rulixiang commited on
Commit
d41ce6d
·
1 Parent(s): 577e6f0

update weight

Browse files
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BailingMoeLinearV2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_bailing_moe_linear_v2.BailingMoeLinearV2Config",
8
+ "AutoModel": "modeling_bailing_moe_linear_v2.BailingMoeLinearV2Model",
9
+ "AutoModelForCausalLM": "modeling_bailing_moe_linear_v2.BailingMoeLinearV2ForCausalLM"
10
+ },
11
+ "num_hidden_layers": 20,
12
+ "hidden_size": 2048,
13
+ "intermediate_size": 5120,
14
+ "eos_token_id": 156892,
15
+ "pad_token_id": 156892,
16
+ "first_k_dense_replace": 1,
17
+ "hidden_act": "silu",
18
+ "max_position_embeddings": 131072,
19
+ "model_type": "bailing_moe_linear",
20
+ "moe_intermediate_size": 512,
21
+ "norm_topk_prob": true,
22
+ "num_experts_per_tok": 8,
23
+ "num_attention_heads": 16,
24
+ "num_experts": 256,
25
+ "num_key_value_heads": 4,
26
+ "rope_theta": 1000000,
27
+ "rope_scaling": null,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.56.1",
31
+ "use_bias": false,
32
+ "use_rmsnorm": true,
33
+ "rms_norm_eps": 1e-06,
34
+ "head_dim": 128,
35
+ "num_shared_experts": 1,
36
+ "use_cache": true,
37
+ "use_qkv_bias": false,
38
+ "embedding_dropout": 0.0,
39
+ "output_dropout": 0.0,
40
+ "vocab_size": 157184,
41
+ "partial_rotary_factor": 0.5,
42
+ "router_dtype": "fp32",
43
+ "moe_router_enable_expert_bias": true,
44
+ "routed_scaling_factor": 2.5,
45
+ "n_group": 8,
46
+ "topk_group": 4,
47
+ "use_qk_norm": true,
48
+ "score_function": "sigmoid",
49
+ "moe_shared_expert_intermediate_size": 512,
50
+ "layer_group_size": 5,
51
+ "group_norm_size": 4,
52
+ "linear_silu": false
53
+ }
configuration_bailing_moe_linear_v2.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Bailing MoE V2 model configuration"""
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+
5
+
6
+ class BailingMoeLinearV2Config(PretrainedConfig):
7
+
8
+ def __init__(
9
+ self,
10
+ vocab_size=157184,
11
+ hidden_size=2048,
12
+ intermediate_size=5120,
13
+ num_hidden_layers=20,
14
+ num_attention_heads=16,
15
+ num_key_value_heads=4,
16
+ hidden_act="silu",
17
+ use_qkv_bias=False, # bailing only
18
+ use_bias=False, # bailing only
19
+ rms_norm_eps=1e-06,
20
+ tie_word_embeddings=False, # PretrainedConfig key, here change default value.
21
+ embedding_dropout=0.0,
22
+ attention_dropout=0.0,
23
+ output_dropout=0.0,
24
+ initializer_range=0.02,
25
+ max_position_embeddings=32768,
26
+ rope_theta=600000.0,
27
+ use_cache=True,
28
+ max_window_layers=20,
29
+ rope_scaling=None,
30
+ pad_token_id=156892,
31
+ eos_token_id=156892,
32
+ num_experts=256,
33
+ num_shared_experts=1,
34
+ num_experts_per_tok=8,
35
+ n_group=8,
36
+ topk_group=4,
37
+ moe_intermediate_size=512,
38
+ first_k_dense_replace=1,
39
+ head_dim=128,
40
+ output_router_logits=False,
41
+ use_qk_norm=True,
42
+ num_nextn_predict_layers=0,
43
+ mtp_loss_scaling_factor=0,
44
+ moe_router_enable_expert_bias=True,
45
+ routed_scaling_factor=1.0,
46
+ layer_group_size=1,
47
+ group_norm_size=1,
48
+ linear_silu=False,
49
+ **kwargs,
50
+ ):
51
+ self.num_hidden_layers = num_hidden_layers
52
+ self.vocab_size = vocab_size
53
+ self.hidden_size = hidden_size
54
+ self.intermediate_size = intermediate_size
55
+ self.num_attention_heads = num_attention_heads
56
+ self.num_key_value_heads = num_key_value_heads
57
+ self.hidden_act = hidden_act
58
+ self.use_qkv_bias = use_qkv_bias
59
+ self.use_bias = use_bias
60
+ self.rms_norm_eps = rms_norm_eps
61
+ self.embedding_dropout = embedding_dropout
62
+ self.attention_dropout = attention_dropout
63
+ self.output_dropout = output_dropout
64
+ self.num_nextn_predict_layers = num_nextn_predict_layers
65
+ self.mtp_loss_scaling_factor = mtp_loss_scaling_factor
66
+ self.initializer_range = initializer_range
67
+ self.max_position_embeddings = max_position_embeddings
68
+ self.rope_theta = rope_theta
69
+ self.use_cache = use_cache
70
+ self.max_window_layers = max_window_layers
71
+ self.head_dim = head_dim or self.hidden_size // self.num_attention_heads
72
+ self.rope_scaling = rope_scaling
73
+ self.use_qk_norm = use_qk_norm
74
+ self.moe_router_enable_expert_bias = moe_router_enable_expert_bias
75
+ self.routed_scaling_factor = routed_scaling_factor
76
+
77
+ # MoE configs
78
+ self.num_experts = num_experts
79
+ self.num_shared_experts = num_shared_experts
80
+ self.num_experts_per_tok = num_experts_per_tok
81
+ self.n_group = n_group
82
+ self.topk_group = topk_group
83
+ self.moe_intermediate_size = moe_intermediate_size
84
+ self.first_k_dense_replace = first_k_dense_replace
85
+ self.output_router_logits = output_router_logits
86
+
87
+ # Linear configs
88
+ self.layer_group_size = layer_group_size
89
+ self.group_norm_size = group_norm_size
90
+ self.linear_silu = linear_silu
91
+
92
+ super().__init__(pad_token_id=pad_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 156891,
3
+ "eos_token_id": [
4
+ 156892,
5
+ 156895
6
+ ],
7
+ "pad_token_id": 156892,
8
+ "transformers_version": "4.56.1"
9
+ }
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_bailing_moe_linear_v2.py ADDED
@@ -0,0 +1,1758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 Antgroup and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch BailingMoE model."""
21
+
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ from torch import nn
29
+
30
+ from transformers.activations import ACT2FN
31
+ from transformers.cache_utils import Cache, DynamicCache
32
+ from transformers.modeling_attn_mask_utils import (
33
+ AttentionMaskConverter,
34
+ _prepare_4d_attention_mask,
35
+ _prepare_4d_causal_attention_mask,
36
+ _prepare_4d_causal_attention_mask_for_sdpa,
37
+ )
38
+ from transformers.modeling_outputs import MoeModelOutputWithPast
39
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
40
+ from transformers.modeling_utils import PreTrainedModel
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
42
+ from transformers.utils import (
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ is_flash_attn_2_available,
46
+ is_flash_attn_greater_or_equal_2_10,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers.utils.import_utils import is_torch_fx_available
51
+ from .configuration_bailing_moe_linear_v2 import BailingMoeLinearV2Config
52
+ from transformers.generation.utils import GenerationMixin
53
+ from dataclasses import dataclass
54
+ from transformers.utils import ModelOutput
55
+
56
+
57
+ if is_flash_attn_2_available():
58
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
59
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
60
+
61
+ from fla.ops.simple_gla.fused_recurrent import fused_recurrent_simple_gla
62
+ from fla.ops.simple_gla.chunk import chunk_simple_gla
63
+
64
+
65
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
66
+ # It means that the function will not be traced through and simply appear as a node in the graph.
67
+ if is_torch_fx_available():
68
+ if not is_torch_greater_or_equal_than_1_13:
69
+ import torch.fx
70
+
71
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
72
+
73
+
74
+ logger = logging.get_logger(__name__)
75
+
76
+ _CONFIG_FOR_DOC = "BailingMoeLinearV2Config"
77
+
78
+
79
+ def roll_tensor(tensor, shifts=-1, dims=-1, fill_value=0):
80
+ """Roll the tensor input along the given dimension(s).
81
+ Inserted elements are set to be 0.0.
82
+ """
83
+ rolled_tensor = torch.roll(tensor, shifts=shifts, dims=dims)
84
+ rolled_tensor.select(dims, shifts).fill_(fill_value)
85
+ return rolled_tensor, rolled_tensor.sum()
86
+
87
+
88
+ @dataclass
89
+ class MoEV2CausalLMOutputWithPast(ModelOutput):
90
+ """
91
+ Base class for causal language model (or autoregressive) outputs as well as Mixture of Expert's router hidden
92
+ states terms, to train a MoE model.
93
+ Args:
94
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
95
+ Language modeling loss (for next-token prediction).
96
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
97
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
98
+ past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
99
+ It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
100
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
101
+ `past_key_values` input) to speed up sequential decoding.
102
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
103
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
104
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
105
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
106
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
107
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
108
+ sequence_length)`.
109
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
110
+ heads.
111
+ z_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
112
+ z_loss for the sparse modules.
113
+ aux_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
114
+ aux_loss for the sparse modules.
115
+ router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True` is passed or when `config.add_router_probs=True`):
116
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
117
+ Router logits of the encoder model, useful to compute the auxiliary loss and the z_loss for the sparse
118
+ modules.
119
+ """
120
+
121
+ loss: Optional[torch.FloatTensor] = None
122
+ logits: Optional[torch.FloatTensor] = None
123
+ past_key_values: Optional[Cache] = None
124
+ hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
125
+ attentions: Optional[tuple[torch.FloatTensor, ...]] = None
126
+ z_loss: Optional[torch.FloatTensor] = None
127
+ aux_loss: Optional[torch.FloatTensor] = None
128
+ router_logits: Optional[tuple[torch.FloatTensor]] = None
129
+ mtp_loss: Optional[torch.FloatTensor] = None
130
+ mtp_logits: Optional[tuple[torch.FloatTensor, ...]] = None
131
+
132
+
133
+ class MoeV2ModelOutputWithPast(MoeModelOutputWithPast):
134
+
135
+ def __init__(self, mtp_hidden_states=None, **kwargs):
136
+ super().__init__(**kwargs)
137
+ self.mtp_hidden_states = mtp_hidden_states
138
+
139
+
140
+ def _get_unpad_data(attention_mask):
141
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
142
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
143
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
144
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
145
+ return (
146
+ indices,
147
+ cu_seqlens,
148
+ max_seqlen_in_batch,
149
+ )
150
+
151
+
152
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
153
+ warnings.warn(
154
+ "Calling `transformers.models.BailingMoeV2.modeling_BailingMoeV2._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
155
+ )
156
+ return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
157
+
158
+
159
+ def _make_causal_mask(
160
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
161
+ ):
162
+ warnings.warn(
163
+ "Calling `transformers.models.BailingMoeV2.modeling_BailingMoeV2._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.BailingMoeV2.modeling_BailingMoeV2.AttentionMaskConverter._make_causal_mask"
164
+ )
165
+ return AttentionMaskConverter._make_causal_mask(
166
+ input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
167
+ )
168
+
169
+
170
+ class BailingMoeV2RMSNorm(nn.Module):
171
+ def __init__(self, hidden_size, eps=1e-6):
172
+ """
173
+ BailingMoeV2RMSNorm is equivalent to T5LayerNorm
174
+ """
175
+ super().__init__()
176
+ self.weight = nn.Parameter(torch.ones(hidden_size))
177
+ self.variance_epsilon = eps
178
+
179
+ def forward(self, hidden_states):
180
+ input_dtype = hidden_states.dtype
181
+ hidden_states = hidden_states.to(torch.float32)
182
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
183
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
184
+ return self.weight * hidden_states.to(input_dtype)
185
+
186
+
187
+ class BailingMoeV2GroupRMSNorm(nn.Module):
188
+ def __init__(self, hidden_size, group_norm_size, eps=1e-6):
189
+ """
190
+ BailingMoeV2RMSNorm is equivalent to T5LayerNorm
191
+ """
192
+ super().__init__()
193
+ self.weight = nn.Parameter(torch.ones(hidden_size))
194
+ self.group_norm_size = group_norm_size
195
+ assert hidden_size % group_norm_size == 0, "hidden_size must be divisible by group_norm_size"
196
+ self.variance_epsilon = eps
197
+
198
+ def forward(self, hidden_states):
199
+ input_dtype = hidden_states.dtype
200
+ input_shape = hidden_states.size()
201
+ group_input_shape = input_shape[:-1] + (self.group_norm_size, input_shape[-1] // self.group_norm_size)
202
+ hidden_states = hidden_states.view(group_input_shape)
203
+ hidden_states = hidden_states.to(torch.float32)
204
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
205
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
206
+ return self.weight * hidden_states.to(input_dtype).view(input_shape)
207
+
208
+
209
+ ALL_LAYERNORM_LAYERS.append(BailingMoeV2RMSNorm)
210
+
211
+
212
+ class BailingMoeV2RotaryEmbedding(nn.Module):
213
+ def __init__(self, config: BailingMoeLinearV2Config, device=None):
214
+ super().__init__()
215
+ # BC: "rope_type" was originally "type"
216
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
217
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
218
+ else:
219
+ self.rope_type = "default"
220
+ self.max_seq_len_cached = config.max_position_embeddings
221
+ self.original_max_seq_len = config.max_position_embeddings
222
+
223
+ self.config = config
224
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
225
+
226
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
227
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
228
+ self.original_inv_freq = self.inv_freq
229
+
230
+ @torch.no_grad()
231
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
232
+ def forward(self, x, position_ids):
233
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
234
+ position_ids_expanded = position_ids[:, None, :].float()
235
+
236
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
237
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
238
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
239
+ emb = torch.cat((freqs, freqs), dim=-1)
240
+ cos = emb.cos() * self.attention_scaling
241
+ sin = emb.sin() * self.attention_scaling
242
+
243
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
244
+
245
+
246
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
247
+ def rotate_half(x):
248
+ """Rotates half the hidden dims of the input."""
249
+ x1 = x[..., : x.shape[-1] // 2]
250
+ x2 = x[..., x.shape[-1] // 2 :]
251
+ return torch.cat((-x2, x1), dim=-1)
252
+
253
+
254
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
255
+ def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
256
+ """Applies Rotary Position Embedding to the query and key tensors.
257
+ Args:
258
+ q (`torch.Tensor`): The query tensor.
259
+ k (`torch.Tensor`): The key tensor.
260
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
261
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
262
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
263
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
264
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
265
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
266
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
267
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
268
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
269
+ Returns:
270
+ `tuple(torch.Tensor)` comprising the query and key tensors rotated using the Rotary Position Embedding.
271
+ """
272
+ cos = cos.unsqueeze(unsqueeze_dim)
273
+ sin = sin.unsqueeze(unsqueeze_dim)
274
+
275
+ # Keep half or full tensor for later concatenation
276
+ rotary_dim = cos.shape[-1]
277
+ q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
278
+ k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
279
+
280
+ # Apply rotary embeddings on the first half or full tensor
281
+ q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
282
+ k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
283
+
284
+ # Concatenate back to full shape
285
+ q_embed = torch.cat([q_embed, q_pass], dim=-1)
286
+ k_embed = torch.cat([k_embed, k_pass], dim=-1)
287
+ return q_embed, k_embed
288
+
289
+
290
+ class BailingMoeV2MLP(nn.Module):
291
+ def __init__(self, config: BailingMoeLinearV2Config, intermediate_size: int):
292
+ super().__init__()
293
+ self.config = config
294
+ self.hidden_size = config.hidden_size
295
+ self.intermediate_size = intermediate_size
296
+
297
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
298
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
299
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
300
+ self.act_fn = ACT2FN[config.hidden_act]
301
+
302
+ def forward(self, x):
303
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
304
+
305
+
306
+ class BailingMoeV2Gate(nn.Module):
307
+ def __init__(self, config):
308
+ super().__init__()
309
+ self.config = config
310
+ self.top_k = config.num_experts_per_tok
311
+ self.num_experts = config.num_experts
312
+
313
+ self.n_group = config.n_group
314
+ self.topk_group = config.topk_group
315
+
316
+ # topk selection algorithm
317
+ self.gating_dim = config.hidden_size
318
+ self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim)))
319
+ self.routed_scaling_factor = config.routed_scaling_factor
320
+
321
+ self.register_buffer("expert_bias", torch.zeros((self.num_experts)))
322
+ self.reset_parameters()
323
+
324
+ def reset_parameters(self) -> None:
325
+ import torch.nn.init as init
326
+
327
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
328
+
329
+ def group_limited_topk(
330
+ self,
331
+ scores: torch.Tensor,
332
+ ):
333
+ num_tokens, _ = scores.size()
334
+ # Organize the experts into groups
335
+ group_scores = scores.view(num_tokens, self.n_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
336
+ group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1]
337
+ group_mask = torch.zeros_like(group_scores)
338
+ group_mask.scatter_(1, group_idx, 1)
339
+
340
+ # Mask the experts based on selection groups
341
+ score_mask = (
342
+ group_mask.unsqueeze(-1)
343
+ .expand(num_tokens, self.n_group, self.num_experts // self.n_group)
344
+ .reshape(num_tokens, -1)
345
+ )
346
+
347
+ masked_scores = scores.masked_fill(~score_mask.bool(), float('-inf'))
348
+ probs, top_indices = torch.topk(masked_scores, k=self.top_k, dim=-1)
349
+
350
+ return probs, top_indices
351
+
352
+ def forward(self, hidden_states):
353
+ # compute gating score
354
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
355
+ logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32))
356
+
357
+ scores = torch.sigmoid(logits.float()).type_as(logits)
358
+
359
+ scores_for_routing = scores + self.expert_bias
360
+ _, topk_idx = self.group_limited_topk(scores_for_routing)
361
+
362
+ scores = torch.gather(scores, dim=1, index=topk_idx).type_as(logits)
363
+
364
+ topk_weight = scores / (scores.sum(dim=-1, keepdim=True) + 1e-20) if self.top_k > 1 else scores
365
+ topk_weight = topk_weight * self.routed_scaling_factor
366
+
367
+ return topk_idx, topk_weight, logits
368
+
369
+
370
+ class BailingMoeV2SparseMoeBlock(nn.Module):
371
+ """
372
+ A mixed expert module containing shared experts.
373
+ """
374
+
375
+ def __init__(self, config: BailingMoeLinearV2Config):
376
+ super().__init__()
377
+ self.config = config
378
+ self.num_experts_per_tok = config.num_experts_per_tok
379
+ self._setup_experts()
380
+ self.gate = BailingMoeV2Gate(config)
381
+ if config.num_shared_experts is not None:
382
+ self.shared_experts = BailingMoeV2MLP(
383
+ config=config, intermediate_size=config.moe_intermediate_size * config.num_shared_experts
384
+ )
385
+
386
+ def _setup_experts(self):
387
+ self.experts = nn.ModuleList(
388
+ [
389
+ BailingMoeV2MLP(config=self.config, intermediate_size=self.config.moe_intermediate_size)
390
+ for _ in range(self.config.num_experts)
391
+ ]
392
+ )
393
+
394
+ def forward(self, hidden_states):
395
+ identity = hidden_states
396
+ bsz, seq_len, h = hidden_states.shape
397
+ topk_idx, topk_weight, router_logits = self.gate(hidden_states)
398
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
399
+ flat_topk_idx = topk_idx.view(-1)
400
+ if self.training:
401
+ hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
402
+ y = torch.empty_like(hidden_states)
403
+ for i, expert in enumerate(self.experts):
404
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
405
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
406
+ y = y.to(hidden_states.dtype).view(bsz, seq_len, h)
407
+ else:
408
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(bsz, seq_len, h)
409
+ if self.config.num_shared_experts is not None:
410
+ y = y + self.shared_experts(identity)
411
+ return y, (router_logits.view(bsz, seq_len, -1), topk_idx.view(bsz, seq_len, -1))
412
+
413
+ @torch.no_grad()
414
+ def moe_infer(self, x, topk_ids, topk_weight):
415
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
416
+ cnts.scatter_(1, topk_ids, 1)
417
+ tokens_per_expert = cnts.sum(dim=0)
418
+ idxs = topk_ids.view(-1).argsort()
419
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
420
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
421
+ outputs = []
422
+ start_idx = 0
423
+ for i, num_tokens in enumerate(tokens_per_expert):
424
+ end_idx = start_idx + num_tokens
425
+ if num_tokens == 0:
426
+ continue
427
+ expert = self.experts[i]
428
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
429
+ expert_out = expert(tokens_for_this_expert)
430
+ outputs.append(expert_out.to(x.device))
431
+ start_idx = end_idx
432
+
433
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
434
+ new_x = torch.empty_like(outs)
435
+ new_x[idxs] = outs
436
+ final_out = (
437
+ new_x.view(*topk_ids.shape, -1)
438
+ .type(topk_weight.dtype)
439
+ .mul_(topk_weight.unsqueeze(dim=-1))
440
+ .sum(dim=1)
441
+ .type(new_x.dtype)
442
+ )
443
+ return final_out
444
+
445
+
446
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
447
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int, head_first: bool = True) -> torch.Tensor:
448
+ """
449
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). If head_first is True, the hidden states go from (batch,
450
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
451
+ """
452
+ if n_rep == 1:
453
+ return hidden_states
454
+ if head_first:
455
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
456
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
457
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
458
+ else:
459
+ batch, slen, num_key_value_heads, head_dim = hidden_states.shape
460
+ hidden_states = hidden_states[:, :, :, None, :].expand(batch, slen, num_key_value_heads, n_rep, head_dim)
461
+ return hidden_states.reshape(batch, slen, num_key_value_heads * n_rep, head_dim)
462
+
463
+
464
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->BailingMoeV2
465
+ class BailingMoeV2Attention(nn.Module):
466
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
467
+
468
+ def __init__(self, config: BailingMoeLinearV2Config, layer_idx: Optional[int] = None):
469
+ super().__init__()
470
+ self.config = config
471
+ self.layer_idx = layer_idx
472
+ if layer_idx is None:
473
+ logger.warning_once(
474
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
475
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
476
+ "when creating this class."
477
+ )
478
+
479
+ self.attention_dropout = config.attention_dropout
480
+ self.hidden_size = config.hidden_size
481
+ self.num_heads = config.num_attention_heads
482
+ self.head_dim = config.head_dim or self.hidden_size // self.num_heads
483
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
484
+ self.rope_dim = int(self.head_dim * partial_rotary_factor)
485
+ self.num_key_value_heads = config.num_key_value_heads
486
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
487
+ self.max_position_embeddings = config.max_position_embeddings
488
+ self.rope_theta = config.rope_theta
489
+ self.is_causal = True
490
+
491
+ self.query_key_value = nn.Linear(
492
+ self.hidden_size,
493
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
494
+ bias=config.use_qkv_bias,
495
+ )
496
+
497
+ if self.config.use_qk_norm:
498
+ self.query_layernorm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
499
+ self.key_layernorm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
500
+ self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias)
501
+
502
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
503
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
504
+
505
+ def forward(
506
+ self,
507
+ hidden_states: torch.Tensor,
508
+ attention_mask: Optional[torch.Tensor] = None,
509
+ position_ids: Optional[torch.LongTensor] = None,
510
+ past_key_value: Optional[Cache] = None,
511
+ output_attentions: bool = False,
512
+ use_cache: bool = False,
513
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
514
+ **kwargs,
515
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
516
+
517
+ bsz, q_len, _ = hidden_states.size()
518
+
519
+ qkv = self.query_key_value(hidden_states)
520
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
521
+
522
+ query_states, key_states, value_states = qkv.split(
523
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
524
+ )
525
+ query_states = query_states.transpose(1, 2)
526
+ key_states = key_states.transpose(1, 2)
527
+ value_states = value_states.transpose(1, 2)
528
+
529
+ if self.config.use_qk_norm:
530
+ query_states = self.query_layernorm(query_states)
531
+ key_states = self.key_layernorm(key_states)
532
+
533
+ cos, sin = position_embeddings
534
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
535
+
536
+ if past_key_value is not None:
537
+ if self.layer_idx is None:
538
+ raise ValueError(
539
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
540
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
541
+ "with a layer index."
542
+ )
543
+ cache_kwargs = {"sin": sin, "cos": cos}
544
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
545
+
546
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
547
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
548
+
549
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
550
+
551
+ kv_seq_len = key_states.shape[-2]
552
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
553
+ raise ValueError(
554
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
555
+ f" {attn_weights.size()}"
556
+ )
557
+
558
+ if attention_mask is not None:
559
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
560
+ raise ValueError(
561
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
562
+ )
563
+ attn_weights = attn_weights + attention_mask
564
+
565
+ # upcast attention to fp32
566
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
567
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
568
+ attn_output = torch.matmul(attn_weights, value_states)
569
+
570
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
571
+ raise ValueError(
572
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
573
+ f" {attn_output.size()}"
574
+ )
575
+
576
+ attn_output = attn_output.transpose(1, 2).contiguous()
577
+
578
+ attn_output = attn_output.reshape(bsz, q_len, -1)
579
+
580
+ attn_output = self.dense(attn_output)
581
+
582
+ if not output_attentions:
583
+ attn_weights = None
584
+
585
+ return attn_output, attn_weights, past_key_value
586
+
587
+
588
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->BailingMoeV2
589
+ class BailingMoeV2FlashAttention2(BailingMoeV2Attention):
590
+ """
591
+ BailingMoeV2 flash attention module. This module inherits from `BailingMoeV2Attention` as the weights of the module stays
592
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
593
+ flash attention and deal with padding tokens in case the input contains any of them.
594
+ """
595
+
596
+ def __init__(self, *args, **kwargs):
597
+ super().__init__(*args, **kwargs)
598
+
599
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
600
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
601
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
602
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
603
+
604
+ def forward(
605
+ self,
606
+ hidden_states: torch.Tensor,
607
+ attention_mask: Optional[torch.LongTensor] = None,
608
+ position_ids: Optional[torch.LongTensor] = None,
609
+ past_key_value: Optional[Cache] = None,
610
+ output_attentions: bool = False,
611
+ use_cache: bool = False,
612
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
613
+ **kwargs,
614
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
615
+ # BailingMoeV2FlashAttention2 attention does not support output_attentions
616
+ output_attentions = False
617
+
618
+ bsz, q_len, _ = hidden_states.size()
619
+
620
+ # Flash attention requires the input to have the shape
621
+ # batch_size x seq_length x head_dim x hidden_dim
622
+ # therefore we just need to keep the original shape
623
+
624
+ qkv = self.query_key_value(hidden_states)
625
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
626
+
627
+ query_states, key_states, value_states = qkv.split(
628
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
629
+ )
630
+ query_states = query_states.transpose(1, 2)
631
+ key_states = key_states.transpose(1, 2)
632
+ value_states = value_states.transpose(1, 2)
633
+
634
+ if self.config.use_qk_norm:
635
+ query_states = self.query_layernorm(query_states)
636
+ key_states = self.key_layernorm(key_states)
637
+
638
+ cos, sin = position_embeddings
639
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
640
+
641
+ if past_key_value is not None:
642
+ cache_kwargs = {"sin": sin, "cos": cos}
643
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
644
+
645
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
646
+ # to be able to avoid many of these transpose/reshape/view.
647
+ query_states = query_states.transpose(1, 2)
648
+ key_states = key_states.transpose(1, 2)
649
+ value_states = value_states.transpose(1, 2)
650
+
651
+ dropout_rate = self.attention_dropout if self.training else 0.0
652
+
653
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
654
+ # therefore the input hidden states gets silently cast in float32. Hence, we need
655
+ # cast them back in the correct dtype just to be sure everything works as expected.
656
+ # This might slow down training & inference so it is recommended to not cast the LayerNorms
657
+ # in fp32. (BailingMoeV2RMSNorm handles it correctly)
658
+
659
+ input_dtype = query_states.dtype
660
+ if input_dtype == torch.float32:
661
+ # Handle the case where the model is quantized
662
+ if hasattr(self.config, "_pre_quantization_dtype"):
663
+ target_dtype = self.config._pre_quantization_dtype
664
+ elif torch.is_autocast_enabled():
665
+ target_dtype = torch.get_autocast_gpu_dtype()
666
+ else:
667
+ target_dtype = self.query_key_value.weight.dtype
668
+
669
+ logger.warning_once(
670
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
671
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
672
+ f" {target_dtype}."
673
+ )
674
+
675
+ query_states = query_states.to(target_dtype)
676
+ key_states = key_states.to(target_dtype)
677
+ value_states = value_states.to(target_dtype)
678
+
679
+ attn_output = self._flash_attention_forward(
680
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
681
+ )
682
+
683
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
684
+ attn_output = self.dense(attn_output)
685
+
686
+ if not output_attentions:
687
+ attn_weights = None
688
+
689
+ return attn_output, attn_weights, past_key_value
690
+
691
+ def _flash_attention_forward(
692
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
693
+ ):
694
+ """
695
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
696
+ first unpad the input, then computes the attention scores and pad the final attention scores.
697
+ Args:
698
+ query_states (`torch.Tensor`):
699
+ Input query states to be passed to Flash Attention API
700
+ key_states (`torch.Tensor`):
701
+ Input key states to be passed to Flash Attention API
702
+ value_states (`torch.Tensor`):
703
+ Input value states to be passed to Flash Attention API
704
+ attention_mask (`torch.Tensor`):
705
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
706
+ position of padding tokens and 1 for the position of non-padding tokens.
707
+ dropout (`int`, *optional*):
708
+ Attention dropout
709
+ softmax_scale (`float`, *optional*):
710
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
711
+ query_length (`int`):
712
+ The length of the query sequence in terms of tokens. This represents the number of tokens in the
713
+ `query_states` tensor along the sequence dimension. It is used to determine the effective sequence
714
+ length for attention computations.
715
+ """
716
+ if not self._flash_attn_uses_top_left_mask:
717
+ causal = self.is_causal
718
+ else:
719
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in BailingMoeV2FlashAttention2 __init__.
720
+ causal = self.is_causal and query_length != 1
721
+
722
+ # Contains at least one padding token in the sequence
723
+ if attention_mask is not None:
724
+ batch_size = query_states.shape[0]
725
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
726
+ query_states, key_states, value_states, attention_mask, query_length
727
+ )
728
+
729
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
730
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
731
+
732
+ attn_output_unpad = flash_attn_varlen_func(
733
+ query_states,
734
+ key_states,
735
+ value_states,
736
+ cu_seqlens_q=cu_seqlens_q,
737
+ cu_seqlens_k=cu_seqlens_k,
738
+ max_seqlen_q=max_seqlen_in_batch_q,
739
+ max_seqlen_k=max_seqlen_in_batch_k,
740
+ dropout_p=dropout,
741
+ softmax_scale=softmax_scale,
742
+ causal=causal,
743
+ )
744
+
745
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
746
+ else:
747
+ attn_output = flash_attn_func(
748
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
749
+ )
750
+
751
+ return attn_output
752
+
753
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
754
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
755
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
756
+
757
+ key_layer = index_first_axis(
758
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
759
+ )
760
+ value_layer = index_first_axis(
761
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
762
+ )
763
+ if query_length == kv_seq_len:
764
+ query_layer = index_first_axis(
765
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
766
+ )
767
+ cu_seqlens_q = cu_seqlens_k
768
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
769
+ indices_q = indices_k
770
+ elif query_length == 1:
771
+ max_seqlen_in_batch_q = 1
772
+ cu_seqlens_q = torch.arange(
773
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
774
+ ) # There is a memcpy here, that is very bad.
775
+ indices_q = cu_seqlens_q[:-1]
776
+ query_layer = query_layer.squeeze(1)
777
+ else:
778
+ # The -q_len: slice assumes left padding.
779
+ attention_mask = attention_mask[:, -query_length:]
780
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
781
+
782
+ return (
783
+ query_layer,
784
+ key_layer,
785
+ value_layer,
786
+ indices_q,
787
+ (cu_seqlens_q, cu_seqlens_k),
788
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
789
+ )
790
+
791
+
792
+ # Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->BailingMoeV2
793
+ class BailingMoeV2SdpaAttention(BailingMoeV2Attention):
794
+ """
795
+ BailingMoeV2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
796
+ `BailingMoeV2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
797
+ SDPA API.
798
+ """
799
+
800
+ # Adapted from BailingMoeV2Attention.forward
801
+ def forward(
802
+ self,
803
+ hidden_states: torch.Tensor,
804
+ attention_mask: Optional[torch.Tensor] = None,
805
+ position_ids: Optional[torch.LongTensor] = None,
806
+ past_key_value: Optional[Cache] = None,
807
+ output_attentions: bool = False,
808
+ use_cache: bool = False,
809
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
810
+ **kwargs,
811
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
812
+ if output_attentions:
813
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
814
+ logger.warning_once(
815
+ "BailingMoeV2Model is using BailingMoeV2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
816
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
817
+ )
818
+ return super().forward(
819
+ hidden_states=hidden_states,
820
+ attention_mask=attention_mask,
821
+ position_ids=position_ids,
822
+ past_key_value=past_key_value,
823
+ output_attentions=output_attentions,
824
+ use_cache=use_cache,
825
+ )
826
+
827
+ bsz, q_len, _ = hidden_states.size()
828
+
829
+ qkv = self.query_key_value(hidden_states)
830
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
831
+
832
+ query_states, key_states, value_states = qkv.split(
833
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
834
+ )
835
+ query_states = query_states.transpose(1, 2)
836
+ key_states = key_states.transpose(1, 2)
837
+ value_states = value_states.transpose(1, 2)
838
+
839
+ if self.config.use_qk_norm:
840
+ query_states = self.query_layernorm(query_states)
841
+ key_states = self.key_layernorm(key_states)
842
+
843
+ cos, sin = position_embeddings
844
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
845
+
846
+ if past_key_value is not None:
847
+ cache_kwargs = {"sin": sin, "cos": cos}
848
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
849
+
850
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
851
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
852
+
853
+ if attention_mask is not None:
854
+ kv_seq_len = key_states.shape[-2]
855
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
856
+ raise ValueError(
857
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
858
+ )
859
+
860
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
861
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
862
+ if query_states.device.type == "cuda" and attention_mask is not None:
863
+ query_states = query_states.contiguous()
864
+ key_states = key_states.contiguous()
865
+ value_states = value_states.contiguous()
866
+
867
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
868
+ query_states,
869
+ key_states,
870
+ value_states,
871
+ attn_mask=attention_mask,
872
+ dropout_p=self.attention_dropout if self.training else 0.0,
873
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
874
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
875
+ )
876
+
877
+ attn_output = attn_output.transpose(1, 2).contiguous()
878
+ attn_output = attn_output.reshape(bsz, q_len, -1)
879
+
880
+ attn_output = self.dense(attn_output)
881
+
882
+ return attn_output, None, past_key_value
883
+
884
+
885
+ ATTENTION_CLASSES = {
886
+ "eager": BailingMoeV2Attention,
887
+ "flash_attention_2": BailingMoeV2FlashAttention2,
888
+ "sdpa": BailingMoeV2SdpaAttention,
889
+ }
890
+
891
+
892
+ class BailingMoeV2LinearAttention(nn.Module):
893
+ """
894
+ BailingMoeAttention implements a linear attention mechanism based on Lightning Attention-2
895
+ (https://arxiv.org/abs/2401.04658) with efficient computation using flash-linear-attention operators.
896
+
897
+ The implementation leverages optimized kernels from the flash-linear-attention library
898
+ (https://github.com/fla-org/flash-linear-attention) for maximum performance.
899
+ """
900
+ def __init__(self, config: BailingMoeLinearV2Config, layer_idx: Optional[int] = None):
901
+ super().__init__()
902
+ self.config = config
903
+ self.layer_idx = layer_idx
904
+ if layer_idx is None:
905
+ logger.warning_once(
906
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
907
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
908
+ "when creating this class."
909
+ )
910
+ self.hidden_size = config.hidden_size
911
+ self.num_heads = config.num_attention_heads
912
+ self.head_dim = config.head_dim or self.hidden_size // self.num_heads
913
+ self.num_key_value_heads = config.num_attention_heads
914
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
915
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
916
+ self.rope_dim = int(self.head_dim * partial_rotary_factor)
917
+
918
+ self.use_qk_norm = getattr(config, "use_qk_norm", False)
919
+ self.rms_norm_eps = getattr(config, "rms_norm_eps", 1e-5)
920
+ self.mode = 'chunk'
921
+
922
+ self.query_key_value = nn.Linear(
923
+ self.hidden_size,
924
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
925
+ bias=config.use_qkv_bias,
926
+ )
927
+
928
+ if self.config.use_qk_norm:
929
+ self.query_layernorm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
930
+ self.key_layernorm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
931
+
932
+ self.rotary_emb = BailingMoeV2RotaryEmbedding(config=config)
933
+
934
+ self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias)
935
+
936
+ self.g_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
937
+ self.g_norm = BailingMoeV2GroupRMSNorm(self.num_heads * self.head_dim, group_norm_size=config.group_norm_size, eps=self.rms_norm_eps)
938
+ slope = - BailingMoeV2LinearAttention.build_slope_tensor(self.num_heads) * (1 - (self.layer_idx - 1) / (self.config.num_hidden_layers - 1) + 1e-5)
939
+ self.register_buffer('slope', slope, persistent=False)
940
+
941
+ self.lightning_attn_ops = {
942
+ 'chunk': chunk_simple_gla,
943
+ 'fused_recurrent': fused_recurrent_simple_gla
944
+ }
945
+
946
+ @staticmethod
947
+ def build_slope_tensor(n_attention_heads: int):
948
+ """
949
+ Build a tensor of slopes for Lightning Attention-2 as described in the paper:
950
+ "Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models"
951
+ (https://arxiv.org/abs/2401.04658)
952
+
953
+ This function computes the slope values that control the decay rate of attention scores
954
+ based on the number of attention heads. The slopes are designed to have specific
955
+ mathematical properties that work optimally when the number of heads is a power of 2.
956
+
957
+ For non-power-of-2 head counts, a workaround is implemented to maintain similar properties.
958
+
959
+ Args:
960
+ n_attention_heads (int): Number of attention heads in the model
961
+
962
+ Returns:
963
+ torch.Tensor: A tensor of shape [n_attention_heads] containing the computed slopes
964
+
965
+ Note:
966
+ Code copied from: https://github.com/OpenNLPLab/lightning-attention/blob/d15c38529bbd5c2c82b44ddda3cac885825aa873/lightning_attn/utils/utils.py#L6
967
+ """
968
+ def get_slopes(n):
969
+ def get_slopes_power_of_2(n):
970
+ start = 2 ** (-(2 ** -(math.log2(n) - 3)))
971
+ ratio = start
972
+ return [start * ratio ** i for i in range(n)]
973
+
974
+ if math.log2(n).is_integer():
975
+ return get_slopes_power_of_2(
976
+ n) # In the paper, we only train models that have 2^a heads for some a. This function has
977
+ else: # some good properties that only occur when the input is a power of 2. To maintain that even
978
+ closest_power_of_2 = 2 ** math.floor(
979
+ math.log2(n)) # when the number of heads is not a power of 2, we use this workaround.
980
+ return (get_slopes_power_of_2(closest_power_of_2)
981
+ + get_slopes(2 * closest_power_of_2)[0::2][:n - closest_power_of_2])
982
+
983
+ slopes = torch.tensor(get_slopes(n_attention_heads), dtype=torch.float)
984
+ return slopes
985
+
986
+
987
+ def forward(
988
+ self,
989
+ hidden_states: torch.Tensor,
990
+ attention_mask: Optional[torch.Tensor] = None,
991
+ position_ids: Optional[torch.LongTensor] = None,
992
+ past_key_value: Optional[Cache] = None,
993
+ output_attentions: bool = False,
994
+ use_cache: bool = False,
995
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
996
+ **kwargs,
997
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
998
+ if attention_mask is not None:
999
+ assert len(attention_mask.shape) == 2, (
1000
+ "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
1001
+ "for padding purposes (0 indicating padding). "
1002
+ "Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
1003
+ )
1004
+
1005
+ # launching the triton kernel for just one token will actually be slower
1006
+ mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
1007
+
1008
+ # Currently output_attentions can only be False, returning attention weights is not supported
1009
+ assert not output_attentions, "output_attentions can only be False, returning attention weights is not supported"
1010
+
1011
+ bsz, q_len, _ = hidden_states.size()
1012
+ device = hidden_states.device
1013
+
1014
+ qkv = self.query_key_value(hidden_states)
1015
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
1016
+ query_states, key_states, value_states = qkv.split(
1017
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
1018
+ )
1019
+ if self.config.use_qk_norm:
1020
+ query_states = self.query_layernorm(query_states)
1021
+ key_states = self.key_layernorm(key_states)
1022
+
1023
+ cos, sin = position_embeddings
1024
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=2)
1025
+
1026
+ if self.num_key_value_groups > 1:
1027
+ # [bsz, q_len, n_kv_heads, head_dim] -> [bsz, q_len, n_heads, head_dim]
1028
+ key_states = repeat_kv(key_states, self.num_key_value_groups, head_first=False)
1029
+ value_states = repeat_kv(value_states, self.num_key_value_groups, head_first=False)
1030
+
1031
+ recurrent_state = None
1032
+ if past_key_value is not None and isinstance(past_key_value, Cache):
1033
+ # ensure the cache list is long enough
1034
+ while len(past_key_value.layers) <= self.layer_idx:
1035
+ past_key_value.layers.append(DynamicLayer())
1036
+
1037
+ if past_key_value.layers[self.layer_idx].keys is not None:
1038
+ recurrent_state = past_key_value.layers[self.layer_idx].keys
1039
+ # ensure recurrent_state is on the same device as hidden_states
1040
+ if recurrent_state.device != hidden_states.device:
1041
+ recurrent_state = recurrent_state.to(device).contiguous()
1042
+
1043
+ if recurrent_state is None:
1044
+ # dealing with left-padding
1045
+ if attention_mask is not None and use_cache:
1046
+ value_states = value_states.mul_(attention_mask[:, -q_len:, None, None])
1047
+
1048
+ o, recurrent_state = self.lightning_attn_ops[mode](
1049
+ q=query_states,
1050
+ k=key_states,
1051
+ v=value_states,
1052
+ g=self.slope[None, None, :].expand(bsz, q_len, self.num_heads),
1053
+ initial_state=recurrent_state,
1054
+ output_final_state=use_cache,
1055
+ )
1056
+
1057
+ o = o.reshape(bsz, q_len, -1)
1058
+ o = self.g_norm(o)
1059
+ g_proj = self.g_proj(hidden_states)
1060
+ o = o * torch.sigmoid_(g_proj)
1061
+ o = self.dense(o)
1062
+
1063
+ if use_cache and past_key_value is not None and isinstance(past_key_value, Cache):
1064
+ target_device = None
1065
+ for cache in past_key_value.layers:
1066
+ if cache.keys is not None:
1067
+ target_device = cache.keys.device
1068
+ break
1069
+ if target_device is None:
1070
+ target_device = recurrent_state.device
1071
+
1072
+ # move to target device
1073
+ if recurrent_state.device != target_device:
1074
+ recurrent_state = recurrent_state.to(target_device)
1075
+
1076
+ past_key_value.layers[self.layer_idx].keys = recurrent_state
1077
+
1078
+ return o, None, past_key_value
1079
+
1080
+
1081
+ class BailingMoeV2MTPLayer(nn.Module):
1082
+ def __init__(self, config: BailingMoeLinearV2Config, layer_idx: int):
1083
+ super().__init__()
1084
+ self.layer_idx = layer_idx
1085
+ self.input_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1086
+ self.enorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1087
+
1088
+ self.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False)
1089
+ self.post_attention_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1090
+ self.attention = ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
1091
+ self.mlp = BailingMoeV2SparseMoeBlock(config)
1092
+
1093
+ self.hnorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1094
+ self.final_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1095
+
1096
+ def forward(
1097
+ self,
1098
+ input_embeds,
1099
+ hidden_states: torch.Tensor,
1100
+ attention_mask: Optional[torch.Tensor] = None,
1101
+ position_ids: Optional[torch.LongTensor] = None,
1102
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1103
+ output_attentions: Optional[bool] = False,
1104
+ output_router_logits: Optional[bool] = False,
1105
+ use_cache: Optional[bool] = False,
1106
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
1107
+ **kwargs,
1108
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
1109
+ input_embeds = self.enorm(input_embeds)
1110
+ hidden_states = self.hnorm(hidden_states)
1111
+ hidden_states = self.eh_proj(torch.cat([input_embeds, hidden_states], dim=-1))
1112
+ residual = hidden_states
1113
+
1114
+ hidden_states = self.input_layernorm(hidden_states)
1115
+
1116
+ # Self Attention
1117
+ hidden_states, self_attn_weights, present_key_value = self.attention(
1118
+ hidden_states=hidden_states,
1119
+ attention_mask=attention_mask,
1120
+ position_ids=position_ids,
1121
+ past_key_value=past_key_value,
1122
+ output_attentions=output_attentions,
1123
+ position_embeddings=position_embeddings,
1124
+ use_cache=use_cache,
1125
+ )
1126
+ hidden_states = residual + hidden_states
1127
+
1128
+ # Fully Connected
1129
+ residual = hidden_states
1130
+ hidden_states = self.post_attention_layernorm(hidden_states)
1131
+ hidden_states = self.mlp(hidden_states)
1132
+ if isinstance(hidden_states, tuple):
1133
+ hidden_states, router_logits = hidden_states
1134
+ else:
1135
+ router_logits = None
1136
+ hidden_states = residual + hidden_states.to(residual.device)
1137
+ hidden_states = self.final_layernorm(hidden_states)
1138
+
1139
+ outputs = (hidden_states,)
1140
+
1141
+ if output_attentions:
1142
+ outputs += (self_attn_weights,)
1143
+
1144
+ if use_cache:
1145
+ outputs += (present_key_value,)
1146
+
1147
+ if output_router_logits:
1148
+ outputs += (router_logits,)
1149
+
1150
+ return outputs
1151
+
1152
+
1153
+ class BailingMoeLinearV2DecoderLayer(nn.Module):
1154
+ def __init__(self, config: BailingMoeLinearV2Config, layer_idx: int):
1155
+ super().__init__()
1156
+ self.hidden_size = config.hidden_size
1157
+ self.attention_layer_type = "attention" if (layer_idx + 1) % config.layer_group_size == 0 or \
1158
+ layer_idx >= config.num_hidden_layers // config.layer_group_size * config.layer_group_size else "linear_attention"
1159
+
1160
+ if self.attention_layer_type == "attention":
1161
+ self.attention = ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
1162
+ else:
1163
+ self.attention = BailingMoeV2LinearAttention(
1164
+ config=config,
1165
+ layer_idx=layer_idx
1166
+ )
1167
+
1168
+ self.mlp = (
1169
+ BailingMoeV2SparseMoeBlock(config)
1170
+ if (config.num_experts is not None and layer_idx >= config.first_k_dense_replace)
1171
+ else BailingMoeV2MLP(config=config, intermediate_size=config.intermediate_size)
1172
+ )
1173
+ self.input_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1174
+ self.post_attention_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1175
+
1176
+ def forward(
1177
+ self,
1178
+ hidden_states: torch.Tensor,
1179
+ attention_mask: Optional[torch.Tensor] = None,
1180
+ position_ids: Optional[torch.LongTensor] = None,
1181
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1182
+ output_attentions: Optional[bool] = False,
1183
+ output_router_logits: Optional[bool] = False,
1184
+ use_cache: Optional[bool] = False,
1185
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
1186
+ **kwargs,
1187
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
1188
+ """
1189
+ Args:
1190
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1191
+ attention_mask (`torch.FloatTensor`, *optional*):
1192
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1193
+ query_sequence_length, key_sequence_length)` if default attention is used.
1194
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1195
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1196
+ config.n_positions - 1]`.
1197
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
1198
+ cached past key and value projection states
1199
+ output_attentions (`bool`, *optional*):
1200
+ Whether to return the attentions tensors of all attention layers. See `attentions` under
1201
+ returned tensors for more detail.
1202
+ output_router_logits (`bool`, *optional*):
1203
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss,
1204
+ and should not be returned during inference.
1205
+ use_cache (`bool`, *optional*):
1206
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1207
+ (see `past_key_values`).
1208
+ """
1209
+ residual = hidden_states
1210
+
1211
+ hidden_states = self.input_layernorm(hidden_states)
1212
+
1213
+ # Self Attention
1214
+ if self.attention_layer_type == "attention":
1215
+ hidden_states, self_attn_weights, present_key_value = self.attention(
1216
+ hidden_states=hidden_states,
1217
+ attention_mask=attention_mask,
1218
+ position_ids=position_ids,
1219
+ past_key_value=past_key_value,
1220
+ output_attentions=output_attentions,
1221
+ position_embeddings=position_embeddings,
1222
+ use_cache=use_cache,
1223
+ )
1224
+ else:
1225
+ batch_size, seq_len = hidden_states.shape[0], hidden_states.shape[1]
1226
+ device = hidden_states.device
1227
+
1228
+ if attention_mask is None:
1229
+ # if attention_mask is None, create a full mask
1230
+ attention_mask = torch.ones((batch_size, seq_len), dtype=torch.int32, device=device)
1231
+ elif attention_mask.dim() == 4 and attention_mask.shape[1] == 1:
1232
+ attention_mask = attention_mask[:, 0, -1, :].to(torch.int32)
1233
+ attention_mask = (attention_mask > -1e4).to(torch.int32)
1234
+ elif attention_mask.dim() == 2:
1235
+ attention_mask = attention_mask.to(torch.int32)
1236
+ else:
1237
+ raise ValueError(f"Unsupported mask dimension: {attention_mask.shape}")
1238
+
1239
+ hidden_states, self_attn_weights, present_key_value = self.attention(
1240
+ hidden_states=hidden_states,
1241
+ attention_mask=attention_mask,
1242
+ past_key_value=past_key_value,
1243
+ position_ids=position_ids,
1244
+ use_cache=use_cache,
1245
+ output_attentions=output_attentions,
1246
+ position_embeddings=position_embeddings,
1247
+ )
1248
+
1249
+ hidden_states = residual + hidden_states
1250
+
1251
+ # Fully Connected
1252
+ residual = hidden_states
1253
+ hidden_states = self.post_attention_layernorm(hidden_states)
1254
+ hidden_states = self.mlp(hidden_states)
1255
+ if isinstance(hidden_states, tuple):
1256
+ hidden_states, router_logits = hidden_states
1257
+ else:
1258
+ router_logits = None
1259
+ hidden_states = residual + hidden_states.to(residual.device)
1260
+
1261
+ outputs = (hidden_states,)
1262
+
1263
+ if output_attentions:
1264
+ outputs += (self_attn_weights,)
1265
+
1266
+ if use_cache:
1267
+ outputs += (present_key_value,)
1268
+
1269
+ if output_router_logits:
1270
+ outputs += (router_logits,)
1271
+
1272
+ return outputs
1273
+
1274
+
1275
+ BAILINGMOEV2_START_DOCSTRING = r"""
1276
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1277
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1278
+ etc.)
1279
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1280
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1281
+ and behavior.
1282
+ Parameters:
1283
+ config ([`BailingMoeLinearV2Config`]):
1284
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1285
+ load the weights associated with the model, only the configuration. Check out the
1286
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1287
+ """
1288
+
1289
+
1290
+ @add_start_docstrings(
1291
+ "The bare BailingMoeV2 Model outputting raw hidden-states without any specific head on top.",
1292
+ BAILINGMOEV2_START_DOCSTRING,
1293
+ )
1294
+ class BailingMoeV2PreTrainedModel(PreTrainedModel):
1295
+ config_class = BailingMoeLinearV2Config
1296
+ base_model_prefix = "model"
1297
+ supports_gradient_checkpointing = True
1298
+ _no_split_modules = ["BailingMoeLinearV2DecoderLayer"]
1299
+ _skip_keys_device_placement = "past_key_values"
1300
+ _supports_flash_attn_2 = True
1301
+ _supports_sdpa = True
1302
+ _supports_cache_class = True
1303
+
1304
+ def _init_weights(self, module):
1305
+ std = self.config.initializer_range
1306
+ if isinstance(module, nn.Linear):
1307
+ module.weight.data.normal_(mean=0.0, std=std)
1308
+ if module.bias is not None:
1309
+ module.bias.data.zero_()
1310
+ elif isinstance(module, nn.Embedding):
1311
+ module.weight.data.normal_(mean=0.0, std=std)
1312
+ if module.padding_idx is not None:
1313
+ module.weight.data[module.padding_idx].zero_()
1314
+
1315
+
1316
+ BAILINGMOEV2_INPUTS_DOCSTRING = r"""
1317
+ Args:
1318
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1319
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1320
+ it.
1321
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1322
+ [`PreTrainedTokenizer.__call__`] for details.
1323
+ [What are input IDs?](../glossary#input-ids)
1324
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1325
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1326
+ - 1 for tokens that are **not masked**,
1327
+ - 0 for tokens that are **masked**.
1328
+ [What are attention masks?](../glossary#attention-mask)
1329
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1330
+ [`PreTrainedTokenizer.__call__`] for details.
1331
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1332
+ `past_key_values`).
1333
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1334
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1335
+ information on the default strategy.
1336
+ - 1 indicates the head is **not masked**,
1337
+ - 0 indicates the head is **masked**.
1338
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1339
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1340
+ config.n_positions - 1]`.
1341
+ [What are position IDs?](../glossary#position-ids)
1342
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1343
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1344
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1345
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1346
+ Two formats are allowed:
1347
+ - a [`~cache_utils.Cache`] instance;
1348
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1349
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1350
+ cache format.
1351
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1352
+ legacy cache format will be returned.
1353
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1354
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1355
+ of shape `(batch_size, sequence_length)`.
1356
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1357
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1358
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1359
+ model's internal embedding lookup matrix.
1360
+ use_cache (`bool`, *optional*):
1361
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1362
+ `past_key_values`).
1363
+ output_attentions (`bool`, *optional*):
1364
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1365
+ tensors for more detail.
1366
+ output_hidden_states (`bool`, *optional*):
1367
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1368
+ more detail.
1369
+ return_dict (`bool`, *optional*):
1370
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1371
+ """
1372
+
1373
+
1374
+ @add_start_docstrings(
1375
+ "The bare BailingMoeV2 Model outputting raw hidden-states without any specific head on top.",
1376
+ BAILINGMOEV2_START_DOCSTRING,
1377
+ )
1378
+ class BailingMoeLinearV2Model(BailingMoeV2PreTrainedModel):
1379
+ """
1380
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BailingMoeLinearV2DecoderLayer`]
1381
+ Args:
1382
+ config: BailingMoeLinearV2Config
1383
+ """
1384
+
1385
+ def __init__(self, config: BailingMoeLinearV2Config):
1386
+ super().__init__(config)
1387
+ self.padding_idx = config.pad_token_id
1388
+ self.vocab_size = config.vocab_size
1389
+ self.num_nextn_predict_layers = config.num_nextn_predict_layers
1390
+
1391
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1392
+ self.layers = []
1393
+ for layer_idx in range(config.num_hidden_layers + config.num_nextn_predict_layers):
1394
+ layer_cls = BailingMoeLinearV2DecoderLayer if layer_idx < config.num_hidden_layers else BailingMoeV2MTPLayer
1395
+ self.layers.append(layer_cls(config, layer_idx))
1396
+
1397
+ self.layers = nn.ModuleList(self.layers)
1398
+
1399
+ self._use_sdpa = config._attn_implementation == "sdpa"
1400
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1401
+ self.norm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1402
+ self.rotary_emb = BailingMoeV2RotaryEmbedding(config=config)
1403
+ self.gradient_checkpointing = False
1404
+ # Initialize weights and apply final processing
1405
+ self.post_init()
1406
+
1407
+ def get_input_embeddings(self):
1408
+ return self.word_embeddings
1409
+
1410
+ def set_input_embeddings(self, value):
1411
+ self.word_embeddings = value
1412
+
1413
+ @add_start_docstrings_to_model_forward(BAILINGMOEV2_INPUTS_DOCSTRING)
1414
+ def forward(
1415
+ self,
1416
+ input_ids: torch.LongTensor = None,
1417
+ attention_mask: Optional[torch.Tensor] = None,
1418
+ position_ids: Optional[torch.LongTensor] = None,
1419
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1420
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1421
+ use_cache: Optional[bool] = None,
1422
+ output_attentions: Optional[bool] = None,
1423
+ output_hidden_states: Optional[bool] = None,
1424
+ output_router_logits: Optional[bool] = None,
1425
+ return_dict: Optional[bool] = None,
1426
+ **kwargs,
1427
+ ) -> Union[Tuple, MoeV2ModelOutputWithPast]:
1428
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1429
+ output_hidden_states = (
1430
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1431
+ )
1432
+ output_router_logits = (
1433
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1434
+ )
1435
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1436
+
1437
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1438
+
1439
+ # retrieve input_ids and inputs_embeds
1440
+ if input_ids is not None and inputs_embeds is not None:
1441
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1442
+ elif input_ids is not None:
1443
+ batch_size, seq_length = input_ids.shape[:2]
1444
+ elif inputs_embeds is not None:
1445
+ batch_size, seq_length = inputs_embeds.shape[:2]
1446
+ else:
1447
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1448
+
1449
+ if self.gradient_checkpointing and self.training:
1450
+ if use_cache:
1451
+ logger.warning_once(
1452
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1453
+ )
1454
+ use_cache = False
1455
+
1456
+ if use_cache and past_key_values is None:
1457
+ past_key_values = DynamicCache()
1458
+
1459
+ if inputs_embeds is None:
1460
+ inputs_embeds = self.word_embeddings(input_ids)
1461
+
1462
+ softmax_attention_layer_id = self.config.layer_group_size - 1
1463
+ past_seen_tokens = past_key_values.get_seq_length(layer_idx=softmax_attention_layer_id) if past_key_values is not None else 0
1464
+
1465
+ if position_ids is None:
1466
+ position_ids = torch.arange(
1467
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
1468
+ )
1469
+ position_ids = position_ids.unsqueeze(0)
1470
+
1471
+ if self._use_flash_attention_2:
1472
+ # 2d mask is passed through the layers
1473
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1474
+ elif self._use_sdpa and not output_attentions:
1475
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1476
+ # the manual implementation that requires a 4D causal mask in all cases.
1477
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1478
+ attention_mask,
1479
+ (batch_size, seq_length),
1480
+ inputs_embeds,
1481
+ past_seen_tokens,
1482
+ )
1483
+ else:
1484
+ # 4d mask is passed through the layers
1485
+ attention_mask = _prepare_4d_causal_attention_mask(
1486
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_seen_tokens
1487
+ )
1488
+
1489
+ # embed positions
1490
+ hidden_states = inputs_embeds
1491
+
1492
+ # create position embeddings to be shared across the decoder layers
1493
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
1494
+
1495
+ # decoder layers
1496
+ all_hidden_states = () if output_hidden_states else None
1497
+ all_self_attns = () if output_attentions else None
1498
+ all_router_logits = () if output_router_logits else None
1499
+ next_decoder_cache = None
1500
+ layers = self.layers[: -self.num_nextn_predict_layers] if self.num_nextn_predict_layers > 0 else self.layers
1501
+ mtp_layers = self.layers[-self.num_nextn_predict_layers :] if self.num_nextn_predict_layers > 0 else None
1502
+
1503
+ for decoder_layer in layers:
1504
+ if output_hidden_states:
1505
+ all_hidden_states += (hidden_states,)
1506
+
1507
+ if self.gradient_checkpointing and self.training:
1508
+ layer_outputs = self._gradient_checkpointing_func(
1509
+ decoder_layer.__call__,
1510
+ hidden_states,
1511
+ attention_mask,
1512
+ position_ids,
1513
+ past_key_values,
1514
+ output_attentions,
1515
+ output_router_logits,
1516
+ use_cache,
1517
+ position_embeddings,
1518
+ )
1519
+ else:
1520
+ layer_outputs = decoder_layer(
1521
+ hidden_states,
1522
+ attention_mask=attention_mask,
1523
+ position_ids=position_ids,
1524
+ past_key_value=past_key_values,
1525
+ output_attentions=output_attentions,
1526
+ output_router_logits=output_router_logits,
1527
+ use_cache=use_cache,
1528
+ position_embeddings=position_embeddings,
1529
+ )
1530
+ hidden_states = layer_outputs[0]
1531
+
1532
+ if use_cache:
1533
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1534
+
1535
+ if output_attentions:
1536
+ all_self_attns += (layer_outputs[1],)
1537
+
1538
+ if output_router_logits and layer_outputs[-1] is not None:
1539
+ all_router_logits += (layer_outputs[-1],)
1540
+
1541
+ hidden_states = self.norm(hidden_states)
1542
+ main_hidden_states = hidden_states
1543
+
1544
+ # add hidden states from the last decoder layer
1545
+ if output_hidden_states:
1546
+ all_hidden_states += (main_hidden_states,)
1547
+
1548
+ mtp_hidden_states = None
1549
+
1550
+ if mtp_layers:
1551
+ for decoder_layer in mtp_layers:
1552
+ input_ids, _ = roll_tensor(input_ids, shifts=-1, dims=-1)
1553
+ inputs_embeds = self.word_embeddings(input_ids)
1554
+
1555
+ if self.gradient_checkpointing and self.training:
1556
+ layer_outputs = self._gradient_checkpointing_func(
1557
+ decoder_layer.__call__,
1558
+ inputs_embeds,
1559
+ hidden_states,
1560
+ attention_mask,
1561
+ position_ids,
1562
+ past_key_values,
1563
+ output_attentions,
1564
+ output_router_logits,
1565
+ use_cache,
1566
+ position_embeddings,
1567
+ )
1568
+ else:
1569
+ layer_outputs = decoder_layer(
1570
+ inputs_embeds,
1571
+ hidden_states,
1572
+ attention_mask=attention_mask,
1573
+ position_ids=position_ids,
1574
+ past_key_value=past_key_values,
1575
+ output_attentions=output_attentions,
1576
+ output_router_logits=output_router_logits,
1577
+ use_cache=use_cache,
1578
+ position_embeddings=position_embeddings,
1579
+ )
1580
+ if mtp_hidden_states is None:
1581
+ mtp_hidden_states = []
1582
+ hidden_states = layer_outputs[0]
1583
+ mtp_hidden_states.append(hidden_states)
1584
+
1585
+ if output_hidden_states:
1586
+ all_hidden_states += (hidden_states,)
1587
+
1588
+ if use_cache:
1589
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1590
+
1591
+ if output_attentions:
1592
+ all_self_attns += (layer_outputs[1],)
1593
+
1594
+ if output_router_logits and layer_outputs[-1] is not None:
1595
+ all_router_logits += (layer_outputs[-1],)
1596
+
1597
+ next_cache = None
1598
+ if use_cache:
1599
+ next_cache = next_decoder_cache
1600
+ if not return_dict:
1601
+ return tuple(
1602
+ v
1603
+ for v in [main_hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
1604
+ if v is not None
1605
+ )
1606
+ return MoeV2ModelOutputWithPast(
1607
+ last_hidden_state=main_hidden_states,
1608
+ past_key_values=next_cache,
1609
+ hidden_states=all_hidden_states,
1610
+ mtp_hidden_states=mtp_hidden_states,
1611
+ attentions=all_self_attns,
1612
+ router_logits=all_router_logits,
1613
+ )
1614
+
1615
+
1616
+ class BailingMoeLinearV2ForCausalLM(BailingMoeV2PreTrainedModel, GenerationMixin):
1617
+ _tied_weights_keys = ["lm_head.weight"]
1618
+
1619
+ def __init__(self, config: BailingMoeLinearV2Config):
1620
+ super().__init__(config)
1621
+ self.model = BailingMoeLinearV2Model(config)
1622
+ self.vocab_size = config.vocab_size
1623
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1624
+ self.num_nextn_predict_layers = config.num_nextn_predict_layers
1625
+ self.mtp_loss_scaling_factor = config.mtp_loss_scaling_factor
1626
+
1627
+ # Initialize weights and apply final processing
1628
+ self.post_init()
1629
+
1630
+ def get_input_embeddings(self):
1631
+ return self.model.word_embeddings
1632
+
1633
+ def set_input_embeddings(self, value):
1634
+ self.model.word_embeddings = value
1635
+
1636
+ def get_output_embeddings(self):
1637
+ return self.lm_head
1638
+
1639
+ def set_output_embeddings(self, new_embeddings):
1640
+ self.lm_head = new_embeddings
1641
+
1642
+ def set_decoder(self, decoder):
1643
+ self.model = decoder
1644
+
1645
+ def get_decoder(self):
1646
+ return self.model
1647
+
1648
+ @add_start_docstrings_to_model_forward(BAILINGMOEV2_INPUTS_DOCSTRING)
1649
+ @replace_return_docstrings(output_type=MoEV2CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1650
+ def forward(
1651
+ self,
1652
+ input_ids: torch.LongTensor = None,
1653
+ attention_mask: Optional[torch.Tensor] = None,
1654
+ position_ids: Optional[torch.LongTensor] = None,
1655
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1656
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1657
+ labels: Optional[torch.LongTensor] = None,
1658
+ use_cache: Optional[bool] = None,
1659
+ output_attentions: Optional[bool] = None,
1660
+ output_hidden_states: Optional[bool] = None,
1661
+ output_router_logits: Optional[bool] = None,
1662
+ return_dict: Optional[bool] = None,
1663
+ **kwargs,
1664
+ ) -> Union[Tuple, MoEV2CausalLMOutputWithPast]:
1665
+ r"""
1666
+ Args:
1667
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1668
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1669
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1670
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1671
+ Returns:
1672
+ Example:
1673
+ ```python
1674
+ >>> from transformers import AutoTokenizer
1675
+ >>> model = BailingMoeLinearV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1676
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1677
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1678
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1679
+ >>> # Generate
1680
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1681
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1682
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1683
+ ```"""
1684
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1685
+ output_hidden_states = (
1686
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1687
+ )
1688
+ output_router_logits = (
1689
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1690
+ )
1691
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1692
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1693
+ outputs = self.model(
1694
+ input_ids=input_ids,
1695
+ attention_mask=attention_mask,
1696
+ position_ids=position_ids,
1697
+ past_key_values=past_key_values,
1698
+ inputs_embeds=inputs_embeds,
1699
+ use_cache=use_cache,
1700
+ output_attentions=output_attentions,
1701
+ output_hidden_states=output_hidden_states,
1702
+ output_router_logits=output_router_logits,
1703
+ return_dict=return_dict,
1704
+ **kwargs,
1705
+ )
1706
+
1707
+ loss = None
1708
+ all_mtp_loss = None
1709
+ aux_loss = None
1710
+ hidden_states = outputs[0]
1711
+ logits = self.lm_head(hidden_states)
1712
+ logits = logits.float()
1713
+
1714
+ if labels is not None:
1715
+ loss = self.loss_function(logits, labels, self.config.vocab_size, **kwargs)
1716
+
1717
+ all_mtp_logits = None
1718
+ if self.num_nextn_predict_layers > 0:
1719
+ mtp_hidden_states = outputs.mtp_hidden_states
1720
+ shift_labels_mtp = None
1721
+ for i in range(self.num_nextn_predict_layers):
1722
+ mtp_hidden_states = mtp_hidden_states[i]
1723
+ mtp_logits = self.lm_head(mtp_hidden_states).float()
1724
+ if all_mtp_logits is None:
1725
+ all_mtp_logits = []
1726
+ all_mtp_logits.append(mtp_logits)
1727
+ if labels is not None:
1728
+ if shift_labels_mtp is None:
1729
+ shift_labels_mtp = labels.clone()
1730
+ shift_labels_mtp, _ = roll_tensor(shift_labels_mtp, shifts=-1, dims=-1, fill_value=-100)
1731
+ mtp_logits_ = mtp_logits.view(-1, self.config.vocab_size)
1732
+ mtp_loss = self.loss_function(mtp_logits_, shift_labels_mtp.to(mtp_logits_.device).view(-1), self.config.vocab_size, **kwargs)
1733
+ if loss is not None:
1734
+ loss += self.mtp_loss_scaling_factor * mtp_loss
1735
+ else:
1736
+ loss = self.mtp_loss_scaling_factor * mtp_loss
1737
+
1738
+ if all_mtp_loss is None:
1739
+ all_mtp_loss = []
1740
+ all_mtp_loss.append(mtp_loss)
1741
+
1742
+ if not return_dict:
1743
+ output = (logits,) + outputs[1:]
1744
+ if output_router_logits:
1745
+ output = (aux_loss,) + output
1746
+ return (loss,) + output if loss is not None else output
1747
+
1748
+ return MoEV2CausalLMOutputWithPast(
1749
+ loss=loss,
1750
+ mtp_loss=all_mtp_loss,
1751
+ aux_loss=aux_loss,
1752
+ logits=logits,
1753
+ mtp_logits=all_mtp_logits,
1754
+ past_key_values=outputs.past_key_values,
1755
+ hidden_states=outputs.hidden_states,
1756
+ attentions=outputs.attentions,
1757
+ router_logits=outputs.router_logits,
1758
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|startoftext|>",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "<|endoftext|>",
5
+ "gmask_token": "[gMASK]",
6
+ "pad_token": "<|endoftext|>"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "bos_token": "<|startoftext|>",
5
+ "chat_template": "{% for message in messages %}{% set role = message['role'] | lower %}{% if role == 'user' %}{% set role = 'HUMAN' %}{% endif %}{% set role = role | upper %}{{ '<role>' + role + '</role>' + message['content'] }}{% endfor %}{% if add_generation_prompt %}{{ '<role>ASSISTANT</role><think>' }}{% endif %}",
6
+ "clean_up_tokenization_spaces": false,
7
+ "cls_token": "[CLS]",
8
+ "eos_token": "<|endoftext|>",
9
+ "fast_tokenizer": true,
10
+ "gmask_token": "[gMASK]",
11
+ "merges_file": null,
12
+ "model_max_length": 1000000000000000019884624838656,
13
+ "pad_token": "<|endoftext|>",
14
+ "tokenizer_class": "PreTrainedTokenizerFast",
15
+ "trust_remote_code": true,
16
+ "vocab_file": null
17
+ }