LandyGuo commited on
Commit
7a5bca7
·
1 Parent(s): 4c1ec97

add model file

Browse files
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BailingMoeForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_bailing_moe.BailingMoeConfig",
8
+ "AutoModel": "modeling_bailing_moe.BailingMoeModel",
9
+ "AutoModelForCausalLM": "modeling_bailing_moe.BailingMoeForCausalLM"
10
+ },
11
+ "eos_token_id": 126081,
12
+ "pad_token_id": 126081,
13
+ "first_k_dense_replace": 0,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 2048,
16
+ "initializer_range": 0.006,
17
+ "intermediate_size": 1408,
18
+ "max_position_embeddings": 32768,
19
+ "model_type": "bailing_moe",
20
+ "moe_intermediate_size": 1408,
21
+ "num_experts": 64,
22
+ "num_shared_experts": 2,
23
+ "norm_topk_prob": true,
24
+ "num_attention_heads": 16,
25
+ "num_experts_per_tok": 6,
26
+ "num_hidden_layers": 28,
27
+ "num_key_value_heads": 4,
28
+ "pretraining_tp": 1,
29
+ "rms_norm_eps": 1e-06,
30
+ "rope_scaling": null,
31
+ "rope_theta": 600000,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.40.0",
35
+ "use_cache": true,
36
+ "use_bias": false,
37
+ "use_qkv_bias": false,
38
+ "vocab_size": 126464,
39
+ "output_router_logits": false,
40
+ "embedding_dropout": 0.0,
41
+ "norm_head": false,
42
+ "norm_softmax": false,
43
+ "output_dropout": 0.0
44
+ }
configuration_bailing_moe.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Bailing MoE model configuration """
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+
5
+
6
+ class BailingMoeConfig(PretrainedConfig):
7
+ model_type = "bailing_moe"
8
+
9
+ def __init__(
10
+ self,
11
+ vocab_size=30592,
12
+ hidden_size=1024,
13
+ intermediate_size=None,
14
+ num_hidden_layers=24,
15
+ num_attention_heads=16,
16
+ num_key_value_heads=0,
17
+ hidden_act="silu",
18
+ use_qkv_bias=False, # bailing only
19
+ use_bias=True, # bailing only
20
+ rms_norm_eps=1e-05,
21
+ norm_head=False, # bailing only
22
+ tie_word_embeddings=False, # PretrainedConfig key, here change default value.
23
+ embedding_dropout=0.1,
24
+ attention_dropout=0.1,
25
+ output_dropout=0.1,
26
+ initializer_range=0.02,
27
+ max_position_embeddings=16384,
28
+ rope_theta=10000.0,
29
+ use_cache=True,
30
+ use_sliding_window=False,
31
+ sliding_window=4096,
32
+ max_window_layers=28,
33
+ rope_scaling=None,
34
+ pad_token_id=126081,
35
+ num_experts=16,
36
+ num_shared_experts=0,
37
+ num_experts_per_tok=2,
38
+ norm_topk_prob=True,
39
+ moe_intermediate_size=None,
40
+ first_k_dense_replace=0,
41
+ head_dim=None,
42
+ output_router_logits=False,
43
+ **kwargs,
44
+ ):
45
+ self.num_hidden_layers = num_hidden_layers
46
+ self.vocab_size = vocab_size
47
+ self.hidden_size = hidden_size
48
+ self.intermediate_size = intermediate_size
49
+ self.num_attention_heads = num_attention_heads
50
+ self.num_key_value_heads = num_key_value_heads
51
+ self.hidden_act = hidden_act
52
+ self.use_qkv_bias = use_qkv_bias
53
+ self.use_bias = use_bias
54
+ self.norm_head = norm_head
55
+ self.rms_norm_eps = rms_norm_eps
56
+ self.embedding_dropout = embedding_dropout
57
+ self.attention_dropout = attention_dropout
58
+ self.output_dropout = output_dropout
59
+ self.initializer_range = initializer_range
60
+ self.max_position_embeddings = max_position_embeddings
61
+ self.rope_theta = rope_theta
62
+ self.use_cache = use_cache
63
+ self.use_sliding_window = use_sliding_window
64
+ self.sliding_window = sliding_window
65
+ self.max_window_layers = max_window_layers
66
+ self.head_dim = head_dim or self.hidden_size // self.num_attention_heads
67
+ self.rope_scaling = rope_scaling
68
+
69
+ # MoE configs
70
+ self.num_experts = num_experts
71
+ self.num_shared_experts = num_shared_experts
72
+ self.num_experts_per_tok = num_experts_per_tok
73
+ self.norm_topk_prob = norm_topk_prob
74
+ self.moe_intermediate_size = moe_intermediate_size
75
+ self.first_k_dense_replace = first_k_dense_replace
76
+ self.output_router_logits = output_router_logits
77
+
78
+ super().__init__(pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": 126081,
4
+ "pad_token_id": 126081,
5
+ "transformers_version": "4.40.0"
6
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b83afd0fe022e3552a74da807869c865b734c88523da27a4510a32f085d9ec33
3
+ size 10000012352
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5ccecf15d89900ba376bff70aac7266a90320205b549337883e0fbd0e7386a6
3
+ size 9997403496
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b72c9cb181ce3ce4ba02afa6d78b8ef82f85c8b7da85b7cd472aa58517ef937c
3
+ size 9995576736
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5b3384dc88a60dbc5a20a7fe6617163374b1adbdd5a07c6669192e185a34abc
3
+ size 3611653272
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_bailing_moe.py ADDED
@@ -0,0 +1,1443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Antgroup and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch BailingMoE model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import CrossEntropyLoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ _prepare_4d_causal_attention_mask_for_sdpa,
38
+ )
39
+ from transformers.modeling_outputs import (
40
+ MoeModelOutputWithPast,
41
+ MoeCausalLMOutputWithPast,
42
+ )
43
+ from transformers.modeling_utils import PreTrainedModel
44
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
45
+ from transformers.utils import (
46
+ add_start_docstrings,
47
+ add_start_docstrings_to_model_forward,
48
+ is_flash_attn_2_available,
49
+ is_flash_attn_greater_or_equal_2_10,
50
+ logging,
51
+ replace_return_docstrings,
52
+ )
53
+ from transformers.utils.import_utils import is_torch_fx_available
54
+ from .configuration_bailing_moe import BailingMoeConfig
55
+
56
+
57
+ if is_flash_attn_2_available():
58
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
59
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
60
+
61
+
62
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
63
+ # It means that the function will not be traced through and simply appear as a node in the graph.
64
+ if is_torch_fx_available():
65
+ if not is_torch_greater_or_equal_than_1_13:
66
+ import torch.fx
67
+
68
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
69
+
70
+
71
+ logger = logging.get_logger(__name__)
72
+
73
+ _CONFIG_FOR_DOC = "BailingMoeConfig"
74
+
75
+
76
+ def _get_unpad_data(attention_mask):
77
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
78
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
79
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
80
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
81
+ return (
82
+ indices,
83
+ cu_seqlens,
84
+ max_seqlen_in_batch,
85
+ )
86
+
87
+
88
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
89
+ warnings.warn(
90
+ "Calling `transformers.models.BailingMoe.modeling_BailingMoe._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
91
+ )
92
+ return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
93
+
94
+
95
+ def _make_causal_mask(
96
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
97
+ ):
98
+ warnings.warn(
99
+ "Calling `transformers.models.BailingMoe.modeling_BailingMoe._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.BailingMoe.modeling_BailingMoe.AttentionMaskConverter._make_causal_mask"
100
+ )
101
+ return AttentionMaskConverter._make_causal_mask(
102
+ input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
103
+ )
104
+
105
+
106
+ class BailingMoeRMSNorm(nn.Module):
107
+ def __init__(self, hidden_size, eps=1e-6):
108
+ """
109
+ BailingMoeRMSNorm is equivalent to T5LayerNorm
110
+ """
111
+ super().__init__()
112
+ self.weight = nn.Parameter(torch.ones(hidden_size))
113
+ self.variance_epsilon = eps
114
+
115
+ def forward(self, hidden_states):
116
+ input_dtype = hidden_states.dtype
117
+ hidden_states = hidden_states.to(torch.float32)
118
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
119
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
120
+ return self.weight * hidden_states.to(input_dtype)
121
+
122
+
123
+ ALL_LAYERNORM_LAYERS.append(BailingMoeRMSNorm)
124
+
125
+
126
+ class BailingMoeRotaryEmbedding(nn.Module):
127
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
128
+ super().__init__()
129
+
130
+ self.dim = dim
131
+ self.max_position_embeddings = max_position_embeddings
132
+ self.base = base
133
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
134
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
135
+
136
+ # Build here to make `torch.jit.trace` work.
137
+ self._set_cos_sin_cache(
138
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
139
+ )
140
+ self.max_seq_len_cached = None
141
+
142
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
143
+ self.max_seq_len_cached = seq_len
144
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
145
+
146
+ freqs = torch.outer(t, self.inv_freq.to(t.device))
147
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
148
+ emb = torch.cat((freqs, freqs), dim=-1)
149
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
150
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
151
+
152
+ def forward(self, x, seq_len=None):
153
+ # x: [bs, num_attention_heads, seq_len, head_size]
154
+ if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
155
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
156
+
157
+ return (
158
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
159
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
160
+ )
161
+
162
+
163
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->BailingMoe
164
+ class BailingMoeLinearScalingRotaryEmbedding(BailingMoeRotaryEmbedding):
165
+ """BailingMoeRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
166
+
167
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
168
+ self.scaling_factor = scaling_factor
169
+ super().__init__(dim, max_position_embeddings, base, device)
170
+
171
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
172
+ self.max_seq_len_cached = seq_len
173
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
174
+ t = t / self.scaling_factor
175
+
176
+ freqs = torch.outer(t, self.inv_freq)
177
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
178
+ emb = torch.cat((freqs, freqs), dim=-1)
179
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
180
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
181
+
182
+
183
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->BailingMoe
184
+ class BailingMoeDynamicNTKScalingRotaryEmbedding(BailingMoeRotaryEmbedding):
185
+ """BailingMoeRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+
194
+ if seq_len > self.max_position_embeddings:
195
+ base = self.base * (
196
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
197
+ ) ** (self.dim / (self.dim - 2))
198
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
199
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
200
+
201
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
202
+
203
+ freqs = torch.outer(t, self.inv_freq)
204
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
205
+ emb = torch.cat((freqs, freqs), dim=-1)
206
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
207
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
208
+
209
+
210
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
211
+ def rotate_half(x):
212
+ """Rotates half the hidden dims of the input."""
213
+ x1 = x[..., : x.shape[-1] // 2]
214
+ x2 = x[..., x.shape[-1] // 2 :]
215
+ return torch.cat((-x2, x1), dim=-1)
216
+
217
+
218
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
219
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
220
+ """Applies Rotary Position Embedding to the query and key tensors.
221
+
222
+ Args:
223
+ q (`torch.Tensor`): The query tensor.
224
+ k (`torch.Tensor`): The key tensor.
225
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
226
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
227
+ position_ids (`torch.Tensor`):
228
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
229
+ used to pass offsetted position ids when working with a KV-cache.
230
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
231
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
232
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
233
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
234
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
235
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
236
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
237
+ Returns:
238
+ `tuple(torch.Tensor)` comprising the query and key tensors rotated using the Rotary Position Embedding.
239
+ """
240
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
241
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
242
+ q_embed = (q * cos) + (rotate_half(q) * sin)
243
+ k_embed = (k * cos) + (rotate_half(k) * sin)
244
+ return q_embed, k_embed
245
+
246
+
247
+ class BailingMoeMLP(nn.Module):
248
+ def __init__(self, config: BailingMoeConfig, intermediate_size: int):
249
+ super().__init__()
250
+ self.config = config
251
+ self.hidden_size = config.hidden_size
252
+ self.intermediate_size = intermediate_size
253
+
254
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
255
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
256
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
257
+ self.act_fn = ACT2FN[config.hidden_act]
258
+
259
+ def forward(self, x):
260
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
261
+
262
+
263
+ class BailingMoeGate(nn.Module):
264
+ def __init__(self, config):
265
+ super().__init__()
266
+ self.config = config
267
+ self.top_k = config.num_experts_per_tok
268
+ self.num_experts = config.num_experts
269
+
270
+ # topk selection algorithm
271
+ self.norm_topk_prob = config.norm_topk_prob
272
+ self.gating_dim = config.hidden_size
273
+ self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim)))
274
+ self.reset_parameters()
275
+
276
+ def reset_parameters(self) -> None:
277
+ import torch.nn.init as init
278
+
279
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
280
+
281
+ def forward(self, hidden_states):
282
+ bsz, seq_len, h = hidden_states.shape
283
+ # compute gating score
284
+ hidden_states = hidden_states.view(-1, h)
285
+ logits = F.linear(hidden_states, self.weight, None)
286
+ scores = logits.softmax(dim=-1, dtype=torch.float32)
287
+
288
+ # select top-k experts
289
+ topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
290
+
291
+ # norm gate to sum 1
292
+ if self.top_k > 1 and self.norm_topk_prob:
293
+ denominator = topk_weight.sum(dim=-1, keepdim=True)
294
+ topk_weight = topk_weight / denominator
295
+
296
+ return topk_idx, topk_weight, logits
297
+
298
+
299
+ class BailingMoeSparseMoeBlock(nn.Module):
300
+ """
301
+ A mixed expert module containing shared experts.
302
+ """
303
+
304
+ def __init__(self, config: BailingMoeConfig):
305
+ super().__init__()
306
+ self.config = config
307
+ self.num_experts_per_tok = config.num_experts_per_tok
308
+ self.experts = self._setup_experts()
309
+ self.gate = BailingMoeGate(config)
310
+ if config.num_shared_experts is not None:
311
+ self.shared_experts = BailingMoeMLP(
312
+ config=config, intermediate_size=config.moe_intermediate_size * config.num_shared_experts
313
+ )
314
+
315
+ def _setup_experts(self):
316
+ return nn.ModuleList(
317
+ [
318
+ BailingMoeMLP(config=self.config, intermediate_size=self.config.moe_intermediate_size)
319
+ for _ in range(self.config.num_experts)
320
+ ]
321
+ )
322
+
323
+ def forward(self, hidden_states):
324
+ identity = hidden_states
325
+ bsz, seq_len, h = hidden_states.shape
326
+ topk_idx, topk_weight, router_logits = self.gate(hidden_states)
327
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
328
+ flat_topk_idx = topk_idx.view(-1)
329
+ if self.training:
330
+ hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
331
+ y = torch.empty_like(hidden_states)
332
+ for i, expert in enumerate(self.experts):
333
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
334
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
335
+ y = y.to(hidden_states.dtype).view(bsz, seq_len, h)
336
+ else:
337
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(bsz, seq_len, h)
338
+ if self.config.num_shared_experts is not None:
339
+ y = y + self.shared_experts(identity)
340
+ return y, (router_logits.view(bsz, seq_len, -1), topk_idx.view(bsz, seq_len, -1))
341
+
342
+ @torch.no_grad()
343
+ def moe_infer(self, x, topk_ids, topk_weight):
344
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
345
+ cnts.scatter_(1, topk_ids, 1)
346
+ tokens_per_expert = cnts.sum(dim=0)
347
+ idxs = topk_ids.view(-1).argsort()
348
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
349
+ sorted_tokens_shape = sorted_tokens.shape
350
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
351
+ outputs = []
352
+ start_idx = 0
353
+ for i, num_tokens in enumerate(tokens_per_expert):
354
+ end_idx = start_idx + num_tokens
355
+ if num_tokens == 0:
356
+ continue
357
+ expert = self.experts[i]
358
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
359
+ expert_out = expert(tokens_for_this_expert)
360
+ outputs.append(expert_out)
361
+ start_idx = end_idx
362
+
363
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
364
+ new_x = torch.empty_like(outs)
365
+ new_x[idxs] = outs
366
+ final_out = (
367
+ new_x.view(*topk_ids.shape, -1)
368
+ .type(topk_weight.dtype)
369
+ .mul_(topk_weight.unsqueeze(dim=-1))
370
+ .sum(dim=1)
371
+ .type(new_x.dtype)
372
+ )
373
+ return final_out
374
+
375
+
376
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
377
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
378
+ """
379
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
380
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
381
+ """
382
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
383
+ if n_rep == 1:
384
+ return hidden_states
385
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
386
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
387
+
388
+
389
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->BailingMoe
390
+ class BailingMoeAttention(nn.Module):
391
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
392
+
393
+ def __init__(self, config: BailingMoeConfig, layer_idx: Optional[int] = None):
394
+ super().__init__()
395
+ self.config = config
396
+ self.layer_idx = layer_idx
397
+ if layer_idx is None:
398
+ logger.warning_once(
399
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
400
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
401
+ "when creating this class."
402
+ )
403
+
404
+ self.attention_dropout = config.attention_dropout
405
+ self.hidden_size = config.hidden_size
406
+ self.num_heads = config.num_attention_heads
407
+ self.head_dim = config.head_dim or self.hidden_size // self.num_heads
408
+ self.num_key_value_heads = config.num_key_value_heads
409
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
410
+ self.max_position_embeddings = config.max_position_embeddings
411
+ self.rope_theta = config.rope_theta
412
+ self.is_causal = True
413
+
414
+ self.query_key_value = nn.Linear(
415
+ self.hidden_size,
416
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
417
+ bias=config.use_qkv_bias,
418
+ )
419
+ self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias)
420
+ self._init_rope()
421
+
422
+ def _init_rope(self):
423
+ if self.config.rope_scaling is None:
424
+ self.rotary_emb = BailingMoeRotaryEmbedding(
425
+ self.head_dim,
426
+ max_position_embeddings=self.max_position_embeddings,
427
+ base=self.rope_theta,
428
+ )
429
+ else:
430
+ scaling_type = self.config.rope_scaling["type"]
431
+ scaling_factor = self.config.rope_scaling["factor"]
432
+ if scaling_type == "linear":
433
+ self.rotary_emb = BailingMoeLinearScalingRotaryEmbedding(
434
+ self.head_dim,
435
+ max_position_embeddings=self.max_position_embeddings,
436
+ scaling_factor=scaling_factor,
437
+ base=self.rope_theta,
438
+ )
439
+ elif scaling_type == "dynamic":
440
+ self.rotary_emb = BailingMoeDynamicNTKScalingRotaryEmbedding(
441
+ self.head_dim,
442
+ max_position_embeddings=self.max_position_embeddings,
443
+ scaling_factor=scaling_factor,
444
+ base=self.rope_theta,
445
+ )
446
+ else:
447
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
448
+
449
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
450
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
451
+
452
+ def forward(
453
+ self,
454
+ hidden_states: torch.Tensor,
455
+ attention_mask: Optional[torch.Tensor] = None,
456
+ position_ids: Optional[torch.LongTensor] = None,
457
+ past_key_value: Optional[Cache] = None,
458
+ output_attentions: bool = False,
459
+ use_cache: bool = False,
460
+ **kwargs,
461
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
462
+ if "padding_mask" in kwargs:
463
+ warnings.warn(
464
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
465
+ )
466
+
467
+ bsz, q_len, _ = hidden_states.size()
468
+
469
+ qkv = self.query_key_value(hidden_states)
470
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
471
+
472
+ query_states, key_states, value_states = qkv.split(
473
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
474
+ )
475
+ query_states = query_states.transpose(1, 2)
476
+ key_states = key_states.transpose(1, 2)
477
+ value_states = value_states.transpose(1, 2)
478
+
479
+ kv_seq_len = key_states.shape[-2]
480
+ if past_key_value is not None:
481
+ if self.layer_idx is None:
482
+ raise ValueError(
483
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
484
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
485
+ "with a layer index."
486
+ )
487
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
488
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
489
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
490
+
491
+ if past_key_value is not None:
492
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
493
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
494
+
495
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
496
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
497
+
498
+ attn_weights = torch.matmul(query_states / math.sqrt(self.head_dim), key_states.transpose(2, 3))
499
+
500
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
501
+ raise ValueError(
502
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
503
+ f" {attn_weights.size()}"
504
+ )
505
+
506
+ if attention_mask is not None:
507
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
508
+ raise ValueError(
509
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
510
+ )
511
+ attn_weights = attn_weights + attention_mask
512
+
513
+ # upcast attention to fp32
514
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
515
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
516
+ attn_output = torch.matmul(attn_weights, value_states)
517
+
518
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
519
+ raise ValueError(
520
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
521
+ f" {attn_output.size()}"
522
+ )
523
+
524
+ attn_output = attn_output.transpose(1, 2).contiguous()
525
+
526
+ attn_output = attn_output.reshape(bsz, q_len, -1)
527
+
528
+ attn_output = self.dense(attn_output)
529
+
530
+ if not output_attentions:
531
+ attn_weights = None
532
+
533
+ return attn_output, attn_weights, past_key_value
534
+
535
+
536
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->BailingMoe
537
+ class BailingMoeFlashAttention2(BailingMoeAttention):
538
+ """
539
+ BailingMoe flash attention module. This module inherits from `BailingMoeAttention` as the weights of the module stays
540
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
541
+ flash attention and deal with padding tokens in case the input contains any of them.
542
+ """
543
+
544
+ def __init__(self, *args, **kwargs):
545
+ super().__init__(*args, **kwargs)
546
+
547
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
548
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
549
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
550
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
551
+
552
+ def forward(
553
+ self,
554
+ hidden_states: torch.Tensor,
555
+ attention_mask: Optional[torch.LongTensor] = None,
556
+ position_ids: Optional[torch.LongTensor] = None,
557
+ past_key_value: Optional[Cache] = None,
558
+ output_attentions: bool = False,
559
+ use_cache: bool = False,
560
+ **kwargs,
561
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
562
+ # BailingMoeFlashAttention2 attention does not support output_attentions
563
+ if "padding_mask" in kwargs:
564
+ warnings.warn(
565
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
566
+ )
567
+
568
+ # overwrite attention_mask with padding_mask
569
+ attention_mask = kwargs.pop("padding_mask")
570
+
571
+ output_attentions = False
572
+
573
+ bsz, q_len, _ = hidden_states.size()
574
+
575
+ # Flash attention requires the input to have the shape
576
+ # batch_size x seq_length x head_dim x hidden_dim
577
+ # therefore we just need to keep the original shape
578
+
579
+ qkv = self.query_key_value(hidden_states)
580
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
581
+
582
+ query_states, key_states, value_states = qkv.split(
583
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
584
+ )
585
+ query_states = query_states.transpose(1, 2)
586
+ key_states = key_states.transpose(1, 2)
587
+ value_states = value_states.transpose(1, 2)
588
+
589
+ kv_seq_len = key_states.shape[-2]
590
+ if past_key_value is not None:
591
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
592
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
593
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
594
+
595
+ if past_key_value is not None:
596
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
597
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
598
+
599
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
600
+ # to be able to avoid many of these transpose/reshape/view.
601
+ query_states = query_states.transpose(1, 2)
602
+ key_states = key_states.transpose(1, 2)
603
+ value_states = value_states.transpose(1, 2)
604
+
605
+ dropout_rate = self.attention_dropout if self.training else 0.0
606
+
607
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
608
+ # therefore the input hidden states gets silently cast in float32. Hence, we need
609
+ # cast them back in the correct dtype just to be sure everything works as expected.
610
+ # This might slow down training & inference so it is recommended to not cast the LayerNorms
611
+ # in fp32. (BailingMoeRMSNorm handles it correctly)
612
+
613
+ input_dtype = query_states.dtype
614
+ if input_dtype == torch.float32:
615
+ # Handle the case where the model is quantized
616
+ if hasattr(self.config, "_pre_quantization_dtype"):
617
+ target_dtype = self.config._pre_quantization_dtype
618
+ elif torch.is_autocast_enabled():
619
+ target_dtype = torch.get_autocast_gpu_dtype()
620
+ else:
621
+ target_dtype = self.q_proj.weight.dtype
622
+
623
+ logger.warning_once(
624
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
625
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
626
+ f" {target_dtype}."
627
+ )
628
+
629
+ query_states = query_states.to(target_dtype)
630
+ key_states = key_states.to(target_dtype)
631
+ value_states = value_states.to(target_dtype)
632
+
633
+ attn_output = self._flash_attention_forward(
634
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
635
+ )
636
+
637
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
638
+ attn_output = self.dense(attn_output)
639
+
640
+ if not output_attentions:
641
+ attn_weights = None
642
+
643
+ return attn_output, attn_weights, past_key_value
644
+
645
+ def _flash_attention_forward(
646
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
647
+ ):
648
+ """
649
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
650
+ first unpad the input, then computes the attention scores and pad the final attention scores.
651
+
652
+ Args:
653
+ query_states (`torch.Tensor`):
654
+ Input query states to be passed to Flash Attention API
655
+ key_states (`torch.Tensor`):
656
+ Input key states to be passed to Flash Attention API
657
+ value_states (`torch.Tensor`):
658
+ Input value states to be passed to Flash Attention API
659
+ attention_mask (`torch.Tensor`):
660
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
661
+ position of padding tokens and 1 for the position of non-padding tokens.
662
+ dropout (`int`, *optional*):
663
+ Attention dropout
664
+ softmax_scale (`float`, *optional*):
665
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
666
+ query_length (`int`):
667
+ The length of the query sequence in terms of tokens. This represents the number of tokens in the
668
+ `query_states` tensor along the sequence dimension. It is used to determine the effective sequence
669
+ length for attention computations.
670
+ """
671
+ if not self._flash_attn_uses_top_left_mask:
672
+ causal = self.is_causal
673
+ else:
674
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in BailingMoeFlashAttention2 __init__.
675
+ causal = self.is_causal and query_length != 1
676
+
677
+ # Contains at least one padding token in the sequence
678
+ if attention_mask is not None:
679
+ batch_size = query_states.shape[0]
680
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
681
+ query_states, key_states, value_states, attention_mask, query_length
682
+ )
683
+
684
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
685
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
686
+
687
+ attn_output_unpad = flash_attn_varlen_func(
688
+ query_states,
689
+ key_states,
690
+ value_states,
691
+ cu_seqlens_q=cu_seqlens_q,
692
+ cu_seqlens_k=cu_seqlens_k,
693
+ max_seqlen_q=max_seqlen_in_batch_q,
694
+ max_seqlen_k=max_seqlen_in_batch_k,
695
+ dropout_p=dropout,
696
+ softmax_scale=softmax_scale,
697
+ causal=causal,
698
+ )
699
+
700
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
701
+ else:
702
+ attn_output = flash_attn_func(
703
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
704
+ )
705
+
706
+ return attn_output
707
+
708
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
709
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
710
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
711
+
712
+ key_layer = index_first_axis(
713
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
714
+ )
715
+ value_layer = index_first_axis(
716
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
717
+ )
718
+ if query_length == kv_seq_len:
719
+ query_layer = index_first_axis(
720
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
721
+ )
722
+ cu_seqlens_q = cu_seqlens_k
723
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
724
+ indices_q = indices_k
725
+ elif query_length == 1:
726
+ max_seqlen_in_batch_q = 1
727
+ cu_seqlens_q = torch.arange(
728
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
729
+ ) # There is a memcpy here, that is very bad.
730
+ indices_q = cu_seqlens_q[:-1]
731
+ query_layer = query_layer.squeeze(1)
732
+ else:
733
+ # The -q_len: slice assumes left padding.
734
+ attention_mask = attention_mask[:, -query_length:]
735
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
736
+
737
+ return (
738
+ query_layer,
739
+ key_layer,
740
+ value_layer,
741
+ indices_q,
742
+ (cu_seqlens_q, cu_seqlens_k),
743
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
744
+ )
745
+
746
+
747
+ # Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->BailingMoe
748
+ class BailingMoeSdpaAttention(BailingMoeAttention):
749
+ """
750
+ BailingMoe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
751
+ `BailingMoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
752
+ SDPA API.
753
+ """
754
+
755
+ # Adapted from BailingMoeAttention.forward
756
+ def forward(
757
+ self,
758
+ hidden_states: torch.Tensor,
759
+ attention_mask: Optional[torch.Tensor] = None,
760
+ position_ids: Optional[torch.LongTensor] = None,
761
+ past_key_value: Optional[Cache] = None,
762
+ output_attentions: bool = False,
763
+ use_cache: bool = False,
764
+ **kwargs,
765
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
766
+ if output_attentions:
767
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
768
+ logger.warning_once(
769
+ "BailingMoeModel is using BailingMoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
770
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
771
+ )
772
+ return super().forward(
773
+ hidden_states=hidden_states,
774
+ attention_mask=attention_mask,
775
+ position_ids=position_ids,
776
+ past_key_value=past_key_value,
777
+ output_attentions=output_attentions,
778
+ use_cache=use_cache,
779
+ )
780
+
781
+ bsz, q_len, _ = hidden_states.size()
782
+
783
+ qkv = self.query_key_value(hidden_states)
784
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
785
+
786
+ query_states, key_states, value_states = qkv.split(
787
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
788
+ )
789
+ query_states = query_states.transpose(1, 2)
790
+ key_states = key_states.transpose(1, 2)
791
+ value_states = value_states.transpose(1, 2)
792
+
793
+ kv_seq_len = key_states.shape[-2]
794
+ if past_key_value is not None:
795
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
796
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
797
+
798
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
799
+
800
+ if past_key_value is not None:
801
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
802
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
803
+
804
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
805
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
806
+
807
+ if attention_mask is not None:
808
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
809
+ raise ValueError(
810
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
811
+ )
812
+
813
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
814
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
815
+ if query_states.device.type == "cuda" and attention_mask is not None:
816
+ query_states = query_states.contiguous()
817
+ key_states = key_states.contiguous()
818
+ value_states = value_states.contiguous()
819
+
820
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
821
+ query_states,
822
+ key_states,
823
+ value_states,
824
+ attn_mask=attention_mask,
825
+ dropout_p=self.attention_dropout if self.training else 0.0,
826
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
827
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
828
+ )
829
+
830
+ attn_output = attn_output.transpose(1, 2).contiguous()
831
+ attn_output = attn_output.reshape(bsz, q_len, -1)
832
+
833
+ attn_output = self.dense(attn_output)
834
+
835
+ return attn_output, None, past_key_value
836
+
837
+
838
+ BAILING_MOE_ATTENTION_CLASSES = {
839
+ "eager": BailingMoeAttention,
840
+ "flash_attention_2": BailingMoeFlashAttention2,
841
+ "sdpa": BailingMoeSdpaAttention,
842
+ }
843
+
844
+
845
+ class BailingMoeDecoderLayer(nn.Module):
846
+ def __init__(self, config: BailingMoeConfig, layer_idx: int):
847
+ super().__init__()
848
+ self.hidden_size = config.hidden_size
849
+
850
+ self.attention = BAILING_MOE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
851
+
852
+ self.mlp = (
853
+ BailingMoeSparseMoeBlock(config)
854
+ if (config.num_experts is not None and layer_idx >= config.first_k_dense_replace)
855
+ else BailingMoeMLP(config=config, intermediate_size=config.intermediate_size)
856
+ )
857
+ self.input_layernorm = BailingMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
858
+ self.post_attention_layernorm = BailingMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
859
+
860
+ def forward(
861
+ self,
862
+ hidden_states: torch.Tensor,
863
+ attention_mask: Optional[torch.Tensor] = None,
864
+ position_ids: Optional[torch.LongTensor] = None,
865
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
866
+ output_attentions: Optional[bool] = False,
867
+ output_router_logits: Optional[bool] = False,
868
+ use_cache: Optional[bool] = False,
869
+ **kwargs,
870
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
871
+ """
872
+ Args:
873
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
874
+ attention_mask (`torch.FloatTensor`, *optional*):
875
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
876
+ query_sequence_length, key_sequence_length)` if default attention is used.
877
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
878
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
879
+ config.n_positions - 1]`.
880
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
881
+ cached past key and value projection states
882
+ output_attentions (`bool`, *optional*):
883
+ Whether to return the attentions tensors of all attention layers. See `attentions` under
884
+ returned tensors for more detail.
885
+ output_router_logits (`bool`, *optional*):
886
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss,
887
+ and should not be returned during inference.
888
+ use_cache (`bool`, *optional*):
889
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
890
+ (see `past_key_values`).
891
+ """
892
+ if "padding_mask" in kwargs:
893
+ warnings.warn(
894
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
895
+ )
896
+ residual = hidden_states
897
+
898
+ hidden_states = self.input_layernorm(hidden_states)
899
+
900
+ # Self Attention
901
+ hidden_states, self_attn_weights, present_key_value = self.attention(
902
+ hidden_states=hidden_states,
903
+ attention_mask=attention_mask,
904
+ position_ids=position_ids,
905
+ past_key_value=past_key_value,
906
+ output_attentions=output_attentions,
907
+ use_cache=use_cache,
908
+ )
909
+ hidden_states = residual + hidden_states
910
+
911
+ # Fully Connected
912
+ residual = hidden_states
913
+ hidden_states = self.post_attention_layernorm(hidden_states)
914
+ hidden_states = self.mlp(hidden_states)
915
+ if isinstance(hidden_states, tuple):
916
+ hidden_states, router_logits = hidden_states
917
+ else:
918
+ router_logits = None
919
+ hidden_states = residual + hidden_states
920
+
921
+ outputs = (hidden_states,)
922
+
923
+ if output_attentions:
924
+ outputs += (self_attn_weights,)
925
+
926
+ if use_cache:
927
+ outputs += (present_key_value,)
928
+
929
+ if output_router_logits:
930
+ outputs += (router_logits,)
931
+
932
+ return outputs
933
+
934
+
935
+ BAILINGMOE_START_DOCSTRING = r"""
936
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
937
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
938
+ etc.)
939
+
940
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
941
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
942
+ and behavior.
943
+
944
+ Parameters:
945
+ config ([`BailingMoeConfig`]):
946
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
947
+ load the weights associated with the model, only the configuration. Check out the
948
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
949
+ """
950
+
951
+
952
+ @add_start_docstrings(
953
+ "The bare BailingMoe Model outputting raw hidden-states without any specific head on top.",
954
+ BAILINGMOE_START_DOCSTRING,
955
+ )
956
+ class BailingMoePreTrainedModel(PreTrainedModel):
957
+ config_class = BailingMoeConfig
958
+ base_model_prefix = "model"
959
+ supports_gradient_checkpointing = True
960
+ _no_split_modules = ["BailingMoeDecoderLayer"]
961
+ _skip_keys_device_placement = "past_key_values"
962
+ _supports_flash_attn_2 = True
963
+ _supports_sdpa = True
964
+ _supports_cache_class = True
965
+
966
+ def _init_weights(self, module):
967
+ std = self.config.initializer_range
968
+ if isinstance(module, nn.Linear):
969
+ module.weight.data.normal_(mean=0.0, std=std)
970
+ if module.bias is not None:
971
+ module.bias.data.zero_()
972
+ elif isinstance(module, nn.Embedding):
973
+ module.weight.data.normal_(mean=0.0, std=std)
974
+ if module.padding_idx is not None:
975
+ module.weight.data[module.padding_idx].zero_()
976
+
977
+
978
+ BAILINGMOE_INPUTS_DOCSTRING = r"""
979
+ Args:
980
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
981
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
982
+ it.
983
+
984
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
985
+ [`PreTrainedTokenizer.__call__`] for details.
986
+
987
+ [What are input IDs?](../glossary#input-ids)
988
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
989
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
990
+
991
+ - 1 for tokens that are **not masked**,
992
+ - 0 for tokens that are **masked**.
993
+
994
+ [What are attention masks?](../glossary#attention-mask)
995
+
996
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
997
+ [`PreTrainedTokenizer.__call__`] for details.
998
+
999
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1000
+ `past_key_values`).
1001
+
1002
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1003
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1004
+ information on the default strategy.
1005
+
1006
+ - 1 indicates the head is **not masked**,
1007
+ - 0 indicates the head is **masked**.
1008
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1009
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1010
+ config.n_positions - 1]`.
1011
+
1012
+ [What are position IDs?](../glossary#position-ids)
1013
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1014
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1015
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1016
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1017
+
1018
+ Two formats are allowed:
1019
+ - a [`~cache_utils.Cache`] instance;
1020
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1021
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1022
+ cache format.
1023
+
1024
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1025
+ legacy cache format will be returned.
1026
+
1027
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1028
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1029
+ of shape `(batch_size, sequence_length)`.
1030
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1031
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1032
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1033
+ model's internal embedding lookup matrix.
1034
+ use_cache (`bool`, *optional*):
1035
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1036
+ `past_key_values`).
1037
+ output_attentions (`bool`, *optional*):
1038
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1039
+ tensors for more detail.
1040
+ output_hidden_states (`bool`, *optional*):
1041
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1042
+ more detail.
1043
+ return_dict (`bool`, *optional*):
1044
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1045
+ """
1046
+
1047
+
1048
+ @add_start_docstrings(
1049
+ "The bare BailingMoe Model outputting raw hidden-states without any specific head on top.",
1050
+ BAILINGMOE_START_DOCSTRING,
1051
+ )
1052
+ class BailingMoeModel(BailingMoePreTrainedModel):
1053
+ """
1054
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BailingMoeDecoderLayer`]
1055
+
1056
+ Args:
1057
+ config: BailingMoeConfig
1058
+ """
1059
+
1060
+ def __init__(self, config: BailingMoeConfig):
1061
+ super().__init__(config)
1062
+ self.padding_idx = config.pad_token_id
1063
+ self.vocab_size = config.vocab_size
1064
+
1065
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1066
+ self.layers = nn.ModuleList(
1067
+ [BailingMoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1068
+ )
1069
+ self._use_sdpa = config._attn_implementation == "sdpa"
1070
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1071
+ self.norm = BailingMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1072
+
1073
+ self.gradient_checkpointing = False
1074
+ # Initialize weights and apply final processing
1075
+ self.post_init()
1076
+
1077
+ def get_input_embeddings(self):
1078
+ return self.word_embeddings
1079
+
1080
+ def set_input_embeddings(self, value):
1081
+ self.word_embeddings = value
1082
+
1083
+ @add_start_docstrings_to_model_forward(BAILINGMOE_INPUTS_DOCSTRING)
1084
+ def forward(
1085
+ self,
1086
+ input_ids: torch.LongTensor = None,
1087
+ attention_mask: Optional[torch.Tensor] = None,
1088
+ position_ids: Optional[torch.LongTensor] = None,
1089
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1090
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1091
+ use_cache: Optional[bool] = None,
1092
+ output_attentions: Optional[bool] = None,
1093
+ output_hidden_states: Optional[bool] = None,
1094
+ output_router_logits: Optional[bool] = None,
1095
+ return_dict: Optional[bool] = None,
1096
+ **kwargs,
1097
+ ) -> Union[Tuple, MoeModelOutputWithPast]:
1098
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1099
+ output_hidden_states = (
1100
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1101
+ )
1102
+ output_router_logits = (
1103
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1104
+ )
1105
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1106
+
1107
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1108
+
1109
+ # retrieve input_ids and inputs_embeds
1110
+ if input_ids is not None and inputs_embeds is not None:
1111
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1112
+ elif input_ids is not None:
1113
+ batch_size, seq_length = input_ids.shape[:2]
1114
+ elif inputs_embeds is not None:
1115
+ batch_size, seq_length = inputs_embeds.shape[:2]
1116
+ else:
1117
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1118
+
1119
+ if self.gradient_checkpointing and self.training:
1120
+ if use_cache:
1121
+ logger.warning_once(
1122
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1123
+ )
1124
+ use_cache = False
1125
+
1126
+ past_key_values_length = 0
1127
+ if use_cache:
1128
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1129
+ if use_legacy_cache:
1130
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1131
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1132
+
1133
+ if position_ids is None:
1134
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1135
+ position_ids = torch.arange(
1136
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1137
+ )
1138
+ position_ids = position_ids.unsqueeze(0)
1139
+
1140
+ if inputs_embeds is None:
1141
+ inputs_embeds = self.word_embeddings(input_ids)
1142
+
1143
+ if self._use_flash_attention_2:
1144
+ # 2d mask is passed through the layers
1145
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1146
+ elif self._use_sdpa and not output_attentions:
1147
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1148
+ # the manual implementation that requires a 4D causal mask in all cases.
1149
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1150
+ attention_mask,
1151
+ (batch_size, seq_length),
1152
+ inputs_embeds,
1153
+ past_key_values_length,
1154
+ )
1155
+ else:
1156
+ # 4d mask is passed through the layers
1157
+ attention_mask = _prepare_4d_causal_attention_mask(
1158
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1159
+ )
1160
+
1161
+ # embed positions
1162
+ hidden_states = inputs_embeds
1163
+
1164
+ # decoder layers
1165
+ all_hidden_states = () if output_hidden_states else None
1166
+ all_self_attns = () if output_attentions else None
1167
+ all_router_logits = () if output_router_logits else None
1168
+ next_decoder_cache = None
1169
+
1170
+ for decoder_layer in self.layers:
1171
+ if output_hidden_states:
1172
+ all_hidden_states += (hidden_states,)
1173
+
1174
+ if self.gradient_checkpointing and self.training:
1175
+ layer_outputs = self._gradient_checkpointing_func(
1176
+ decoder_layer.__call__,
1177
+ hidden_states,
1178
+ attention_mask,
1179
+ position_ids,
1180
+ past_key_values,
1181
+ output_attentions,
1182
+ output_router_logits,
1183
+ use_cache,
1184
+ )
1185
+ else:
1186
+ layer_outputs = decoder_layer(
1187
+ hidden_states,
1188
+ attention_mask=attention_mask,
1189
+ position_ids=position_ids,
1190
+ past_key_value=past_key_values,
1191
+ output_attentions=output_attentions,
1192
+ output_router_logits=output_router_logits,
1193
+ use_cache=use_cache,
1194
+ )
1195
+ hidden_states = layer_outputs[0]
1196
+
1197
+ if use_cache:
1198
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1199
+
1200
+ if output_attentions:
1201
+ all_self_attns += (layer_outputs[1],)
1202
+
1203
+ if output_router_logits and layer_outputs[-1] is not None:
1204
+ all_router_logits += (layer_outputs[-1],)
1205
+
1206
+ hidden_states = self.norm(hidden_states)
1207
+
1208
+ # add hidden states from the last decoder layer
1209
+ if output_hidden_states:
1210
+ all_hidden_states += (hidden_states,)
1211
+
1212
+ next_cache = None
1213
+ if use_cache:
1214
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1215
+ if not return_dict:
1216
+ return tuple(
1217
+ v
1218
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
1219
+ if v is not None
1220
+ )
1221
+ return MoeModelOutputWithPast(
1222
+ last_hidden_state=hidden_states,
1223
+ past_key_values=next_cache,
1224
+ hidden_states=all_hidden_states,
1225
+ attentions=all_self_attns,
1226
+ router_logits=all_router_logits,
1227
+ )
1228
+
1229
+
1230
+ class BailingMoeForCausalLM(BailingMoePreTrainedModel):
1231
+ _tied_weights_keys = ["lm_head.weight"]
1232
+
1233
+ def __init__(self, config: BailingMoeConfig):
1234
+ super().__init__(config)
1235
+ self.model = BailingMoeModel(config)
1236
+ self.vocab_size = config.vocab_size
1237
+ self.norm_head = config.norm_head
1238
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1239
+
1240
+ # Initialize weights and apply final processing
1241
+ self.post_init()
1242
+
1243
+ def get_input_embeddings(self):
1244
+ return self.model.word_embeddings
1245
+
1246
+ def set_input_embeddings(self, value):
1247
+ self.model.word_embeddings = value
1248
+
1249
+ def get_output_embeddings(self):
1250
+ return self.lm_head
1251
+
1252
+ def set_output_embeddings(self, new_embeddings):
1253
+ self.lm_head = new_embeddings
1254
+
1255
+ def set_decoder(self, decoder):
1256
+ self.model = decoder
1257
+
1258
+ def get_decoder(self):
1259
+ return self.model
1260
+
1261
+ @add_start_docstrings_to_model_forward(BAILINGMOE_INPUTS_DOCSTRING)
1262
+ @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1263
+ def forward(
1264
+ self,
1265
+ input_ids: torch.LongTensor = None,
1266
+ attention_mask: Optional[torch.Tensor] = None,
1267
+ position_ids: Optional[torch.LongTensor] = None,
1268
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1269
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1270
+ labels: Optional[torch.LongTensor] = None,
1271
+ use_cache: Optional[bool] = None,
1272
+ output_attentions: Optional[bool] = None,
1273
+ output_hidden_states: Optional[bool] = None,
1274
+ output_router_logits: Optional[bool] = None,
1275
+ return_dict: Optional[bool] = None,
1276
+ **kwargs,
1277
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
1278
+ r"""
1279
+ Args:
1280
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1281
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1282
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1283
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1284
+
1285
+ Returns:
1286
+
1287
+ Example:
1288
+
1289
+ ```python
1290
+ >>> from transformers import AutoTokenizer
1291
+
1292
+ >>> model = BailingMoeForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1293
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1294
+
1295
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1296
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1297
+
1298
+ >>> # Generate
1299
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1300
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1301
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1302
+ ```"""
1303
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1304
+ output_hidden_states = (
1305
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1306
+ )
1307
+ output_router_logits = (
1308
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1309
+ )
1310
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1311
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1312
+ outputs = self.model(
1313
+ input_ids=input_ids,
1314
+ attention_mask=attention_mask,
1315
+ position_ids=position_ids,
1316
+ past_key_values=past_key_values,
1317
+ inputs_embeds=inputs_embeds,
1318
+ use_cache=use_cache,
1319
+ output_attentions=output_attentions,
1320
+ output_hidden_states=output_hidden_states,
1321
+ output_router_logits=output_router_logits,
1322
+ return_dict=return_dict,
1323
+ **kwargs,
1324
+ )
1325
+
1326
+ hidden_states = outputs[0]
1327
+
1328
+ if self.norm_head:
1329
+ if self.training:
1330
+ norm_weight = (
1331
+ self.lm_head.weight / (torch.norm(self.lm_head.weight, p=2, dim=0, keepdim=True) + 1e-7).detach()
1332
+ )
1333
+ logits = F.linear(hidden_states, norm_weight, None)
1334
+ else:
1335
+ self.lm_head.weight.data = (
1336
+ self.lm_head.weight.data.float()
1337
+ / (torch.norm(self.lm_head.weight.data.float(), p=2, dim=0, keepdim=True) + 1e-7)
1338
+ ).to(hidden_states.dtype)
1339
+ logits = F.linear(hidden_states, self.lm_head.weight.data, None)
1340
+ self.norm_head = False
1341
+ else:
1342
+ logits = self.lm_head(hidden_states)
1343
+
1344
+ logits = logits.float()
1345
+
1346
+ loss = None
1347
+ aux_loss = None
1348
+
1349
+ if labels is not None:
1350
+ # Shift so that tokens < n predict n
1351
+ shift_logits = logits[..., :-1, :].contiguous()
1352
+ shift_labels = labels[..., 1:].contiguous()
1353
+ # Flatten the tokens
1354
+ loss_fct = CrossEntropyLoss()
1355
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1356
+ shift_labels = shift_labels.view(-1)
1357
+ # Enable model parallelism
1358
+ shift_labels = shift_labels.to(shift_logits.device)
1359
+ loss = loss_fct(shift_logits, shift_labels)
1360
+
1361
+ if not return_dict:
1362
+ output = (logits,) + outputs[1:]
1363
+ if output_router_logits:
1364
+ output = (aux_loss,) + output
1365
+ return (loss,) + output if loss is not None else output
1366
+
1367
+ return MoeCausalLMOutputWithPast(
1368
+ loss=loss,
1369
+ aux_loss=aux_loss,
1370
+ logits=logits,
1371
+ past_key_values=outputs.past_key_values,
1372
+ hidden_states=outputs.hidden_states,
1373
+ attentions=outputs.attentions,
1374
+ router_logits=outputs.router_logits,
1375
+ )
1376
+
1377
+ def prepare_inputs_for_generation(
1378
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, token_type_ids=None, **kwargs
1379
+ ):
1380
+ if past_key_values is not None:
1381
+ if isinstance(past_key_values, Cache):
1382
+ cache_length = past_key_values.get_seq_length()
1383
+ past_length = past_key_values.seen_tokens
1384
+ max_cache_length = (
1385
+ past_key_values.get_max_length()
1386
+ if hasattr(past_key_values, "get_max_length")
1387
+ else past_key_values.get_max_cache_shape()
1388
+ )
1389
+ else:
1390
+ cache_length = past_length = past_key_values[0][0].shape[2]
1391
+ max_cache_length = None
1392
+
1393
+ # Keep only the unprocessed tokens:
1394
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1395
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as input)
1396
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1397
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1398
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1399
+ # input_ids based on the past_length.
1400
+ elif past_length < input_ids.shape[1]:
1401
+ input_ids = input_ids[:, past_length:]
1402
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1403
+
1404
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1405
+ if (
1406
+ max_cache_length is not None
1407
+ and attention_mask is not None
1408
+ and cache_length + input_ids.shape[1] > max_cache_length
1409
+ ):
1410
+ attention_mask = attention_mask[:, -max_cache_length:]
1411
+
1412
+ position_ids = kwargs.get("position_ids", None)
1413
+ if attention_mask is not None and position_ids is None:
1414
+ # create position_ids on the fly for batch generation
1415
+ position_ids = attention_mask.long().cumsum(-1) - 1
1416
+ position_ids.masked_fill_(attention_mask == 0, 1)
1417
+ if past_key_values:
1418
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1419
+
1420
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1421
+ if inputs_embeds is not None and past_key_values is None:
1422
+ model_inputs = {"inputs_embeds": inputs_embeds}
1423
+ else:
1424
+ model_inputs = {"input_ids": input_ids}
1425
+
1426
+ model_inputs.update(
1427
+ {
1428
+ "position_ids": position_ids,
1429
+ "past_key_values": past_key_values,
1430
+ "use_cache": kwargs.get("use_cache"),
1431
+ "attention_mask": attention_mask,
1432
+ }
1433
+ )
1434
+ return model_inputs
1435
+
1436
+ @staticmethod
1437
+ def _reorder_cache(past_key_values, beam_idx):
1438
+ reordered_past = ()
1439
+ for layer_past in past_key_values:
1440
+ reordered_past += (
1441
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1442
+ )
1443
+ return reordered_past
special_tokens_map.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<role>",
4
+ "</role>",
5
+ "<|arithmetic_start|>",
6
+ "<|arithmetic_end|>",
7
+ "<|number_start|>",
8
+ "<|number_end|>"
9
+ ],
10
+ "bos_token": {
11
+ "content": "<|startoftext|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ "cls_token": {
18
+ "content": "[CLS]",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "eos_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "pad_token": {
32
+ "content": "<|endoftext|>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ }
38
+ }
tokenization_bailing.py ADDED
@@ -0,0 +1,1068 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # coding=utf-8
3
+ # Copyright (c) Ant Group. All rights reserved.
4
+
5
+ import itertools
6
+ from typing import Any, Dict, List, Optional, Union
7
+
8
+ import torch
9
+ from transformers import PreTrainedTokenizerFast
10
+ from transformers.tokenization_utils_base import AddedToken, BatchEncoding
11
+ from transformers.utils import TensorType, logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ def is_system(msg):
17
+ return msg['role'].lower() == 'system'
18
+
19
+
20
+ def is_user(msg):
21
+ return msg['role'].lower() in ['human', 'user']
22
+
23
+
24
+ def is_assistant(msg):
25
+ return msg['role'].lower() == 'assistant'
26
+
27
+
28
+ def _convert_to_conversation(query, system=None):
29
+ conversation = []
30
+ if system:
31
+ conversation.append({"role": "SYSTEM", "content": system})
32
+ if isinstance(query, str):
33
+ conversation.append({"role": "HUMAN", "content": query})
34
+ elif isinstance(query, List):
35
+ conversation.extend(query)
36
+ elif isinstance(query, Dict):
37
+ if "messages" in query:
38
+ conversation.extend(query["messages"])
39
+ if "system_message" in query and len(conversation) > 0 and not is_system(conversation[0]):
40
+ conversation.insert(0, {"role": "SYSTEM", "content": query["system_message"]})
41
+ else:
42
+ conversation.append(query)
43
+ return conversation
44
+
45
+
46
+ class BailingTokenizer(PreTrainedTokenizerFast):
47
+ is_bailing_tokenizer = True
48
+ model_input_names = ["input_ids", "attention_mask"]
49
+ slow_tokenizer_class = None
50
+
51
+ # add gmask_token
52
+ SPECIAL_TOKENS_ATTRIBUTES = [
53
+ "bos_token",
54
+ "eos_token",
55
+ "unk_token",
56
+ "sep_token",
57
+ "pad_token",
58
+ "cls_token",
59
+ "mask_token",
60
+ "gmask_token",
61
+ "additional_special_tokens",
62
+ ]
63
+
64
+ def __init__(
65
+ self,
66
+ vocab_file=None,
67
+ merges_file=None,
68
+ tokenizer_file=None,
69
+ clean_up_tokenization_spaces=False,
70
+ bos_token="<|startoftext|>",
71
+ eos_token="<|endoftext|>",
72
+ cls_token="[CLS]",
73
+ pad_token="<|endoftext|>",
74
+ gmask_token="[gMASK]",
75
+ add_bos_token=False,
76
+ add_eos_token=False,
77
+ **kwargs,
78
+ ):
79
+ self.add_bos_token = add_bos_token
80
+
81
+ self._gmask_token = (
82
+ AddedToken(gmask_token, lstrip=False, rstrip=False, normalized=False)
83
+ if isinstance(gmask_token, str)
84
+ else gmask_token
85
+ )
86
+
87
+ self._sop_token = (
88
+ AddedToken(bos_token, lstrip=False, rstrip=False, normalized=False)
89
+ if isinstance(bos_token, str)
90
+ else bos_token
91
+ )
92
+
93
+ self._eop_token = (
94
+ AddedToken(eos_token, lstrip=False, rstrip=False, normalized=False)
95
+ if isinstance(eos_token, str)
96
+ else eos_token
97
+ )
98
+
99
+ super().__init__(
100
+ vocab_file=vocab_file,
101
+ merges_file=merges_file,
102
+ tokenizer_file=tokenizer_file,
103
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
104
+ bos_token=bos_token,
105
+ eos_token=eos_token,
106
+ cls_token=cls_token,
107
+ pad_token=pad_token,
108
+ gmask_token=gmask_token,
109
+ add_bos_token=add_bos_token,
110
+ add_eos_token=add_eos_token,
111
+ **kwargs,
112
+ )
113
+
114
+ self.check_special_tokens()
115
+
116
+ def check_special_tokens(self):
117
+ '''
118
+ eos_token, cls_token, mask_token
119
+ special tokens should init, check special token is not None
120
+ '''
121
+ for name, special_token in zip(
122
+ ['eos', 'bos', 'cls', 'gmask'],
123
+ [self.eos_token, self.bos_token, self.cls_token, self.gmask_token],
124
+ ):
125
+ assert special_token is not None, f'should init special token [{name}] in tokenizer_config.json'
126
+
127
+ @property
128
+ def gmask_token(self) -> Optional[str]:
129
+ if self._gmask_token is None:
130
+ if self.verbose:
131
+ logger.error("Using gmask_token, but it is not set yet.")
132
+ return None
133
+ return str(self._gmask_token)
134
+
135
+ @gmask_token.setter
136
+ def gmask_token(self, value):
137
+ if not isinstance(value, (str, AddedToken)) and value is not None:
138
+ raise ValueError("Cannot set a non-string value as the gmask token")
139
+ self._gmask_token = value
140
+
141
+ @property
142
+ def gmask_token_id(self) -> Optional[int]:
143
+ if self._gmask_token is None:
144
+ return None
145
+ return self.convert_tokens_to_ids(self.gmask_token)
146
+
147
+ @property
148
+ def sop_token(self) -> Optional[str]:
149
+ if self._sop_token is None:
150
+ if self.verbose:
151
+ logger.error("Using sop_token, but it is not set yet.")
152
+ return None
153
+ return str(self._sop_token)
154
+
155
+ @sop_token.setter
156
+ def sop_token(self, value):
157
+ if not isinstance(value, (str, AddedToken)) and value is not None:
158
+ raise ValueError("Cannot set a non-string value as the sop token")
159
+ self._sop_token = value
160
+
161
+ @property
162
+ def sop_token_id(self) -> Optional[int]:
163
+ if self._sop_token is None:
164
+ return None
165
+ return self.convert_tokens_to_ids(self.sop_token)
166
+
167
+ @property
168
+ def eop_token(self) -> Optional[str]:
169
+ if self._eop_token is None:
170
+ if self.verbose:
171
+ logger.error("Using eop_token, but it is not set yet.")
172
+ return None
173
+ return str(self._eop_token)
174
+
175
+ @eop_token.setter
176
+ def eop_token(self, value):
177
+ if not isinstance(value, (str, AddedToken)) and value is not None:
178
+ raise ValueError("Cannot set a non-string value as the eop token")
179
+ self._eop_token = value
180
+
181
+ @property
182
+ def eop_token_id(self) -> Optional[int]:
183
+ if self._eop_token is None:
184
+ return None
185
+ return self.convert_tokens_to_ids(self.eop_token)
186
+
187
+ @property
188
+ def vocab_size(self):
189
+ return len(self.get_vocab())
190
+
191
+ def _chat_from_json(self, chat, chat_format="antglm_chat", system=None):
192
+ msgs = chat if "messages" not in chat else chat["messages"]
193
+ _msgs = []
194
+ sys_msg = None
195
+ for msg in msgs:
196
+ if is_system(msg):
197
+ sys_msg = msg['content']
198
+ else:
199
+ _msgs.append(msg)
200
+ chat = {"messages": _msgs}
201
+ system = system or sys_msg
202
+ if system:
203
+ chat['system_message'] = system
204
+ from .chat_format import Chat
205
+
206
+ return Chat.from_json(chat, name=chat_format)
207
+
208
+ def apply_chat_template(
209
+ self,
210
+ conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]]],
211
+ tools: Optional[List[Dict]] = None,
212
+ documents: Optional[List[Dict[str, str]]] = None,
213
+ chat_template: Optional[str] = None,
214
+ add_generation_prompt: bool = False,
215
+ system: str = None, # only used for legacy chatml
216
+ tokenize=False,
217
+ padding: bool = False,
218
+ truncation: bool = False,
219
+ max_length: Optional[int] = None,
220
+ return_tensors: Optional[Union[str, TensorType]] = None,
221
+ return_dict: bool = False,
222
+ return_assistant_tokens_mask: bool = False,
223
+ tokenizer_kwargs: Optional[Dict[str, Any]] = None,
224
+ **kwargs,
225
+ ):
226
+ if hasattr(self, "chat_template") and self.chat_template:
227
+ if isinstance(conversation, Dict) and "messages" in conversation:
228
+ conversation = conversation["messages"]
229
+ # use transformers built-in method
230
+ return super().apply_chat_template(
231
+ conversation=conversation,
232
+ tools=tools,
233
+ documents=documents,
234
+ chat_template=chat_template,
235
+ add_generation_prompt=add_generation_prompt,
236
+ tokenize=tokenize,
237
+ padding=padding,
238
+ truncation=truncation,
239
+ return_tensors=return_tensors,
240
+ return_dict=return_dict,
241
+ return_assistant_tokens_mask=return_assistant_tokens_mask,
242
+ tokenizer_kwargs=tokenizer_kwargs,
243
+ )
244
+
245
+ # 非chat_template方式后续将不再支持。
246
+ logger.warning("Please set chat_template in tokenizer_config.json!")
247
+
248
+ chat_format = kwargs.get('chat_format', 'antglm_chat')
249
+
250
+ is_batched = False
251
+
252
+ if isinstance(conversation, List) and (
253
+ isinstance(conversation[0], (list, tuple)) or "messages" in conversation[0]
254
+ ):
255
+ conversations = conversation
256
+ is_batched = True
257
+
258
+ if not is_batched:
259
+ conversations = [conversation]
260
+
261
+ rendered = []
262
+ for chat in conversations:
263
+ rendered_chat = self._chat_from_json(chat, chat_format=chat_format, system=system).prompt_str
264
+ rendered.append(rendered_chat)
265
+
266
+ if not is_batched:
267
+ rendered = rendered[0]
268
+
269
+ if tokenize:
270
+ out = self(
271
+ rendered,
272
+ padding=padding,
273
+ truncation=truncation,
274
+ max_length=max_length,
275
+ add_special_tokens=False,
276
+ return_tensors=return_tensors,
277
+ )
278
+ if return_dict:
279
+ return out
280
+ else:
281
+ return out["input_ids"]
282
+ else:
283
+ return rendered
284
+
285
+ def _build_position_ids(
286
+ self,
287
+ mask_pos: int,
288
+ bos_pos: int,
289
+ max_output_length: int,
290
+ rotary_type: Optional[str] = "none",
291
+ **kwargs,
292
+ ) -> List[List[int]]:
293
+ window_size = kwargs.get("window_size", 1024) - 1
294
+ block_position_ids = [0] * bos_pos
295
+
296
+ # 获得mask所在的位置,用于后面output positionid的构造
297
+ if "1d" in rotary_type:
298
+ position_ids = list(range(bos_pos)) + list(range(mask_pos + 1, mask_pos + max_output_length + 2))
299
+ block_position_ids = block_position_ids + list(range(1, max_output_length + 2))
300
+ elif "2d" in rotary_type:
301
+ # 后面input_ids要加一个bos_id
302
+ position_ids = list(range(bos_pos))
303
+ position_ids = position_ids + [mask_pos] * (1 + max_output_length)
304
+ block_position_ids = block_position_ids + list(range(1, max_output_length + 2))
305
+ else:
306
+ # build position ids
307
+ position_ids = []
308
+ repeat_times = bos_pos // window_size
309
+ for _ in range(repeat_times):
310
+ position_ids += list(range(window_size))
311
+ position_ids += list(range(bos_pos - window_size * repeat_times))
312
+ # need consider additional bos_id after input_ids
313
+ mask_pos = position_ids[-1]
314
+ position_ids += [mask_pos] * (max_output_length + 1)
315
+
316
+ block_repeat_times = max_output_length // (window_size - 1)
317
+ additional_block_position_ids = []
318
+ for _ in range(block_repeat_times):
319
+ additional_block_position_ids += list(range(1, window_size))
320
+ additional_block_position_ids += list(
321
+ range(1, max_output_length + 2 - (window_size - 1) * block_repeat_times)
322
+ )
323
+ block_position_ids = block_position_ids + additional_block_position_ids
324
+
325
+ position_ids = [position_ids, block_position_ids]
326
+ return position_ids
327
+
328
+ def _build_inputs_for_generation(
329
+ self,
330
+ input_ids: List[int],
331
+ max_input_length=None,
332
+ left_truncate=True,
333
+ max_output_length=1024,
334
+ rotary_type="none",
335
+ unidirectional_attention: bool = True,
336
+ attention_dtype=None,
337
+ **kwargs,
338
+ ):
339
+ if max_input_length and len(input_ids) > max_input_length:
340
+ if left_truncate:
341
+ input_ids = input_ids[-max_input_length:]
342
+ else:
343
+ input_ids = input_ids[:max_input_length]
344
+
345
+ is_left_padding = input_ids[0] == self.eos_token_id
346
+ if not unidirectional_attention:
347
+ if input_ids[0] != self.cls_token_id:
348
+ input_ids = [self.cls_token_id] + input_ids
349
+
350
+ if self.gmask_token_id not in set(input_ids):
351
+ input_ids = input_ids + [self.gmask_token_id]
352
+
353
+ mask_pos = input_ids.index(self.gmask_token_id)
354
+ sep = len(input_ids)
355
+ else:
356
+ if self.add_bos_token:
357
+ input_ids = input_ids + [self.bos_token_id]
358
+ if self.eos_token_id in input_ids:
359
+ mask_pos = input_ids.index(self.eos_token_id) - 1
360
+ else:
361
+ mask_pos = len(input_ids) - 1
362
+ sep = len(input_ids) - 1
363
+ else:
364
+ sep = len(input_ids)
365
+ if self.eos_token_id in input_ids:
366
+ if is_left_padding:
367
+ ori_input_ids = input_ids
368
+ input_ids = input_ids[::-1]
369
+ mask_pos = input_ids.index(self.eos_token_id) - 1
370
+ mask_pos = max(0, mask_pos) # for empty sequence
371
+ if is_left_padding:
372
+ input_ids = ori_input_ids
373
+ mask_pos = sep - 1 - mask_pos # the first non-eos token
374
+
375
+ else:
376
+ mask_pos = len(input_ids) - 1
377
+
378
+ position_ids = self._build_position_ids(mask_pos, sep, max_output_length, rotary_type, **kwargs)
379
+
380
+ if is_left_padding:
381
+ position_ids[0] = [max(0, i - mask_pos) for i in range(len(position_ids[0]))]
382
+
383
+ # 后面input_ids要加一个bos_id
384
+ total_length = sep + max_output_length
385
+ if self.add_bos_token:
386
+ total_length += 1
387
+
388
+ def build_mask_matrix(seq_length, sep, mask_pos, unidirectional_attention):
389
+ # 长序列使用bool类型节省显存
390
+ if unidirectional_attention:
391
+ attention_mask = torch.ones([seq_length, seq_length], dtype=attention_dtype)
392
+ attention_mask = torch.tril(attention_mask)
393
+ if is_left_padding:
394
+ attention_mask[:, :mask_pos] = 0
395
+ else:
396
+ attention_mask[:, mask_pos + 1 : sep] = 0
397
+ else:
398
+ attention_mask = torch.zeros([seq_length, seq_length], dtype=attention_dtype)
399
+ attention_mask[:, : mask_pos + 1] = 1
400
+ for i in range(sep, total_length):
401
+ attention_mask[i, sep : i + 1] = 1
402
+ return attention_mask
403
+
404
+ if self.add_bos_token:
405
+ attention_mask = build_mask_matrix(total_length, sep + 1, mask_pos, unidirectional_attention)
406
+ else:
407
+ attention_mask = build_mask_matrix(total_length, sep, mask_pos, unidirectional_attention)
408
+ attention_mask = torch.unsqueeze(attention_mask, dim=0)
409
+ attention_mask = torch.unsqueeze(attention_mask, dim=1)
410
+ if attention_dtype is None:
411
+ attention_mask = attention_mask.long()
412
+ inputs = {
413
+ "input_ids": torch.Tensor([input_ids]).long(),
414
+ "position_ids": torch.Tensor([position_ids]).long(),
415
+ "attention_mask": attention_mask,
416
+ }
417
+ return BatchEncoding(inputs)
418
+
419
+ def build_inputs_for_generation(
420
+ self,
421
+ input_ids: Union[List[int], List[List[int]], torch.Tensor],
422
+ max_input_length=None,
423
+ left_truncate=True,
424
+ max_output_length=1024,
425
+ rotary_type="1d",
426
+ unidirectional_attention=True,
427
+ attention_dtype=None,
428
+ **kwargs,
429
+ ):
430
+ if isinstance(input_ids, torch.Tensor):
431
+ input_ids = input_ids.tolist()
432
+
433
+ if isinstance(input_ids[0], list):
434
+ input_ids_list = []
435
+ position_ids_list = []
436
+ attention_mask_list = []
437
+ for _input_ids in input_ids:
438
+ inputs = self._build_inputs_for_generation(
439
+ _input_ids,
440
+ max_input_length=max_input_length,
441
+ left_truncate=left_truncate,
442
+ max_output_length=max_output_length,
443
+ rotary_type=rotary_type,
444
+ unidirectional_attention=unidirectional_attention,
445
+ attention_dtype=attention_dtype,
446
+ **kwargs,
447
+ )
448
+ input_ids_list.append(inputs['input_ids'])
449
+ position_ids_list.append(inputs['position_ids'])
450
+ attention_mask_list.append(inputs["attention_mask"])
451
+
452
+ max_ids_length = max([input.size(1) for input in input_ids_list])
453
+
454
+ for i in range(len(input_ids)):
455
+ cur_ids_length = input_ids_list[i].size(1)
456
+ if cur_ids_length < max_ids_length:
457
+ # pad input ids
458
+ pad_input_ids = input_ids_list[i].new_zeros((1, max_ids_length - cur_ids_length))
459
+ input_ids_list[i] = torch.cat([pad_input_ids, input_ids_list[i]], dim=-1)
460
+
461
+ # pad postition ids with left pad
462
+ # 0, 1, 2, 3, 4 ... -> 0, ..., 0, 1, 2, 3, 4, ...
463
+ pad_position_ids = input_ids_list[i].new_zeros((1, 2, max_ids_length - cur_ids_length))
464
+ position_ids_list[i] = torch.cat([pad_position_ids, position_ids_list[i]], dim=-1)
465
+
466
+ # pad generation attention mask with left and bottom pad
467
+ new_attention_mask = input_ids_list[i].new_zeros(
468
+ 1,
469
+ 1,
470
+ max_ids_length + max_output_length,
471
+ max_ids_length + max_output_length,
472
+ )
473
+ new_attention_mask[
474
+ :,
475
+ :,
476
+ max_ids_length - cur_ids_length :,
477
+ max_ids_length - cur_ids_length :,
478
+ ] = attention_mask_list[i]
479
+ attention_mask_list[i] = new_attention_mask.contiguous()
480
+
481
+ input_ids_list = torch.cat(input_ids_list, dim=0)
482
+ position_ids_list = torch.cat(position_ids_list, dim=0)
483
+ attention_mask_list = torch.cat(attention_mask_list, dim=0)
484
+
485
+ inputs = {
486
+ "input_ids": input_ids_list,
487
+ "position_ids": position_ids_list,
488
+ "attention_mask": attention_mask_list,
489
+ }
490
+
491
+ return BatchEncoding(inputs)
492
+ else:
493
+ return self._build_inputs_for_generation(
494
+ input_ids,
495
+ max_input_length=max_input_length,
496
+ left_truncate=left_truncate,
497
+ max_output_length=max_output_length,
498
+ rotary_type=rotary_type,
499
+ unidirectional_attention=unidirectional_attention,
500
+ **kwargs,
501
+ )
502
+
503
+ def _build_inputs_for_train(
504
+ self,
505
+ inputs: Union[str, List[str]],
506
+ outputs: Union[str, List[str]],
507
+ new_conversation_offset: List[int] = None,
508
+ max_length: int = 2048,
509
+ rotary_type: str = "1d",
510
+ left_truncate: bool = True,
511
+ unidirectional_attention: bool = True,
512
+ isolation_position_ids: bool = False,
513
+ padding: bool = True,
514
+ use_fa2: bool = True,
515
+ use_packed: bool = True,
516
+ use_baichuan_packed: bool = False,
517
+ skip_truncated_turn: bool = False,
518
+ return_attention_mask: bool = True,
519
+ ):
520
+ r"""
521
+ Build tensor input for model training. If inputs and outputs are list, will pack them.
522
+
523
+ Args:
524
+ inputs (str, List[str], List[Dict], List[List[Dict]]): the input prompts.
525
+ outputs (str, List[str]): the output responses.
526
+ max_length (int, Optional): the maximum length of the final input ids for training. Default: 2048
527
+ rotary_type (str, Optional): the rotary type of position embedding. Default: 1d
528
+ left_truncate (bool, Optional): whether truncate the inputs from left. Default: True
529
+ use_fa2 (bool, Optional): whether to build attention mask under flash attention 2.
530
+ new_conversation_offset (List[int], Optional): 第idx条样本是全新的对话,[0, 1]代表:inputs[0]和outputs[0]是一个对话,inputs[1]和outputs[1]是一个对话.
531
+ """
532
+ if use_packed and use_baichuan_packed and unidirectional_attention:
533
+ return self._build_baichuan_inputs_for_train(
534
+ inputs,
535
+ outputs,
536
+ new_conversation_offset,
537
+ max_length,
538
+ rotary_type,
539
+ left_truncate,
540
+ skip_truncated_turn,
541
+ use_fa2,
542
+ padding,
543
+ )
544
+ if isinstance(inputs, str):
545
+ inputs = [inputs]
546
+ if isinstance(outputs, str):
547
+ outputs = [outputs]
548
+
549
+ assert len(inputs) == len(outputs)
550
+
551
+ input_ids = [self(item)['input_ids'] for item in inputs]
552
+ output_ids = [self(item)['input_ids'] for item in outputs]
553
+
554
+ packed_input_ids = []
555
+ packed_output_ids = []
556
+ if new_conversation_offset is None:
557
+ new_conversation_offset = list(range(0, len(inputs)))
558
+ assert 0 in new_conversation_offset, f"没有0,请检查new_conversation_offset: {new_conversation_offset}"
559
+ current_len = 0
560
+
561
+ for idx, (input, output) in enumerate(zip(input_ids, output_ids)):
562
+ num_special_tokens = 0
563
+ if not unidirectional_attention:
564
+ if idx in new_conversation_offset:
565
+ # cls and gmask
566
+ num_special_tokens += 2
567
+ else:
568
+ # only gmask
569
+ num_special_tokens += 1
570
+ else:
571
+ # sop and eos
572
+ if self.add_bos_token:
573
+ num_special_tokens += 2
574
+ else:
575
+ num_special_tokens += 1
576
+
577
+ # truncate
578
+ if len(input) + len(output) + current_len > max_length - num_special_tokens:
579
+ if not use_packed or use_fa2 and unidirectional_attention:
580
+ attention_mask = torch.tensor(0)
581
+ elif use_fa2:
582
+ attention_mask = -1 * torch.ones([2, max_length])
583
+ else:
584
+ attention_mask = torch.tril(torch.ones([max_length, max_length]))
585
+ # 返回一个空的样本,该样本不参与训练
586
+ default_return = {
587
+ 'input_ids': (torch.ones(max_length) * self.eos_token_id).long(),
588
+ 'position_ids': torch.zeros(2, max_length).long(),
589
+ 'attention_mask': (attention_mask.long()),
590
+ 'labels': (torch.ones(max_length) * -100).long(),
591
+ }
592
+ # 如果不截断,直接返回
593
+ if skip_truncated_turn:
594
+ if current_len == 0:
595
+ return default_return
596
+ else:
597
+ break
598
+ left_len = max_length - num_special_tokens - current_len
599
+ # 如果截断,只截断prompt
600
+ if left_len - len(output) > 0:
601
+ if left_truncate:
602
+ input = input[-(left_len - len(output)) :]
603
+ else:
604
+ input = input[: left_len - len(output)]
605
+ else:
606
+ # response超过left_len,直接返回
607
+ if current_len == 0:
608
+ return default_return
609
+ else:
610
+ break
611
+ if unidirectional_attention:
612
+ packed_input_ids.append(list(input))
613
+ else:
614
+ if num_special_tokens == 4:
615
+ packed_input_ids.append([self.cls_token_id] + list(input) + [self.gmask_token_id])
616
+ else:
617
+ packed_input_ids.append(list(input) + [self.gmask_token_id])
618
+
619
+ packed_output_ids.append(list(output) + [self.eos_token_id])
620
+ current_len += len(input) + len(output) + num_special_tokens
621
+
622
+ assert current_len <= max_length
623
+
624
+ if use_packed:
625
+ # pack模式
626
+ def build_mask_matrix(seq_length, sep):
627
+ # https://github.com/pytorch/pytorch/issues/101932, fix triu/tril bf16 support
628
+ m = torch.ones((1, seq_length, seq_length))
629
+ mask = torch.arange(1, m.shape[-1] + 1).reshape(1, -1, 1).to(m.device)
630
+ ids = torch.arange(1, m.shape[-1] + 1).reshape(1, 1, -1).expand(1, m.shape[-1], -1).to(m.device)
631
+ m = (ids <= mask).type_as(m)
632
+
633
+ m[0, :, : int(sep)] = 1
634
+ m = m.squeeze(0)
635
+ return m
636
+
637
+ tokens = []
638
+ attention_mask_list = []
639
+ input_length_list = []
640
+ position_id_list = []
641
+ block_position_id_list = []
642
+ for input, output in zip(packed_input_ids, packed_output_ids):
643
+ if self.add_bos_token:
644
+ data = input + [self.sop_token_id] + output
645
+ mask_pos = len(input) - 1
646
+ else:
647
+ data = input + output
648
+ mask_pos = len(input) - 2
649
+ if return_attention_mask:
650
+ if unidirectional_attention:
651
+ attention_mask = build_mask_matrix(len(data), 0)
652
+ else:
653
+ attention_mask = build_mask_matrix(len(data), len(input))
654
+ attention_mask = attention_mask.squeeze((0, 1))
655
+
656
+ attention_mask_list.append(attention_mask)
657
+ input_length_list.append(len(input))
658
+ tokens += data
659
+
660
+ sop_pos = mask_pos + 1
661
+ position_ids, block_position_ids = self._build_position_ids(
662
+ mask_pos=mask_pos, bos_pos=sop_pos, max_output_length=len(output), rotary_type=rotary_type
663
+ )
664
+
665
+ position_id_list.append(position_ids)
666
+ block_position_id_list.append(block_position_ids)
667
+
668
+ labels = []
669
+ for i in range(len(packed_input_ids)):
670
+ if self.add_bos_token:
671
+ labels += [-100] * len(packed_input_ids[i]) + packed_output_ids[i] + [-100]
672
+ else:
673
+ labels += [-100] * (len(packed_input_ids[i]) - 1) + packed_output_ids[i] + [-100]
674
+
675
+ total_len = 0
676
+ if use_fa2:
677
+ pack_attention_mask = -1 * torch.ones([2, current_len])
678
+ else:
679
+ pack_attention_mask = torch.tril(torch.ones([current_len, current_len]))
680
+
681
+ pack_position_ids = []
682
+ pack_block_position_ids = []
683
+ total_len = 0
684
+ max_index = 0
685
+ for i in range(len(position_id_list)):
686
+
687
+ if use_fa2:
688
+ pack_attention_mask[0][i] = total_len
689
+ pack_attention_mask[1][i] = total_len + input_length_list[i]
690
+ else:
691
+ pack_attention_mask[
692
+ total_len : total_len + attention_mask.shape[0],
693
+ total_len : total_len + attention_mask.shape[0],
694
+ ] = attention_mask
695
+ position_ids = [pid + max_index for pid in position_id_list[i]]
696
+ block_position_ids = block_position_id_list[i]
697
+ pack_position_ids.extend(position_ids)
698
+ pack_block_position_ids.extend(block_position_ids)
699
+ if not isolation_position_ids:
700
+ max_index = pack_position_ids[-1] + 1
701
+ total_len += len(position_id_list[i])
702
+ position_ids = [pack_position_ids, pack_block_position_ids]
703
+ else:
704
+ # 单输入模式
705
+ # 真多轮下,一条样本可能会有好几轮对话,此时需要获取第一条样本的结束位置
706
+ if len(new_conversation_offset) > 1:
707
+ end_idx = new_conversation_offset[1]
708
+ else:
709
+ end_idx = 1
710
+ input, output = list(itertools.chain(*packed_input_ids[:end_idx])), list(
711
+ itertools.chain(*packed_output_ids[:end_idx])
712
+ )
713
+ if self.add_bos_token:
714
+ tokens = input + [self.sop_token_id] + output
715
+ else:
716
+ tokens = input + output
717
+
718
+ if self.add_bos_token:
719
+ labels = [-100] * len(input) + output + [-100]
720
+ position_ids = self._build_position_ids(
721
+ mask_pos=len(input) - 1, bos_pos=len(input), max_output_length=len(output), rotary_type=rotary_type
722
+ )
723
+ else:
724
+ labels = [-100] * (len(input) - 1) + output + [-100]
725
+ position_ids = self._build_position_ids(
726
+ mask_pos=len(input) - 2,
727
+ bos_pos=len(input) - 1,
728
+ max_output_length=len(output),
729
+ rotary_type=rotary_type,
730
+ )
731
+ attention_mask = len(input)
732
+ assert current_len == len(tokens)
733
+
734
+ # 最大长度补全
735
+ if max_length > 0 and len(tokens) < max_length and padding:
736
+ pad_length = max_length - len(tokens)
737
+ tokens += [self.pad_token_id] * pad_length
738
+ labels.extend([-100] * pad_length)
739
+ position_ids[0] += [0] * pad_length
740
+ position_ids[1] += [0] * pad_length
741
+
742
+ if use_packed:
743
+ if use_fa2:
744
+ new_attention_mask = -1 * torch.ones([2, max_length])
745
+ new_attention_mask[:, :current_len] = pack_attention_mask
746
+ else:
747
+ new_attention_mask = torch.tril(torch.ones([max_length, max_length]))
748
+ new_attention_mask[:current_len, :current_len] = pack_attention_mask
749
+ pack_attention_mask = new_attention_mask.contiguous()
750
+
751
+ assert len(tokens) == len(labels)
752
+
753
+ if max_length > 0 and padding:
754
+ assert len(tokens) == max_length
755
+
756
+ if use_fa2 and unidirectional_attention:
757
+ # pack_attention_mask = torch.zeros([1], dtype=torch.long)
758
+ pack_attention_mask = torch.tensor(0)
759
+
760
+ if use_packed:
761
+ if not use_fa2:
762
+ attention_mask = pack_attention_mask.unsqueeze(0).long()
763
+ else:
764
+ attention_mask = pack_attention_mask
765
+ else:
766
+ attention_mask = torch.tensor(attention_mask).long()
767
+ return {
768
+ 'input_ids': torch.tensor(tokens).long(),
769
+ 'position_ids': torch.tensor(position_ids).long(),
770
+ 'attention_mask': attention_mask,
771
+ 'labels': torch.tensor(labels).long(),
772
+ }
773
+
774
+ def _build_baichuan_inputs_for_train(
775
+ self,
776
+ inputs: Union[str, List[str]],
777
+ outputs: Union[str, List[str]],
778
+ new_conversation_offset: List[int] = None,
779
+ max_length: int = 2048,
780
+ rotary_type: str = "1d",
781
+ left_truncate: bool = True,
782
+ skip_truncated_turn: bool = True,
783
+ use_fa2: bool = True,
784
+ padding: bool = True,
785
+ ):
786
+ '''
787
+ input: <role> HUMAN </role> u1 <role> ASSISTANT </role> a11 a12 <role> HUMAN </role> u2 <role> ASSISTANT </role> a21 a22 <|endoftext|> <role> HUMAN </role> u1 <role> ASSISTANT </role> a11 a12 <role> HUMAN </role> u2 <role> ASSISTANT </role> a21 a22 <|endoftext|>
788
+ output: x x x x x x a11 a12 <|endoftext|> x x x x x x a21 a22 <|endoftext|> x x x x x x x a11 a12 <|endoftext|> x x x x x x a21 a22 <|endoftext|> x
789
+ 只适用真多轮+pack数据训练单向模型,需要打开use_true_multiturn
790
+ '''
791
+ if isinstance(inputs, str):
792
+ inputs = [inputs]
793
+ if isinstance(outputs, str):
794
+ outputs = [outputs]
795
+ assert len(inputs) == len(outputs)
796
+
797
+ input_ids = [self(item)['input_ids'] for item in inputs]
798
+ output_ids = [self(item)['input_ids'] for item in outputs]
799
+
800
+ packed_input_ids = []
801
+ packed_output_ids = []
802
+
803
+ if new_conversation_offset is None:
804
+ new_conversation_offset = list(range(0, len(inputs)))
805
+ assert 0 in new_conversation_offset, f"没有0,请检查new_conversation_offset: {new_conversation_offset}"
806
+ current_len = 0
807
+
808
+ for idx, (input, output) in enumerate(zip(input_ids, output_ids)):
809
+ num_special_tokens = 0
810
+ if idx != 0 and idx in new_conversation_offset:
811
+ # 在input_ids加入eos,只有第0条样本不加
812
+ num_special_tokens += 1
813
+
814
+ # truncate
815
+ if len(input) + len(output) + current_len > max_length - num_special_tokens:
816
+ if use_fa2:
817
+ attention_mask = torch.tensor(0)
818
+ else:
819
+ attention_mask = torch.tril(torch.ones([max_length, max_length]))
820
+ # 返回一个空的样本,该样本不参与训练
821
+ default_return = {
822
+ 'input_ids': (torch.ones(max_length) * self.eos_token_id).long(),
823
+ 'position_ids': torch.zeros(2, max_length).long(),
824
+ 'attention_mask': (attention_mask.long()),
825
+ 'labels': (torch.ones(max_length) * -100).long(),
826
+ }
827
+
828
+ # 如果不截断,直接返回
829
+ if skip_truncated_turn:
830
+ if current_len == 0:
831
+ return default_return
832
+ else:
833
+ break
834
+ left_len = max_length - num_special_tokens - current_len
835
+ # 如果截断,只截断prompt
836
+ if left_len - len(output) > 0:
837
+ if left_truncate:
838
+ input = input[-(left_len - len(output)) :]
839
+ else:
840
+ input = input[: left_len - len(output)]
841
+ else:
842
+ # response超过left_len,直接返回
843
+ if current_len == 0:
844
+ return default_return
845
+ else:
846
+ break
847
+ # 这里拼的是input_ids
848
+ if num_special_tokens == 1:
849
+ packed_input_ids.append([self.eos_token_id] + list(input))
850
+ else:
851
+ packed_input_ids.append(list(input))
852
+ packed_output_ids.append(list(output))
853
+ current_len += len(input) + len(output) + num_special_tokens
854
+ assert current_len <= max_length
855
+
856
+ def build_mask_matrix(seq_length, sep):
857
+ # https://github.com/pytorch/pytorch/issues/101932, fix triu/tril bf16 support
858
+ m = torch.ones((1, seq_length, seq_length))
859
+ mask = torch.arange(1, m.shape[-1] + 1).reshape(1, -1, 1).to(m.device)
860
+ ids = torch.arange(1, m.shape[-1] + 1).reshape(1, 1, -1).expand(1, m.shape[-1], -1).to(m.device)
861
+ m = (ids <= mask).type_as(m)
862
+
863
+ m[0, :, : int(sep)] = 1
864
+ m = m.squeeze(0)
865
+ return m
866
+
867
+ tokens = []
868
+ attention_mask_list = []
869
+ position_id_list = []
870
+ block_position_id_list = []
871
+ token_lens = []
872
+ for input, output in zip(packed_input_ids, packed_output_ids):
873
+ data = input + output
874
+ if not use_fa2:
875
+ attention_mask = build_mask_matrix(len(data), 0)
876
+ attention_mask_list.append(attention_mask)
877
+ tokens += data
878
+ token_lens.append(len(data))
879
+
880
+ position_ids, block_position_ids = self._build_position_ids(
881
+ mask_pos=len(input) - 2, bos_pos=len(input) - 1, max_output_length=len(output), rotary_type=rotary_type
882
+ )
883
+
884
+ position_id_list.append(position_ids)
885
+ block_position_id_list.append(block_position_ids)
886
+
887
+ labels = []
888
+ for i in range(len(packed_input_ids)):
889
+ labels += [-100] * (len(packed_input_ids[i]) - 1) + packed_output_ids[i] + [self.eos_token_id]
890
+
891
+ total_len = 0
892
+ if use_fa2:
893
+ pack_attention_mask = torch.Tensor([[0], [1]])
894
+ else:
895
+ pack_attention_mask = torch.tril(torch.ones([max_length, max_length]))
896
+
897
+ pack_position_ids = []
898
+ pack_block_position_ids = []
899
+ total_len = 0
900
+ max_index = 0
901
+ for i in range(len(token_lens)):
902
+ if not use_fa2:
903
+ attention_mask = attention_mask_list[i]
904
+ pack_attention_mask[
905
+ total_len : total_len + attention_mask.shape[0], total_len : total_len + attention_mask.shape[0]
906
+ ] = attention_mask
907
+ position_ids = [pid + max_index for pid in position_id_list[i]]
908
+ block_position_ids = block_position_id_list[i]
909
+ pack_position_ids.extend(position_ids)
910
+ pack_block_position_ids.extend(block_position_ids)
911
+ max_index = pack_position_ids[-1] + 1
912
+ total_len += token_lens[i]
913
+ position_ids = [pack_position_ids, pack_block_position_ids]
914
+
915
+ if max_length > 0 and len(tokens) < max_length and padding:
916
+ pad_length = max_length - len(tokens)
917
+ tokens += [self.pad_token_id] * pad_length
918
+ labels.extend([-100] * pad_length)
919
+ position_ids[0] += [0] * pad_length
920
+ position_ids[1] += [0] * pad_length
921
+
922
+ assert len(tokens) == len(labels)
923
+
924
+ if not use_fa2:
925
+ attention_mask = pack_attention_mask.unsqueeze(0).long()
926
+ else:
927
+ attention_mask = torch.tensor(0)
928
+ return {
929
+ 'input_ids': torch.tensor(tokens).long(),
930
+ 'position_ids': torch.tensor(position_ids).long(),
931
+ 'attention_mask': attention_mask,
932
+ 'labels': torch.tensor(labels).long(),
933
+ }
934
+
935
+ def build_inputs_for_train(
936
+ self,
937
+ data: Union[Dict, List[Dict]],
938
+ new_conversation_offset: List[int] = None,
939
+ chat_format="antglm_chat",
940
+ is_chat_format=True, # 如果传入的是字符串,用于说明是否已经是
941
+ use_true_multiturn=False,
942
+ max_length: int = 2048,
943
+ rotary_type: str = "1d",
944
+ left_truncate: bool = True,
945
+ unidirectional_attention: bool = True,
946
+ isolation_position_ids: bool = False,
947
+ padding: bool = True,
948
+ use_fa2: bool = True,
949
+ use_packed: bool = True,
950
+ use_baichuan_packed: bool = False,
951
+ skip_truncated_turn: bool = False,
952
+ return_attention_mask: bool = True,
953
+ ):
954
+ r"""
955
+ Build tensor input for model training. If inputs and outputs are list, will pack them.
956
+
957
+ Args:
958
+ inputs (str, List[str], List[Dict], List[List[Dict]]): the input prompts.
959
+ outputs (str, List[str]): the output responses.
960
+ new_conversation_offset (List[int]): the offset index of the new conversation turn.
961
+ is_chat_format (bool): whether the input is already chatml format
962
+ max_length (int, Optional): the maximum length of the final input ids for training. Default: 2048
963
+ rotary_type (str, Optional): the rotary type of position embedding. Default: 1d
964
+ left_truncate (bool, Optional): whether truncate the inputs from left. Default: True
965
+ use_fa2 (bool, Optional): whether to build attention mask under flash attention 2.
966
+ """
967
+ if isinstance(data, List):
968
+ # chatml list
969
+ _inputs = []
970
+ _outputs = []
971
+ new_conversation_offset = []
972
+ for _input in data:
973
+ if use_true_multiturn:
974
+ chat = self._chat_from_json(_input, chat_format=chat_format)
975
+ chat_data = chat.prompt_pack
976
+ new_conversation_offset.append(len(_inputs))
977
+ _inputs.extend(chat_data['input'])
978
+ _outputs.extend(chat_data['output'])
979
+ else:
980
+ _conversation = _convert_to_conversation(_input)
981
+ assert is_assistant(_conversation[-1])
982
+
983
+ _inputs.append(
984
+ self.apply_chat_template(_conversation[:-1], tokenize=False, add_generation_prompt=True)
985
+ )
986
+ _outputs.append(_conversation[-1]['content'])
987
+
988
+ return self._build_inputs_for_train(
989
+ inputs=_inputs,
990
+ outputs=_outputs,
991
+ new_conversation_offset=new_conversation_offset,
992
+ max_length=max_length,
993
+ rotary_type=rotary_type,
994
+ left_truncate=left_truncate,
995
+ unidirectional_attention=unidirectional_attention,
996
+ isolation_position_ids=isolation_position_ids,
997
+ padding=padding,
998
+ use_fa2=use_fa2,
999
+ use_packed=use_packed,
1000
+ use_baichuan_packed=use_baichuan_packed,
1001
+ skip_truncated_turn=skip_truncated_turn,
1002
+ return_attention_mask=return_attention_mask,
1003
+ )
1004
+ elif isinstance(data, Dict):
1005
+ if 'messages' in data:
1006
+ # chatml format
1007
+ if use_true_multiturn:
1008
+ chat = self._chat_from_json(data, chat_format=chat_format)
1009
+ chat_data = chat.prompt_pack
1010
+ else:
1011
+ _conversation = _convert_to_conversation(data)
1012
+ assert is_assistant(_conversation[-1])
1013
+
1014
+ chat_data = {
1015
+ "input": self.apply_chat_template(
1016
+ _conversation[:-1], tokenize=False, add_generation_prompt=True
1017
+ ),
1018
+ "output": _conversation[-1]['content'],
1019
+ }
1020
+
1021
+ return self._build_inputs_for_train(
1022
+ inputs=chat_data['input'],
1023
+ outputs=chat_data['output'],
1024
+ max_length=max_length,
1025
+ rotary_type=rotary_type,
1026
+ left_truncate=left_truncate,
1027
+ unidirectional_attention=unidirectional_attention,
1028
+ isolation_position_ids=isolation_position_ids,
1029
+ padding=padding,
1030
+ use_fa2=use_fa2,
1031
+ use_packed=use_packed,
1032
+ use_baichuan_packed=use_baichuan_packed,
1033
+ skip_truncated_turn=skip_truncated_turn,
1034
+ return_attention_mask=return_attention_mask,
1035
+ )
1036
+ else:
1037
+ inputs = data['input']
1038
+ outputs = data['output']
1039
+
1040
+ if isinstance(inputs, str):
1041
+ inputs = [inputs]
1042
+ if isinstance(outputs, str):
1043
+ outputs = [outputs]
1044
+
1045
+ if not is_chat_format and chat_format:
1046
+ inputs = [
1047
+ self.apply_chat_template(
1048
+ [{"role": "HUMAN", "content": item}], tokenize=False, chat_format=chat_format
1049
+ )
1050
+ for item in inputs
1051
+ ]
1052
+
1053
+ return self._build_inputs_for_train(
1054
+ inputs=inputs,
1055
+ outputs=outputs,
1056
+ new_conversation_offset=new_conversation_offset,
1057
+ max_length=max_length,
1058
+ rotary_type=rotary_type,
1059
+ left_truncate=left_truncate,
1060
+ unidirectional_attention=unidirectional_attention,
1061
+ isolation_position_ids=isolation_position_ids,
1062
+ padding=padding,
1063
+ use_fa2=use_fa2,
1064
+ use_packed=use_packed,
1065
+ use_baichuan_packed=use_baichuan_packed,
1066
+ skip_truncated_turn=skip_truncated_turn,
1067
+ return_attention_mask=return_attention_mask,
1068
+ )
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "126080": {
6
+ "content": "<|startoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "126081": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "126082": {
22
+ "content": "[CLS]",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "126083": {
30
+ "content": "[gMASK]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "126084": {
38
+ "content": "<|reserved_token_0|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "126085": {
46
+ "content": "<|reserved_token_1|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "126086": {
54
+ "content": "<|reserved_token_2|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "126087": {
62
+ "content": "<|reserved_token_3|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "126088": {
70
+ "content": "<|reserved_token_4|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "126089": {
78
+ "content": "<|reserved_token_5|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "126090": {
86
+ "content": "<|reserved_token_6|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "126091": {
94
+ "content": "<|reserved_token_7|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "126092": {
102
+ "content": "<|reserved_token_8|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "126093": {
110
+ "content": "<|reserved_token_9|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "126094": {
118
+ "content": "<|reserved_token_10|>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "126095": {
126
+ "content": "<|reserved_token_11|>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "126096": {
134
+ "content": "<|reserved_token_12|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "126097": {
142
+ "content": "<|reserved_token_13|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "126098": {
150
+ "content": "<|reserved_token_14|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "126099": {
158
+ "content": "<|reserved_token_15|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "126100": {
166
+ "content": "<|reserved_token_16|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "126101": {
174
+ "content": "<|reserved_token_17|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ },
181
+ "126102": {
182
+ "content": "<|reserved_token_18|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "126103": {
190
+ "content": "<|reserved_token_19|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "126104": {
198
+ "content": "<|reserved_token_20|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ },
205
+ "126105": {
206
+ "content": "<|reserved_token_21|>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": true
212
+ },
213
+ "126106": {
214
+ "content": "<|reserved_token_22|>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "126107": {
222
+ "content": "<|reserved_token_23|>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ },
229
+ "126108": {
230
+ "content": "<|reserved_token_24|>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": true
236
+ },
237
+ "126109": {
238
+ "content": "<|reserved_token_25|>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": true
244
+ },
245
+ "126110": {
246
+ "content": "<|reserved_token_26|>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": true
252
+ },
253
+ "126111": {
254
+ "content": "<|reserved_token_27|>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": true
260
+ },
261
+ "126112": {
262
+ "content": "<|reserved_token_28|>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": true
268
+ },
269
+ "126113": {
270
+ "content": "<|reserved_token_29|>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": true
276
+ },
277
+ "126114": {
278
+ "content": "<|reserved_token_30|>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": true
284
+ },
285
+ "126115": {
286
+ "content": "<|reserved_token_31|>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": true
292
+ },
293
+ "126116": {
294
+ "content": "<|reserved_token_32|>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": true
300
+ },
301
+ "126117": {
302
+ "content": "<|reserved_token_33|>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": true
308
+ },
309
+ "126118": {
310
+ "content": "<|reserved_token_34|>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": true
316
+ },
317
+ "126119": {
318
+ "content": "<|reserved_token_35|>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": true
324
+ },
325
+ "126120": {
326
+ "content": "<|reserved_token_36|>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": true
332
+ },
333
+ "126121": {
334
+ "content": "<|reserved_token_37|>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": true
340
+ },
341
+ "126122": {
342
+ "content": "<|reserved_token_38|>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": true
348
+ },
349
+ "126123": {
350
+ "content": "<|reserved_token_39|>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": true
356
+ },
357
+ "126124": {
358
+ "content": "<|reserved_token_40|>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": true
364
+ },
365
+ "126125": {
366
+ "content": "<|reserved_token_41|>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": true
372
+ },
373
+ "126126": {
374
+ "content": "<|reserved_token_42|>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": true
380
+ },
381
+ "126127": {
382
+ "content": "<|reserved_token_43|>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": true
388
+ },
389
+ "126128": {
390
+ "content": "<|reserved_token_44|>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": true
396
+ },
397
+ "126129": {
398
+ "content": "<|reserved_token_45|>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": true
404
+ },
405
+ "126130": {
406
+ "content": "<|reserved_token_46|>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": true
412
+ },
413
+ "126131": {
414
+ "content": "<|reserved_token_47|>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": true
420
+ },
421
+ "126132": {
422
+ "content": "<|reserved_token_48|>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": true
428
+ },
429
+ "126133": {
430
+ "content": "<|reserved_token_49|>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": true
436
+ },
437
+ "126134": {
438
+ "content": "<|reserved_token_50|>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": true
444
+ },
445
+ "126135": {
446
+ "content": "<|reserved_token_51|>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": true
452
+ },
453
+ "126136": {
454
+ "content": "<|reserved_token_52|>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": true
460
+ },
461
+ "126137": {
462
+ "content": "<|reserved_token_53|>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": true
468
+ },
469
+ "126138": {
470
+ "content": "<|reserved_token_54|>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": true
476
+ },
477
+ "126139": {
478
+ "content": "<|reserved_token_55|>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": true
484
+ },
485
+ "126140": {
486
+ "content": "<|reserved_token_56|>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": true
492
+ },
493
+ "126141": {
494
+ "content": "<|reserved_token_57|>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": true
500
+ },
501
+ "126142": {
502
+ "content": "<|reserved_token_58|>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": true
508
+ },
509
+ "126143": {
510
+ "content": "<|reserved_token_59|>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": true
516
+ },
517
+ "126144": {
518
+ "content": "<|reserved_token_60|>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": true
524
+ },
525
+ "126145": {
526
+ "content": "<|reserved_token_61|>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": true
532
+ },
533
+ "126146": {
534
+ "content": "<|reserved_token_62|>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": true
540
+ },
541
+ "126147": {
542
+ "content": "<|reserved_token_63|>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": true
548
+ },
549
+ "126148": {
550
+ "content": "<|reserved_token_64|>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": true
556
+ },
557
+ "126149": {
558
+ "content": "<|reserved_token_65|>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": true
564
+ },
565
+ "126150": {
566
+ "content": "<|reserved_token_66|>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": true
572
+ },
573
+ "126151": {
574
+ "content": "<|reserved_token_67|>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": true
580
+ },
581
+ "126152": {
582
+ "content": "<|reserved_token_68|>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": true
588
+ },
589
+ "126153": {
590
+ "content": "<|reserved_token_69|>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": true
596
+ },
597
+ "126154": {
598
+ "content": "<|reserved_token_70|>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": true
604
+ },
605
+ "126155": {
606
+ "content": "<|reserved_token_71|>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": true
612
+ },
613
+ "126156": {
614
+ "content": "<|reserved_token_72|>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": true
620
+ },
621
+ "126157": {
622
+ "content": "<|reserved_token_73|>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": true
628
+ },
629
+ "126158": {
630
+ "content": "<|reserved_token_74|>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": true
636
+ },
637
+ "126159": {
638
+ "content": "<|reserved_token_75|>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": true
644
+ },
645
+ "126160": {
646
+ "content": "<|reserved_token_76|>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": true
652
+ },
653
+ "126161": {
654
+ "content": "<|reserved_token_77|>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": true
660
+ },
661
+ "126162": {
662
+ "content": "<|reserved_token_78|>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": true
668
+ },
669
+ "126163": {
670
+ "content": "<|reserved_token_79|>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": true
676
+ },
677
+ "126164": {
678
+ "content": "<|reserved_token_80|>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": true
684
+ },
685
+ "126165": {
686
+ "content": "<|reserved_token_81|>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": true
692
+ },
693
+ "126166": {
694
+ "content": "<|reserved_token_82|>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": true
700
+ },
701
+ "126167": {
702
+ "content": "<|reserved_token_83|>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": true
708
+ },
709
+ "126168": {
710
+ "content": "<|reserved_token_84|>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": true
716
+ },
717
+ "126169": {
718
+ "content": "<|reserved_token_85|>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": true
724
+ },
725
+ "126170": {
726
+ "content": "<|reserved_token_86|>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": true
732
+ },
733
+ "126171": {
734
+ "content": "<|reserved_token_87|>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": true
740
+ },
741
+ "126172": {
742
+ "content": "<|reserved_token_88|>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": true
748
+ },
749
+ "126173": {
750
+ "content": "<|reserved_token_89|>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": true
756
+ },
757
+ "126174": {
758
+ "content": "<|reserved_token_90|>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": true
764
+ },
765
+ "126175": {
766
+ "content": "<|reserved_token_91|>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": true
772
+ },
773
+ "126176": {
774
+ "content": "<|reserved_token_92|>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": true
780
+ },
781
+ "126177": {
782
+ "content": "<|reserved_token_93|>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": true
788
+ },
789
+ "126178": {
790
+ "content": "<|reserved_token_94|>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": true
796
+ },
797
+ "126179": {
798
+ "content": "<|reserved_token_95|>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": true
804
+ },
805
+ "126180": {
806
+ "content": "<|reserved_token_96|>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": true
812
+ },
813
+ "126181": {
814
+ "content": "<|reserved_token_97|>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": true
820
+ },
821
+ "126182": {
822
+ "content": "<|reserved_token_98|>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": true
828
+ },
829
+ "126183": {
830
+ "content": "<|reserved_token_99|>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": true
836
+ },
837
+ "126184": {
838
+ "content": "<|reserved_token_100|>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": true
844
+ },
845
+ "126185": {
846
+ "content": "<|reserved_token_101|>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": true
852
+ },
853
+ "126186": {
854
+ "content": "<|reserved_token_102|>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "126187": {
862
+ "content": "<|reserved_token_103|>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "126188": {
870
+ "content": "<|reserved_token_104|>",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": true
876
+ },
877
+ "126189": {
878
+ "content": "<|reserved_token_105|>",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": true
884
+ },
885
+ "126190": {
886
+ "content": "<|reserved_token_106|>",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": true
892
+ },
893
+ "126191": {
894
+ "content": "<|reserved_token_107|>",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": true
900
+ },
901
+ "126192": {
902
+ "content": "<|reserved_token_108|>",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": true
908
+ },
909
+ "126193": {
910
+ "content": "<|reserved_token_109|>",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": true
916
+ },
917
+ "126194": {
918
+ "content": "<|reserved_token_110|>",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": true
924
+ },
925
+ "126195": {
926
+ "content": "<|reserved_token_111|>",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": true
932
+ },
933
+ "126196": {
934
+ "content": "<|reserved_token_112|>",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": true
940
+ },
941
+ "126197": {
942
+ "content": "<|reserved_token_113|>",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": true
948
+ },
949
+ "126198": {
950
+ "content": "<|reserved_token_114|>",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": true
956
+ },
957
+ "126199": {
958
+ "content": "<|reserved_token_115|>",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": true
964
+ },
965
+ "126200": {
966
+ "content": "<|reserved_token_116|>",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": true
972
+ },
973
+ "126201": {
974
+ "content": "<|reserved_token_117|>",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": true
980
+ },
981
+ "126202": {
982
+ "content": "<|reserved_token_118|>",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": true
988
+ },
989
+ "126203": {
990
+ "content": "<|reserved_token_119|>",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": true
996
+ },
997
+ "126204": {
998
+ "content": "<|reserved_token_120|>",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": true
1004
+ },
1005
+ "126205": {
1006
+ "content": "<|reserved_token_121|>",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": true
1012
+ },
1013
+ "126206": {
1014
+ "content": "<|reserved_token_122|>",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": true
1020
+ },
1021
+ "126207": {
1022
+ "content": "<|reserved_token_123|>",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": true
1028
+ },
1029
+ "126208": {
1030
+ "content": "<|reserved_token_124|>",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": true
1036
+ },
1037
+ "126209": {
1038
+ "content": "<|reserved_token_125|>",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": true
1044
+ },
1045
+ "126210": {
1046
+ "content": "<|reserved_token_126|>",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": true
1052
+ },
1053
+ "126211": {
1054
+ "content": "<|reserved_token_127|>",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": true
1060
+ },
1061
+ "126212": {
1062
+ "content": "<|reserved_token_128|>",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": true
1068
+ },
1069
+ "126213": {
1070
+ "content": "<|reserved_token_129|>",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": true
1076
+ },
1077
+ "126214": {
1078
+ "content": "<|reserved_token_130|>",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": true
1084
+ },
1085
+ "126215": {
1086
+ "content": "<|reserved_token_131|>",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": true
1092
+ },
1093
+ "126216": {
1094
+ "content": "<|reserved_token_132|>",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": true
1100
+ },
1101
+ "126217": {
1102
+ "content": "<|reserved_token_133|>",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": true
1108
+ },
1109
+ "126218": {
1110
+ "content": "<|reserved_token_134|>",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": true
1116
+ },
1117
+ "126219": {
1118
+ "content": "<|reserved_token_135|>",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": true
1124
+ },
1125
+ "126220": {
1126
+ "content": "<|reserved_token_136|>",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": true
1132
+ },
1133
+ "126221": {
1134
+ "content": "<|reserved_token_137|>",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": true
1140
+ },
1141
+ "126222": {
1142
+ "content": "<|reserved_token_138|>",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": true
1148
+ },
1149
+ "126223": {
1150
+ "content": "<|reserved_token_139|>",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": true
1156
+ },
1157
+ "126224": {
1158
+ "content": "<|reserved_token_140|>",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": true
1164
+ },
1165
+ "126225": {
1166
+ "content": "<|reserved_token_141|>",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": true
1172
+ },
1173
+ "126226": {
1174
+ "content": "<|reserved_token_142|>",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": true
1180
+ },
1181
+ "126227": {
1182
+ "content": "<|reserved_token_143|>",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": true
1188
+ },
1189
+ "126228": {
1190
+ "content": "<|reserved_token_144|>",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": true
1196
+ },
1197
+ "126229": {
1198
+ "content": "<|reserved_token_145|>",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": true
1204
+ },
1205
+ "126230": {
1206
+ "content": "<|reserved_token_146|>",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": true
1212
+ },
1213
+ "126231": {
1214
+ "content": "<|reserved_token_147|>",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": true
1220
+ },
1221
+ "126232": {
1222
+ "content": "<|reserved_token_148|>",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": true
1228
+ },
1229
+ "126233": {
1230
+ "content": "<|reserved_token_149|>",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": true
1236
+ },
1237
+ "126234": {
1238
+ "content": "<|reserved_token_150|>",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": true
1244
+ },
1245
+ "126235": {
1246
+ "content": "<|reserved_token_151|>",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": true
1252
+ },
1253
+ "126236": {
1254
+ "content": "<|reserved_token_152|>",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": true
1260
+ },
1261
+ "126237": {
1262
+ "content": "<|reserved_token_153|>",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": true
1268
+ },
1269
+ "126238": {
1270
+ "content": "<|reserved_token_154|>",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": true
1276
+ },
1277
+ "126239": {
1278
+ "content": "<|reserved_token_155|>",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": true
1284
+ },
1285
+ "126240": {
1286
+ "content": "<|reserved_token_156|>",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": true
1292
+ },
1293
+ "126241": {
1294
+ "content": "<|reserved_token_157|>",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": true
1300
+ },
1301
+ "126242": {
1302
+ "content": "<|reserved_token_158|>",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": true
1308
+ },
1309
+ "126243": {
1310
+ "content": "<|reserved_token_159|>",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": true
1316
+ },
1317
+ "126244": {
1318
+ "content": "<|reserved_token_160|>",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": true
1324
+ },
1325
+ "126245": {
1326
+ "content": "<|reserved_token_161|>",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": true
1332
+ },
1333
+ "126246": {
1334
+ "content": "<|reserved_token_162|>",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": true
1340
+ },
1341
+ "126247": {
1342
+ "content": "<|reserved_token_163|>",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": true
1348
+ },
1349
+ "126248": {
1350
+ "content": "<|reserved_token_164|>",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": true
1356
+ },
1357
+ "126249": {
1358
+ "content": "<|reserved_token_165|>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": true
1364
+ },
1365
+ "126250": {
1366
+ "content": "<|reserved_token_166|>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": true
1372
+ },
1373
+ "126251": {
1374
+ "content": "<|reserved_token_167|>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": true
1380
+ },
1381
+ "126252": {
1382
+ "content": "<|reserved_token_168|>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": true
1388
+ },
1389
+ "126253": {
1390
+ "content": "<|reserved_token_169|>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": true
1396
+ },
1397
+ "126254": {
1398
+ "content": "<|reserved_token_170|>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": true
1404
+ },
1405
+ "126255": {
1406
+ "content": "<|reserved_token_171|>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": true
1412
+ },
1413
+ "126256": {
1414
+ "content": "<|reserved_token_172|>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": true
1420
+ },
1421
+ "126257": {
1422
+ "content": "<|reserved_token_173|>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": true
1428
+ },
1429
+ "126258": {
1430
+ "content": "<|reserved_token_174|>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": true
1436
+ },
1437
+ "126259": {
1438
+ "content": "<|reserved_token_175|>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": true
1444
+ },
1445
+ "126260": {
1446
+ "content": "<|reserved_token_176|>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": true
1452
+ },
1453
+ "126261": {
1454
+ "content": "<|reserved_token_177|>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": true
1460
+ },
1461
+ "126262": {
1462
+ "content": "<|reserved_token_178|>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": true
1468
+ },
1469
+ "126263": {
1470
+ "content": "<|reserved_token_179|>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": true
1476
+ },
1477
+ "126264": {
1478
+ "content": "<|reserved_token_180|>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": true
1484
+ },
1485
+ "126265": {
1486
+ "content": "<|reserved_token_181|>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": true
1492
+ },
1493
+ "126266": {
1494
+ "content": "<|reserved_token_182|>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": true
1500
+ },
1501
+ "126267": {
1502
+ "content": "<|reserved_token_183|>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": true
1508
+ },
1509
+ "126268": {
1510
+ "content": "<|reserved_token_184|>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": true
1516
+ },
1517
+ "126269": {
1518
+ "content": "<|reserved_token_185|>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": true
1524
+ },
1525
+ "126270": {
1526
+ "content": "<|reserved_token_186|>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": true
1532
+ },
1533
+ "126271": {
1534
+ "content": "<|reserved_token_187|>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": true
1540
+ },
1541
+ "126272": {
1542
+ "content": "<|reserved_token_188|>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": true
1548
+ },
1549
+ "126273": {
1550
+ "content": "<|reserved_token_189|>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": true
1556
+ },
1557
+ "126274": {
1558
+ "content": "<|reserved_token_190|>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": true
1564
+ },
1565
+ "126275": {
1566
+ "content": "<|reserved_token_191|>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": true
1572
+ },
1573
+ "126276": {
1574
+ "content": "<|reserved_token_192|>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": true
1580
+ },
1581
+ "126277": {
1582
+ "content": "<|reserved_token_193|>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": true
1588
+ },
1589
+ "126278": {
1590
+ "content": "<|reserved_token_194|>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": true
1596
+ },
1597
+ "126279": {
1598
+ "content": "<|reserved_token_195|>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": true
1604
+ },
1605
+ "126280": {
1606
+ "content": "<|reserved_token_196|>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": true
1612
+ },
1613
+ "126281": {
1614
+ "content": "<|reserved_token_197|>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": true
1620
+ },
1621
+ "126282": {
1622
+ "content": "<|reserved_token_198|>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": true
1628
+ },
1629
+ "126283": {
1630
+ "content": "<|reserved_token_199|>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": true
1636
+ },
1637
+ "126284": {
1638
+ "content": "<|reserved_token_200|>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": true
1644
+ },
1645
+ "126285": {
1646
+ "content": "<|reserved_token_201|>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": true
1652
+ },
1653
+ "126286": {
1654
+ "content": "<|reserved_token_202|>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": true
1660
+ },
1661
+ "126287": {
1662
+ "content": "<|reserved_token_203|>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": true
1668
+ },
1669
+ "126288": {
1670
+ "content": "<|reserved_token_204|>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": true
1676
+ },
1677
+ "126289": {
1678
+ "content": "<|reserved_token_205|>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": true
1684
+ },
1685
+ "126290": {
1686
+ "content": "<|reserved_token_206|>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": true
1692
+ },
1693
+ "126291": {
1694
+ "content": "<|reserved_token_207|>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": true
1700
+ },
1701
+ "126292": {
1702
+ "content": "<|reserved_token_208|>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": true
1708
+ },
1709
+ "126293": {
1710
+ "content": "<|reserved_token_209|>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": true
1716
+ },
1717
+ "126294": {
1718
+ "content": "<|reserved_token_210|>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": true
1724
+ },
1725
+ "126295": {
1726
+ "content": "<|reserved_token_211|>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": true
1732
+ },
1733
+ "126296": {
1734
+ "content": "<|reserved_token_212|>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": true
1740
+ },
1741
+ "126297": {
1742
+ "content": "<|reserved_token_213|>",
1743
+ "lstrip": false,
1744
+ "normalized": false,
1745
+ "rstrip": false,
1746
+ "single_word": false,
1747
+ "special": true
1748
+ },
1749
+ "126298": {
1750
+ "content": "<|reserved_token_214|>",
1751
+ "lstrip": false,
1752
+ "normalized": false,
1753
+ "rstrip": false,
1754
+ "single_word": false,
1755
+ "special": true
1756
+ },
1757
+ "126299": {
1758
+ "content": "<|reserved_token_215|>",
1759
+ "lstrip": false,
1760
+ "normalized": false,
1761
+ "rstrip": false,
1762
+ "single_word": false,
1763
+ "special": true
1764
+ },
1765
+ "126300": {
1766
+ "content": "<|reserved_token_216|>",
1767
+ "lstrip": false,
1768
+ "normalized": false,
1769
+ "rstrip": false,
1770
+ "single_word": false,
1771
+ "special": true
1772
+ },
1773
+ "126301": {
1774
+ "content": "<|reserved_token_217|>",
1775
+ "lstrip": false,
1776
+ "normalized": false,
1777
+ "rstrip": false,
1778
+ "single_word": false,
1779
+ "special": true
1780
+ },
1781
+ "126302": {
1782
+ "content": "<|reserved_token_218|>",
1783
+ "lstrip": false,
1784
+ "normalized": false,
1785
+ "rstrip": false,
1786
+ "single_word": false,
1787
+ "special": true
1788
+ },
1789
+ "126303": {
1790
+ "content": "<|reserved_token_219|>",
1791
+ "lstrip": false,
1792
+ "normalized": false,
1793
+ "rstrip": false,
1794
+ "single_word": false,
1795
+ "special": true
1796
+ },
1797
+ "126304": {
1798
+ "content": "<|reserved_token_220|>",
1799
+ "lstrip": false,
1800
+ "normalized": false,
1801
+ "rstrip": false,
1802
+ "single_word": false,
1803
+ "special": true
1804
+ },
1805
+ "126305": {
1806
+ "content": "<|reserved_token_221|>",
1807
+ "lstrip": false,
1808
+ "normalized": false,
1809
+ "rstrip": false,
1810
+ "single_word": false,
1811
+ "special": true
1812
+ },
1813
+ "126306": {
1814
+ "content": "<|reserved_token_222|>",
1815
+ "lstrip": false,
1816
+ "normalized": false,
1817
+ "rstrip": false,
1818
+ "single_word": false,
1819
+ "special": true
1820
+ },
1821
+ "126307": {
1822
+ "content": "<|reserved_token_223|>",
1823
+ "lstrip": false,
1824
+ "normalized": false,
1825
+ "rstrip": false,
1826
+ "single_word": false,
1827
+ "special": true
1828
+ },
1829
+ "126308": {
1830
+ "content": "<|reserved_token_224|>",
1831
+ "lstrip": false,
1832
+ "normalized": false,
1833
+ "rstrip": false,
1834
+ "single_word": false,
1835
+ "special": true
1836
+ },
1837
+ "126309": {
1838
+ "content": "<|reserved_token_225|>",
1839
+ "lstrip": false,
1840
+ "normalized": false,
1841
+ "rstrip": false,
1842
+ "single_word": false,
1843
+ "special": true
1844
+ },
1845
+ "126310": {
1846
+ "content": "<|reserved_token_226|>",
1847
+ "lstrip": false,
1848
+ "normalized": false,
1849
+ "rstrip": false,
1850
+ "single_word": false,
1851
+ "special": true
1852
+ },
1853
+ "126311": {
1854
+ "content": "<|reserved_token_227|>",
1855
+ "lstrip": false,
1856
+ "normalized": false,
1857
+ "rstrip": false,
1858
+ "single_word": false,
1859
+ "special": true
1860
+ },
1861
+ "126312": {
1862
+ "content": "<|reserved_token_228|>",
1863
+ "lstrip": false,
1864
+ "normalized": false,
1865
+ "rstrip": false,
1866
+ "single_word": false,
1867
+ "special": true
1868
+ },
1869
+ "126313": {
1870
+ "content": "<|reserved_token_229|>",
1871
+ "lstrip": false,
1872
+ "normalized": false,
1873
+ "rstrip": false,
1874
+ "single_word": false,
1875
+ "special": true
1876
+ },
1877
+ "126314": {
1878
+ "content": "<|reserved_token_230|>",
1879
+ "lstrip": false,
1880
+ "normalized": false,
1881
+ "rstrip": false,
1882
+ "single_word": false,
1883
+ "special": true
1884
+ },
1885
+ "126315": {
1886
+ "content": "<|reserved_token_231|>",
1887
+ "lstrip": false,
1888
+ "normalized": false,
1889
+ "rstrip": false,
1890
+ "single_word": false,
1891
+ "special": true
1892
+ },
1893
+ "126316": {
1894
+ "content": "<|reserved_token_232|>",
1895
+ "lstrip": false,
1896
+ "normalized": false,
1897
+ "rstrip": false,
1898
+ "single_word": false,
1899
+ "special": true
1900
+ },
1901
+ "126317": {
1902
+ "content": "<|reserved_token_233|>",
1903
+ "lstrip": false,
1904
+ "normalized": false,
1905
+ "rstrip": false,
1906
+ "single_word": false,
1907
+ "special": true
1908
+ },
1909
+ "126318": {
1910
+ "content": "<|reserved_token_234|>",
1911
+ "lstrip": false,
1912
+ "normalized": false,
1913
+ "rstrip": false,
1914
+ "single_word": false,
1915
+ "special": true
1916
+ },
1917
+ "126319": {
1918
+ "content": "<|reserved_token_235|>",
1919
+ "lstrip": false,
1920
+ "normalized": false,
1921
+ "rstrip": false,
1922
+ "single_word": false,
1923
+ "special": true
1924
+ },
1925
+ "126320": {
1926
+ "content": "<|reserved_token_236|>",
1927
+ "lstrip": false,
1928
+ "normalized": false,
1929
+ "rstrip": false,
1930
+ "single_word": false,
1931
+ "special": true
1932
+ },
1933
+ "126321": {
1934
+ "content": "<|reserved_token_237|>",
1935
+ "lstrip": false,
1936
+ "normalized": false,
1937
+ "rstrip": false,
1938
+ "single_word": false,
1939
+ "special": true
1940
+ },
1941
+ "126322": {
1942
+ "content": "<|reserved_token_238|>",
1943
+ "lstrip": false,
1944
+ "normalized": false,
1945
+ "rstrip": false,
1946
+ "single_word": false,
1947
+ "special": true
1948
+ },
1949
+ "126323": {
1950
+ "content": "<|reserved_token_239|>",
1951
+ "lstrip": false,
1952
+ "normalized": false,
1953
+ "rstrip": false,
1954
+ "single_word": false,
1955
+ "special": true
1956
+ },
1957
+ "126324": {
1958
+ "content": "<|reserved_token_240|>",
1959
+ "lstrip": false,
1960
+ "normalized": false,
1961
+ "rstrip": false,
1962
+ "single_word": false,
1963
+ "special": true
1964
+ },
1965
+ "126325": {
1966
+ "content": "<|reserved_token_241|>",
1967
+ "lstrip": false,
1968
+ "normalized": false,
1969
+ "rstrip": false,
1970
+ "single_word": false,
1971
+ "special": true
1972
+ },
1973
+ "126326": {
1974
+ "content": "<|reserved_token_242|>",
1975
+ "lstrip": false,
1976
+ "normalized": false,
1977
+ "rstrip": false,
1978
+ "single_word": false,
1979
+ "special": true
1980
+ },
1981
+ "126327": {
1982
+ "content": "<|reserved_token_243|>",
1983
+ "lstrip": false,
1984
+ "normalized": false,
1985
+ "rstrip": false,
1986
+ "single_word": false,
1987
+ "special": true
1988
+ },
1989
+ "126328": {
1990
+ "content": "<|reserved_token_244|>",
1991
+ "lstrip": false,
1992
+ "normalized": false,
1993
+ "rstrip": false,
1994
+ "single_word": false,
1995
+ "special": true
1996
+ },
1997
+ "126329": {
1998
+ "content": "<|reserved_token_245|>",
1999
+ "lstrip": false,
2000
+ "normalized": false,
2001
+ "rstrip": false,
2002
+ "single_word": false,
2003
+ "special": true
2004
+ },
2005
+ "126330": {
2006
+ "content": "<|reserved_token_246|>",
2007
+ "lstrip": false,
2008
+ "normalized": false,
2009
+ "rstrip": false,
2010
+ "single_word": false,
2011
+ "special": true
2012
+ },
2013
+ "126331": {
2014
+ "content": "<|reserved_token_247|>",
2015
+ "lstrip": false,
2016
+ "normalized": false,
2017
+ "rstrip": false,
2018
+ "single_word": false,
2019
+ "special": true
2020
+ },
2021
+ "126332": {
2022
+ "content": "<|reserved_token_248|>",
2023
+ "lstrip": false,
2024
+ "normalized": false,
2025
+ "rstrip": false,
2026
+ "single_word": false,
2027
+ "special": true
2028
+ },
2029
+ "126333": {
2030
+ "content": "<|reserved_token_249|>",
2031
+ "lstrip": false,
2032
+ "normalized": false,
2033
+ "rstrip": false,
2034
+ "single_word": false,
2035
+ "special": true
2036
+ },
2037
+ "126334": {
2038
+ "content": "<|reserved_token_250|>",
2039
+ "lstrip": false,
2040
+ "normalized": false,
2041
+ "rstrip": false,
2042
+ "single_word": false,
2043
+ "special": true
2044
+ },
2045
+ "126335": {
2046
+ "content": "<|reserved_token_251|>",
2047
+ "lstrip": false,
2048
+ "normalized": false,
2049
+ "rstrip": false,
2050
+ "single_word": false,
2051
+ "special": true
2052
+ },
2053
+ "126336": {
2054
+ "content": "<|reserved_token_252|>",
2055
+ "lstrip": false,
2056
+ "normalized": false,
2057
+ "rstrip": false,
2058
+ "single_word": false,
2059
+ "special": true
2060
+ },
2061
+ "126337": {
2062
+ "content": "<|reserved_token_253|>",
2063
+ "lstrip": false,
2064
+ "normalized": false,
2065
+ "rstrip": false,
2066
+ "single_word": false,
2067
+ "special": true
2068
+ },
2069
+ "126338": {
2070
+ "content": "<|reserved_token_254|>",
2071
+ "lstrip": false,
2072
+ "normalized": false,
2073
+ "rstrip": false,
2074
+ "single_word": false,
2075
+ "special": true
2076
+ },
2077
+ "126339": {
2078
+ "content": "<|reserved_token_255|>",
2079
+ "lstrip": false,
2080
+ "normalized": false,
2081
+ "rstrip": false,
2082
+ "single_word": false,
2083
+ "special": true
2084
+ },
2085
+ "126340": {
2086
+ "content": "<role>",
2087
+ "lstrip": false,
2088
+ "normalized": false,
2089
+ "rstrip": false,
2090
+ "single_word": false,
2091
+ "special": true
2092
+ },
2093
+ "126341": {
2094
+ "content": "</role>",
2095
+ "lstrip": false,
2096
+ "normalized": false,
2097
+ "rstrip": false,
2098
+ "single_word": false,
2099
+ "special": true
2100
+ },
2101
+ "126342": {
2102
+ "content": "<|arithmetic_start|>",
2103
+ "lstrip": false,
2104
+ "normalized": false,
2105
+ "rstrip": false,
2106
+ "single_word": false,
2107
+ "special": true
2108
+ },
2109
+ "126343": {
2110
+ "content": "<|arithmetic_end|>",
2111
+ "lstrip": false,
2112
+ "normalized": false,
2113
+ "rstrip": false,
2114
+ "single_word": false,
2115
+ "special": true
2116
+ },
2117
+ "126344": {
2118
+ "content": "<|number_start|>",
2119
+ "lstrip": false,
2120
+ "normalized": false,
2121
+ "rstrip": false,
2122
+ "single_word": false,
2123
+ "special": true
2124
+ },
2125
+ "126345": {
2126
+ "content": "<|number_end|>",
2127
+ "lstrip": false,
2128
+ "normalized": false,
2129
+ "rstrip": false,
2130
+ "single_word": false,
2131
+ "special": true
2132
+ }
2133
+ },
2134
+ "additional_special_tokens": [
2135
+ "<role>",
2136
+ "</role>",
2137
+ "<|arithmetic_start|>",
2138
+ "<|arithmetic_end|>",
2139
+ "<|number_start|>",
2140
+ "<|number_end|>"
2141
+ ],
2142
+ "bos_token": "<|startoftext|>",
2143
+ "chat_template": "{% for message in messages %}{% set role = message['role'] | lower %}{% if role == 'user' %}{% set role = 'HUMAN' %}{% endif %}{% set role = role | upper %}{{ '<role>' + role + '</role>' + message['content'] }}{% endfor %}{% if add_generation_prompt %}{{ '<role>ASSISTANT</role>' }}{% endif %}",
2144
+ "clean_up_tokenization_spaces": false,
2145
+ "cls_token": "[CLS]",
2146
+ "eos_token": "<|endoftext|>",
2147
+ "fast_tokenizer": true,
2148
+ "gmask_token": "[gMASK]",
2149
+ "merges_file": null,
2150
+ "model_max_length": 1000000000000000019884624838656,
2151
+ "pad_token": "<|endoftext|>",
2152
+ "tokenizer_class": "PreTrainedTokenizerFast",
2153
+ "trust_remote_code": true,
2154
+ "vocab_file": null
2155
+ }