Sam Heutmaker commited on
Commit
a14369e
·
1 Parent(s): 45a2264

update readme

Browse files
Files changed (1) hide show
  1. README.md +4 -18
README.md CHANGED
@@ -51,7 +51,6 @@ The model generates structured, schema-consistent JSON outputs for every video f
51
  - **Production-ready** - Battle-tested on trillion-scale video frame captioning workloads
52
  - **Schema-consistent JSON** - Reliable structured output for every frame
53
  - **Cost-efficient** - Optimized for high-throughput inference
54
- - **Temporal consistency** - Maintains semantic coherence across video sequences
55
  - **Open source** - Build and deploy without proprietary API dependencies
56
 
57
  ## Architecture
@@ -223,28 +222,15 @@ Given a nature scene with a wooden boardwalk through grassland:
223
  - **Video Analytics** - Extract insights from large video collections
224
  - **Content Management** - Automatic tagging and organization of video libraries
225
 
226
- ## Limitations
227
 
228
- - Processes one video frame per request
229
- - English-only descriptions (can identify text in other languages)
230
- - Maximum image size: 1MB
231
- - Requires specific prompts for optimal performance
232
- - Not supported on A100 GPUs (no native FP8)
233
-
234
- ## Best Practices
235
-
236
- 1. **Use exact prompts** - The provided system and user prompts are optimized for best results
237
- 2. **Set low temperature** - Use temperature=0.1 for consistent outputs
238
- 3. **Enable JSON mode** - Always set response_format to ensure valid JSON
239
- 4. **Process systematically** - Maintain temporal order when processing video sequences
240
- 5. **Batch similar content** - Group frames from the same video for efficiency
241
 
242
  ## Support
243
 
244
- - **Documentation**: [docs.inference.net](https://docs.inference.net)
245
- - **API Access**: [inference.net/use-cases/video-understanding](https://localhost:3000/use-cases/video-understanding)
246
  - **Email**: [email protected]
247
- - **Enterprise**: [Schedule a consultation](https://inference.net/sales)
248
 
249
  ## License
250
 
 
51
  - **Production-ready** - Battle-tested on trillion-scale video frame captioning workloads
52
  - **Schema-consistent JSON** - Reliable structured output for every frame
53
  - **Cost-efficient** - Optimized for high-throughput inference
 
54
  - **Open source** - Build and deploy without proprietary API dependencies
55
 
56
  ## Architecture
 
222
  - **Video Analytics** - Extract insights from large video collections
223
  - **Content Management** - Automatic tagging and organization of video libraries
224
 
225
+ ## Interested in training your own model?
226
 
227
+ Contact us at [[email protected]](mailto:[email protected]) for a free consultation with our research team.
 
 
 
 
 
 
 
 
 
 
 
 
228
 
229
  ## Support
230
 
231
+ - **Documentation**: [docs.inference.net](https://inference.net/use-cases/video-understanding)
232
+ - **API Access**: [inference.net/use-cases/video-understanding](https://inference.net/use-cases/video-understanding)
233
  - **Email**: [email protected]
 
234
 
235
  ## License
236