--- datasets: - maydogan/Turkish_SentimentAnalysis_TRSAv1 language: - tr metrics: - accuracy - precision - recall - f1 base_model: - dbmdz/bert-base-turkish-128k-cased pipeline_tag: text-classification tags: - Turkish Sentiment Analysis --- # 🇹🇷 BERTurk for Turkish Sentiment Analysis This model is a fine-tuned version of [BERTurk 128k](https://huggingface.co/dbmdz/bert-base-turkish-128k-cased) on the [TRSAv1 dataset](https://huggingface.co/maydogan/Turkish_SentimentAnalysis_TRSAv1), a labeled collection of Turkish e-commerce reviews categorized into positive, neutral, and negative sentiments. For more details about the dataset, methodology, and experiments, you can refer to the corresponding [research paper](https://dergipark.org.tr/en/pub/ejt/issue/92270/1592448). --- ## How to Use You can use the model directly with 🤗 Transformers: ```python from transformers import pipeline classifier = pipeline("text-classification", model="incidelen/bert-base-turkish-sentiment-analysis-128k-cased") result = classifier("Ürün çok kaliteli, paketleme harikaydı. Kesinlikle tavsiye ederim!") print(result) ``` --- ## Citation If you use this model in your research or application, please cite the following paper: ``` @article{incidelen15sentiment, title={Sentiment Analysis in Turkish Using Language Models: A Comparative Study}, author={{\.I}ncidelen, Mert and Aydo{\u{g}}an, Murat}, journal={European Journal of Technique (EJT)}, volume={15}, number={1}, pages={68--74}, publisher={Hibetullah KILI{\c{C}}} } ``` --- ## Dataset Overview The [TRSAv1 dataset](https://huggingface.co/maydogan/Turkish_SentimentAnalysis_TRSAv1) includes 150,000 Turkish product reviews from e-commerce platforms. It is balanced across three sentiment classes: | Sentiment | Count | |--------------|-----------------------| | Negative | 50,000 | | Neutral | 50,000 | | Positive | 50,000 | | TOTAL | 150,000 | --- ## Evaluation Results ### Overall Performance | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) | |-----------------|------------------|-----------------|-------------------| | 83.68 | 83.69 | 83.68 | 83.66 | ### Class-wise Performance | Sentiment | Precision (%) | Recall (%) | F1 Score (%) | |-----------------|------------------|-----------------|-------------------| | Negative | 88.35 | 85.20 | 86.74 | | Neutral | 77.01 | 76.45 | 76.73 | | Positive | 85.70 | 89.38 | 87.50 | --- ## Acknowledgments Special thanks to [maydogan](https://huggingface.co/maydogan) for their contributions and support. ---