caizhi1 commited on
Commit
1e2bb30
·
1 Parent(s): 1351e7b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -5
README.md CHANGED
@@ -20,22 +20,30 @@ tags:
20
  ## Introduction
21
 
22
  We are excited to announce the official open-source release of Ring-mini-linear-2.0!
23
- Building on the success of our Ling 2.0 series, this model continues to leverage a powerful hybrid architecture of linear and standard attention, perfectly balancing high performance with superior efficiency. By integrating our proven MoE design with optimizations like a 1/32 expert activation ratio and MTP layers, Ring-mini-linear achieves the performance of a massive 8 B dense model while activating only 1.4 B parameters. This model was converted from Ling-mini-base-2.0, further trained on an additional xx B tokens.
 
24
  When it comes to benchmarks, Ring-mini-linear-2.0 not only holds its own against standard attention models (like ring-mini-2) but also outperforms other open-source MoE and Dense models in its class on several demanding tasks. Plus, with native support for a 128k long context, it's faster and more precise than ever, especially when handling long-form inputs and outputs.
25
 
26
  <div style="display: flex; justify-content: center;">
27
  <div style="text-align: center;">
28
  <img src="https://cdn-uploads.huggingface.co/production/uploads/68d20104a6f8ea66da0cb447/UsAtWWsWB9eXcMxV5iCCa.png" width="600">
29
- <p style="margin-top: 8px; font-size: 14px;"><strong>Figure xx:</strong> Hybrid Linear Model Architecture</p>
30
  </div>
31
  </div>
32
 
33
  ## Evaluation
34
  <!-- <img src="https://cdn-uploads.huggingface.co/production/uploads/68d20104a6f8ea66da0cb447/_tjjgBEBlankfrWUY0N9i.png" width="1000"> -->
 
 
 
 
 
 
 
35
  <div style="display: flex; justify-content: center;">
36
  <div style="text-align: center;">
37
  <img src="https://cdn-uploads.huggingface.co/production/uploads/68d20104a6f8ea66da0cb447/OyvwJdc0qRIJiHM1VJgwO.gif" width="800">
38
- <p style="margin-top: 8px; font-size: 14px;"><strong>Figure xx:</strong> demo </p>
39
  </div>
40
  </div>
41
 
@@ -48,14 +56,14 @@ The results are remarkable. In the prefill stage, Ring-mini-linear-2.0's perform
48
  <div style="display: flex; justify-content: center; align-items: flex-start; gap: 20px;">
49
  <div style="text-align: center;">
50
  <img src="https://cdn-uploads.huggingface.co/production/uploads/68d20104a6f8ea66da0cb447/O9gHLIOCdpWvBbPC6bMM5.webp" width="500">
51
- <p style="margin-top: 8px; font-size: 14px;"><strong>Figure xx:</strong> Ring-mini-linear-2.0 prefill throughput</p>
52
  </div>
53
 
54
  <div style="text-align: center;">
55
  <p align="center">
56
  <img src="https://cdn-uploads.huggingface.co/production/uploads/68d20104a6f8ea66da0cb447/AvMTStWFX-Frzv-vOzyr6.webp" width="500">
57
  </p>
58
- <p style="margin-top: 8px; font-size: 14px;"><strong>Figure xx:</strong> Ring-mini-linear-2.0 decode throughput</p>
59
  </div>
60
 
61
  </div>
 
20
  ## Introduction
21
 
22
  We are excited to announce the official open-source release of Ring-mini-linear-2.0!
23
+
24
+ Building on the success of our Ling 2.0 series, this model continues to leverage a powerful hybrid architecture of linear and standard attention, perfectly balancing high performance with superior efficiency. By integrating our proven MoE design with optimizations like a 1/32 expert activation ratio and MTP layers, Ring-mini-linear achieves the performance of a 8 B dense model while activating only 1.4 B parameters. This model was converted from Ling-mini-base-2.0, further trained on an additional 600 B tokens.
25
  When it comes to benchmarks, Ring-mini-linear-2.0 not only holds its own against standard attention models (like ring-mini-2) but also outperforms other open-source MoE and Dense models in its class on several demanding tasks. Plus, with native support for a 128k long context, it's faster and more precise than ever, especially when handling long-form inputs and outputs.
26
 
27
  <div style="display: flex; justify-content: center;">
28
  <div style="text-align: center;">
29
  <img src="https://cdn-uploads.huggingface.co/production/uploads/68d20104a6f8ea66da0cb447/UsAtWWsWB9eXcMxV5iCCa.png" width="600">
30
+ <p style="margin-top: 8px; font-size: 14px;"><strong>Figure 1:</strong> Hybrid Linear Model Architecture</p>
31
  </div>
32
  </div>
33
 
34
  ## Evaluation
35
  <!-- <img src="https://cdn-uploads.huggingface.co/production/uploads/68d20104a6f8ea66da0cb447/_tjjgBEBlankfrWUY0N9i.png" width="1000"> -->
36
+ <div style="display: flex; justify-content: center;">
37
+ <div style="text-align: center;">
38
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/68d20104a6f8ea66da0cb447/_tjjgBEBlankfrWUY0N9i.png" width="800">
39
+ <p style="margin-top: 8px; font-size: 14px;"><strong>Figure 3:</strong> demo </p>
40
+ </div>
41
+ </div>
42
+
43
  <div style="display: flex; justify-content: center;">
44
  <div style="text-align: center;">
45
  <img src="https://cdn-uploads.huggingface.co/production/uploads/68d20104a6f8ea66da0cb447/OyvwJdc0qRIJiHM1VJgwO.gif" width="800">
46
+ <p style="margin-top: 8px; font-size: 14px;"><strong>Figure 3:</strong> demo </p>
47
  </div>
48
  </div>
49
 
 
56
  <div style="display: flex; justify-content: center; align-items: flex-start; gap: 20px;">
57
  <div style="text-align: center;">
58
  <img src="https://cdn-uploads.huggingface.co/production/uploads/68d20104a6f8ea66da0cb447/O9gHLIOCdpWvBbPC6bMM5.webp" width="500">
59
+ <p style="margin-top: 8px; font-size: 14px;"><strong>Figure 4:</strong> Ring-mini-linear-2.0 prefill throughput</p>
60
  </div>
61
 
62
  <div style="text-align: center;">
63
  <p align="center">
64
  <img src="https://cdn-uploads.huggingface.co/production/uploads/68d20104a6f8ea66da0cb447/AvMTStWFX-Frzv-vOzyr6.webp" width="500">
65
  </p>
66
+ <p style="margin-top: 8px; font-size: 14px;"><strong>Figure 5:</strong> Ring-mini-linear-2.0 decode throughput</p>
67
  </div>
68
 
69
  </div>