--- license: mit language: - zh - en base_model: - inclusionAI/Ling-lite pipeline_tag: text-generation --- # Ring-lite-distill-preview

🤗 Hugging Face

## Introduction Ring-lite-distill-preview is an MoE LLM provided and open-sourced by InclusionAI, which has 16.8B parameters with 2.75B activated parameters. It was fine-tuned from [Ling-lite](https://modelscope.cn/models/inclusionAI/Ling-lite) using extensive reasoning-focused instruction data. This model delivers performance comparable to DeepSeek-R1-Distill-Qwen-7B on reasoning benchmarks while achieving better results on general benchmarks, especially superior performance on function-calling evaluation benchmarks (e.g., TEval, BFCl_v2) and instruction-following benchmarks (e.g., IFEval). This demonstrates that Ring-lite-distill is a more balanced and versatile model. Additionaly, it maintains competitive latency and throughput compared to other reasoning LLMs of similar size. ## Model Downloads

| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** | | :----------------: | :---------------: | :-------------------: | :----------------: | :----------: | | Ring-lite-distill-preview | 16.8B | 2.75B | 64K | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ring-lite-distill) |
## Evaluation In order to fully evaluate the model's performance, we examined Ring-lite-distill-preview in terms of both reasoning ability and general ability. ### Reasoning ability
| **Model** | **AIME24** | **MATH-500** | **GPQA-diamond** | **LiveCodeBench** | | :----------------: | :---------------: | :-------------------: | :----------------: | :----------: | | DeepSeek-R1-Distill-Qwen-7B (reported) | 55.5 | 92.8 | 49.1 | 37.6 | | DeepSeek-R1-Distill-Qwen-7B (reproduce) | 53.2 | 93.7 | 50.4 | 36.5 | | Ring-lite-distill-preview | 56.3 | 93.7 | 46.2 | 31.9 |
### General ability
| **Model** | **IFEval** | **T-eval** | **BFCL_v2** | **MMLU** | | :----------------: | :---------------: | :-------------------: | :----------------: | :----------: | | DeepSeek-R1-Distill-Qwen-7B (reproduce) | 39.3 | 26.9 | 38.9 | 44.1 | | Ring-lite-distill-preview | 75.3 | 81.3 | 63.0 | 63.3 |
More details will be reported in our technical report. [TBD] ## Quickstart ### 🤗 Hugging Face Transformers Here is a code snippet to show you how to use the chat model with `transformers`: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "inclusionAI/Ring-lite-distill-preview" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language models." messages = [ {"role": "system", "content": "You are Ring, an assistant created by inclusionAI"}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=8192 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Dataset The training data of Ring-lite-distill-preview will be released soon. ## Deployment Please refer to [GitHub](https://github.com/inclusionAI/Ring/blob/main/README.md) ## License This code repository is licensed under [the MIT License](https://huggingface.co/inclusionAI/Ring-lite-distill/blob/main/LICENSE). ## Citation [TBD]