
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.9
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.94
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.74
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.3
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.19599999999999995
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.10399999999999998
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.715
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.83
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.885
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.93
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.8371556505161787
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.8116666666666668
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.8048798701298702
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoTouche2020
+ type: NanoTouche2020
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.7755102040816326
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.9387755102040817
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.9795918367346939
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.9795918367346939
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.7755102040816326
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.6598639455782314
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.6571428571428573
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.5183673469387755
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.05176652252904378
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.13618168510556633
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.2193408037582337
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.33397423594107617
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.5926586898856947
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.8629251700680272
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.42574993112112997
+ name: Maxsim Map@100
+ - task:
+ type: nano-beir
+ name: Nano BEIR
+ dataset:
+ name: NanoBEIR mean
+ type: NanoBEIR_mean
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.6642700156985872
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.8106750392464678
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.8584301412872841
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.9076609105180532
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.6642700156985872
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.39434850863422294
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.3043956043956044
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.20587441130298273
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.3968003368937432
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.5514089852047589
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.6083647167549766
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.6836909560189698
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.6757959189252093
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.7495919239490669
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.5971136381353681
+ name: Maxsim Map@100
+---
+
+# PyLate model based on Alibaba-NLP/gte-modernbert-base
+
+This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the train dataset. It maps sentences & paragraphs to a 128-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
+
+## Model Details
+
+### Model Description
+- **Model Type:** Sentence Transformer
+- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base)
+- **Maximum Sequence Length:** tokens
+- **Output Dimensionality:** 128 dimensions
+- **Similarity Function:** MaxSim
+- **Training Dataset:**
+ - train
+
+
+
+### Model Sources
+
+- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
+- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
+- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
+
+### Full Model Architecture
+
+```
+ColBERT(
+ (0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: ModernBertModel
+ (1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
+)
+```
+
+## Usage
+
+### Direct Usage (Sentence Transformers)
+
+First install the Sentence Transformers library:
+
+```bash
+pip install -U sentence-transformers
+```
+
+Then you can load this model and run inference.
+```python
+from sentence_transformers import SentenceTransformer
+
+# Download from the 🤗 Hub
+model = SentenceTransformer("sentence_transformers_model_id")
+# Run inference
+sentences = [
+ 'The weather is lovely today.',
+ "It's so sunny outside!",
+ 'He drove to the stadium.',
+]
+embeddings = model.encode(sentences)
+print(embeddings.shape)
+# [3, 128]
+
+# Get the similarity scores for the embeddings
+similarities = model.similarity(embeddings, embeddings)
+print(similarities.shape)
+# [3, 3]
+```
+
+
+
+
+
+
+
+## Evaluation
+
+### Metrics
+
+#### Py Late Information Retrieval
+
+* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
+* Evaluated with pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
+
+| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
+|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
+| MaxSim_accuracy@1 | 0.36 | 0.88 | 0.92 | 0.56 | 0.92 | 0.54 | 0.56 | 0.64 | 0.96 | 0.48 | 0.3 | 0.74 | 0.7755 |
+| MaxSim_accuracy@3 | 0.62 | 0.94 | 0.98 | 0.66 | 1.0 | 0.68 | 0.68 | 0.82 | 1.0 | 0.74 | 0.62 | 0.86 | 0.9388 |
+| MaxSim_accuracy@5 | 0.78 | 0.96 | 0.98 | 0.74 | 1.0 | 0.74 | 0.74 | 0.86 | 1.0 | 0.78 | 0.7 | 0.9 | 0.9796 |
+| MaxSim_accuracy@10 | 0.86 | 0.98 | 1.0 | 0.8 | 1.0 | 0.92 | 0.76 | 0.9 | 1.0 | 0.84 | 0.82 | 0.94 | 0.9796 |
+| MaxSim_precision@1 | 0.36 | 0.88 | 0.92 | 0.56 | 0.92 | 0.54 | 0.56 | 0.64 | 0.96 | 0.48 | 0.3 | 0.74 | 0.7755 |
+| MaxSim_precision@3 | 0.2333 | 0.7133 | 0.36 | 0.3267 | 0.58 | 0.2267 | 0.4333 | 0.2867 | 0.4 | 0.4 | 0.2067 | 0.3 | 0.6599 |
+| MaxSim_precision@5 | 0.208 | 0.656 | 0.216 | 0.256 | 0.36 | 0.148 | 0.392 | 0.18 | 0.256 | 0.292 | 0.14 | 0.196 | 0.6571 |
+| MaxSim_precision@10 | 0.128 | 0.572 | 0.11 | 0.152 | 0.186 | 0.092 | 0.304 | 0.1 | 0.134 | 0.194 | 0.082 | 0.104 | 0.5184 |
+| MaxSim_recall@1 | 0.1833 | 0.118 | 0.8567 | 0.3092 | 0.46 | 0.54 | 0.0664 | 0.61 | 0.8473 | 0.1007 | 0.3 | 0.715 | 0.0518 |
+| MaxSim_recall@3 | 0.289 | 0.2307 | 0.96 | 0.4784 | 0.87 | 0.68 | 0.102 | 0.78 | 0.9453 | 0.2467 | 0.62 | 0.83 | 0.1362 |
+| MaxSim_recall@5 | 0.4157 | 0.2962 | 0.96 | 0.5752 | 0.9 | 0.74 | 0.1284 | 0.82 | 0.9693 | 0.2997 | 0.7 | 0.885 | 0.2193 |
+| MaxSim_recall@10 | 0.4957 | 0.4146 | 0.98 | 0.6412 | 0.93 | 0.92 | 0.1566 | 0.88 | 0.9893 | 0.3967 | 0.82 | 0.93 | 0.334 |
+| **MaxSim_ndcg@10** | **0.4148** | **0.7296** | **0.9452** | **0.567** | **0.9012** | **0.7089** | **0.3957** | **0.7645** | **0.9691** | **0.3987** | **0.5609** | **0.8372** | **0.5927** |
+| MaxSim_mrr@10 | 0.5266 | 0.9169 | 0.9522 | 0.6359 | 0.96 | 0.6447 | 0.627 | 0.739 | 0.9767 | 0.6137 | 0.4775 | 0.8117 | 0.8629 |
+| MaxSim_map@100 | 0.3347 | 0.5884 | 0.9271 | 0.5032 | 0.8592 | 0.6496 | 0.1918 | 0.7239 | 0.9552 | 0.3163 | 0.4824 | 0.8049 | 0.4257 |
+
+#### Nano BEIR
+
+* Dataset: `NanoBEIR_mean`
+* Evaluated with pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator
+
+| Metric | Value |
+|:--------------------|:-----------|
+| MaxSim_accuracy@1 | 0.6643 |
+| MaxSim_accuracy@3 | 0.8107 |
+| MaxSim_accuracy@5 | 0.8584 |
+| MaxSim_accuracy@10 | 0.9077 |
+| MaxSim_precision@1 | 0.6643 |
+| MaxSim_precision@3 | 0.3943 |
+| MaxSim_precision@5 | 0.3044 |
+| MaxSim_precision@10 | 0.2059 |
+| MaxSim_recall@1 | 0.3968 |
+| MaxSim_recall@3 | 0.5514 |
+| MaxSim_recall@5 | 0.6084 |
+| MaxSim_recall@10 | 0.6837 |
+| **MaxSim_ndcg@10** | **0.6758** |
+| MaxSim_mrr@10 | 0.7496 |
+| MaxSim_map@100 | 0.5971 |
+
+
+
+
+
+## Training Details
+
+### Training Dataset
+
+#### train
+
+* Dataset: train
+* Size: 640,000 training samples
+* Columns: query_id
, document_ids
, and scores
+* Approximate statistics based on the first 1000 samples:
+ | | query_id | document_ids | scores |
+ |:--------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------|:------------------------------------|
+ | type | int | list | list |
+ | details |
685613
| [7546874, 1176459, 197677, 2306318, 8541504, ...]
| [0.9999999992804947, 0.24845418756716053, 0.7594154013647826, 0.26644182105618575, 0.390668914839766, ...]
|
+ | 237784
| [6366584, 4034101, 2325374, 6914618, 6042146, ...]
| [0.9999999991784339, 0.42233632827946693, 0.5956354295491569, 0.12644415907455164, 0.6636713730105909, ...]
|
+ | 904294
| [448408, 8743975, 49600, 7339401, 2714261, ...]
| [0.9999999991841937, 0.877629062381539, 0.8330146583389045, 0.3116634796692611, 0.4633524534142185, ...]
|
+* Loss: pylate.losses.distillation.Distillation
+
+### Training Hyperparameters
+#### Non-Default Hyperparameters
+
+- `eval_strategy`: steps
+- `per_device_train_batch_size`: 16
+- `learning_rate`: 3e-05
+- `bf16`: True
+
+#### All Hyperparameters
+