inkasaras commited on
Commit
2189b32
·
1 Parent(s): 02334b3

new model RL

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 275.83 +/- 20.42
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f205298c310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f205298c3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f205298c430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f205298c4c0>", "_build": "<function ActorCriticPolicy._build at 0x7f205298c550>", "forward": "<function ActorCriticPolicy.forward at 0x7f205298c5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f205298c670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f205298c700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f205298c790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f205298c820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f205298c8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f205298c940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2052988570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675083229357058684, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMHUj4v70M/Q+gmvnqe0r6tbek93alXvQAAAAAAAAAAmqOqvIV7xrn9k2y2kdiosGyQH7uGFY01AACAPwAAgD8zQ9O7heuVudo/27pfAYS2BfGCO21CAjoAAIA/AACAP4ArVr3DOWi6pnVzOvfGa7Qt/LA6Mp6OuQAAgD8AAIA/APBDu1xDfbpjsru6Ufi+tSvg17m24No5AACAPwAAgD/NTGc66UFyvGOOhTswjU48Vz7PPbehKr0AAIA/AACAP+Ycyb3Kqo0/zbCJvQwUtb7QJhu+mPbKOgAAAAAAAAAA2k4TPhxrfD8+MI0+NYPlvjaXSD69kXA8AAAAAAAAAAAz88M79lQPutOp57qgi6y1seT2uU5rCToAAIA/AACAP2biwrxKW6U/Suc+PPtctb6N6me9ftiDvAAAAAAAAAAAmqyePCnoVbrkyj+6ZigztfQ8NDo66GE5AACAPwAAgD8AdZi8KWhOuhQGC7qmPJS0JhNGOQLGITkAAIA/AACAP4DLJT0vT7I/ScwlP2RQS74c8lS8deuXPQAAAAAAAAAAAKByPHbYCLxCcEK8dRsDPSPFZb2tkNU9AACAPwAAgD+zGzY9KaBwukidX7sudzE42+U3uJAoAjoAAIA/AACAP5qhejwUeJK6G3RrOQaSaDRehn06mVeIuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfLQ4Y5gsZkCUhpRSlIwBbJRN6AOMAXSUR0COO2KHfuTidX2UKGgGaAloD0MITkNU4U/zYkCUhpRSlGgVTegDaBZHQI5Bt5+pfhN1fZQoaAZoCWgPQwjrVs9Jb0BlQJSGlFKUaBVN6ANoFkdAjkKRtgrpaHV9lChoBmgJaA9DCFlQGJTpxmNAlIaUUpRoFU3oA2gWR0COQqnx8UmEdX2UKGgGaAloD0MI9UvEW+cOX0CUhpRSlGgVTegDaBZHQI5FHLmp2ll1fZQoaAZoCWgPQwgdAdwsXj1pQJSGlFKUaBVN6ANoFkdAjnTv9LpRoHV9lChoBmgJaA9DCISB594D43JAlIaUUpRoFU0tAWgWR0COdT/m1YyPdX2UKGgGaAloD0MIARb59cPNY0CUhpRSlGgVTegDaBZHQI54beEZiux1fZQoaAZoCWgPQwiOyHcpdZhiQJSGlFKUaBVN6ANoFkdAjnrZBkZrHnV9lChoBmgJaA9DCDcWFAZl3GJAlIaUUpRoFU3oA2gWR0COfHItDlYEdX2UKGgGaAloD0MI3C+frBhWYECUhpRSlGgVTegDaBZHQI5/HFJg9eR1fZQoaAZoCWgPQwhEwYwpWJdlQJSGlFKUaBVN6ANoFkdAjoVlLnLaEnV9lChoBmgJaA9DCMFu2LYo10JAlIaUUpRoFUvGaBZHQI6JfP5YYBN1fZQoaAZoCWgPQwhDy7p/rO9nQJSGlFKUaBVN6ANoFkdAjpRCMglniHV9lChoBmgJaA9DCKWCiqpf7UtAlIaUUpRoFUuuaBZHQI6k31lGwzN1fZQoaAZoCWgPQwhAFw0ZD/xmQJSGlFKUaBVN6ANoFkdAjqgw+UyHmHV9lChoBmgJaA9DCPhxNEdWvVxAlIaUUpRoFU3oA2gWR0COry+9Jz1cdX2UKGgGaAloD0MIYyZRL3iYZUCUhpRSlGgVTegDaBZHQI63HX5FgD11fZQoaAZoCWgPQwhRM6SK4t5nQJSGlFKUaBVN6ANoFkdAjrxM4cWCVnV9lChoBmgJaA9DCDRJLCl3CmZAlIaUUpRoFU3oA2gWR0COwjoysS00dX2UKGgGaAloD0MI0h3EzpRnZUCUhpRSlGgVTegDaBZHQI7C9dTo+wF1fZQoaAZoCWgPQwhEwYwpWIdiQJSGlFKUaBVN6ANoFkdAjsMV14gRsnV9lChoBmgJaA9DCEMEHEIV5WlAlIaUUpRoFU3oA2gWR0COxYmelKsddX2UKGgGaAloD0MIGYwRicIhZ0CUhpRSlGgVTegDaBZHQI719pdrwfB1fZQoaAZoCWgPQwiNCMbBpahbQJSGlFKUaBVN6ANoFkdAjvZDmCAc1nV9lChoBmgJaA9DCPdbO1GS3GBAlIaUUpRoFU3oA2gWR0CO+9zltCRfdX2UKGgGaAloD0MIHyv4bQg1ZUCUhpRSlGgVTegDaBZHQI79ubkOqed1fZQoaAZoCWgPQwgbhLndyytVQJSGlFKUaBVLyGgWR0CO/buPV/c4dX2UKGgGaAloD0MIKlWi7G3TcECUhpRSlGgVTdoDaBZHQI7/THfdhy91fZQoaAZoCWgPQwjmH32TJiFnQJSGlFKUaBVN6ANoFkdAjwctQKrq+3V9lChoBmgJaA9DCNek2xK5MGpAlIaUUpRoFU3oA2gWR0CPC04cWCVbdX2UKGgGaAloD0MIeQd40sKlSUCUhpRSlGgVS9ZoFkdAjxK6UaAFxHV9lChoBmgJaA9DCCApIsMqCE9AlIaUUpRoFUv1aBZHQI8UBYNiH7B1fZQoaAZoCWgPQwi2oWKcvyFKQJSGlFKUaBVLz2gWR0CPGt0cOskqdX2UKGgGaAloD0MI2jf3V490ZkCUhpRSlGgVTegDaBZHQI8pEa0hNdt1fZQoaAZoCWgPQwhSuYlamjtMQJSGlFKUaBVL4GgWR0CPKl5+H8CQdX2UKGgGaAloD0MI6LtbWaIPZUCUhpRSlGgVTegDaBZHQI8scBbOeJ51fZQoaAZoCWgPQwiILqhvmbljQJSGlFKUaBVN6ANoFkdAjzPtPYWcjXV9lChoBmgJaA9DCIuk3ejj4mhAlIaUUpRoFU3oA2gWR0CPO7aHKwIMdX2UKGgGaAloD0MILzVCP9PAZECUhpRSlGgVTegDaBZHQI9BIT4+KTB1fZQoaAZoCWgPQwjNkgA1tUJiQJSGlFKUaBVN6ANoFkdAj0e5r56+nXV9lChoBmgJaA9DCK5FC9C2J2dAlIaUUpRoFU3oA2gWR0CPSIR/3FkydX2UKGgGaAloD0MI0A64rpirZkCUhpRSlGgVTegDaBZHQI9InPLPldV1fZQoaAZoCWgPQwgcYOY7+FdnQJSGlFKUaBVN6ANoFkdAj3wHFPznR3V9lChoBmgJaA9DCAN8t3ljNWVAlIaUUpRoFU3oA2gWR0CPfFUutfXxdX2UKGgGaAloD0MIRdWvdD43Y0CUhpRSlGgVTegDaBZHQI+CKRbKRuF1fZQoaAZoCWgPQwguymyQSaxnQJSGlFKUaBVN6ANoFkdAj4PXfIjnm3V9lChoBmgJaA9DCEuvzcZKvEFAlIaUUpRoFUvEaBZHQI+OvWSU1Q91fZQoaAZoCWgPQwgQejarvk9kQJSGlFKUaBVN6ANoFkdAj5K8wxnFpHV9lChoBmgJaA9DCIARNGYSfHBAlIaUUpRoFU3LA2gWR0CPmTF5OafBdX2UKGgGaAloD0MI3zZTIZ7pZUCUhpRSlGgVTegDaBZHQI+jSKgqVhV1fZQoaAZoCWgPQwjlRLsKKRRgQJSGlFKUaBVN6ANoFkdAj7HKMm4RVnV9lChoBmgJaA9DCAZKCiwA2WZAlIaUUpRoFU3oA2gWR0CPsz4O+ZgHdX2UKGgGaAloD0MIyFuufmxIZECUhpRSlGgVTegDaBZHQI+1SKcd5pt1fZQoaAZoCWgPQwhENpAutlNmQJSGlFKUaBVN6ANoFkdAj7x6Q3gk1XV9lChoBmgJaA9DCEpBt5e0DmFAlIaUUpRoFU3oA2gWR0CPxYLKFIuodX2UKGgGaAloD0MI88mK4er4ZUCUhpRSlGgVTegDaBZHQI/LB4lhPTJ1fZQoaAZoCWgPQwhEFf4M7/RgQJSGlFKUaBVN6ANoFkdAj9GP/JeVs3V9lChoBmgJaA9DCJepSfAGWGZAlIaUUpRoFU3oA2gWR0CP0lKxLTQWdX2UKGgGaAloD0MIxqS/l0IkaECUhpRSlGgVTegDaBZHQI/SbF6zE751fZQoaAZoCWgPQwiYF2AfnQpMQJSGlFKUaBVL72gWR0CP1AjGkvbodX2UKGgGaAloD0MIdAzIXu9iUUCUhpRSlGgVS8poFkdAj90mCyyD7XV9lChoBmgJaA9DCFOu8C6XN2RAlIaUUpRoFU3oA2gWR0CP3xneSB9UdX2UKGgGaAloD0MIGqTgKeT+SECUhpRSlGgVS7loFkdAkANznq3VkXV9lChoBmgJaA9DCNArnnqkvGRAlIaUUpRoFU3oA2gWR0CQBPFZPl+3dX2UKGgGaAloD0MIinQ/pyDFY0CUhpRSlGgVTegDaBZHQJAFrUDuBtl1fZQoaAZoCWgPQwjpuvCD82VoQJSGlFKUaBVN6ANoFkdAkAqFl9SdfHV9lChoBmgJaA9DCPrS25+L6GNAlIaUUpRoFU3oA2gWR0CQDHHtF8XvdX2UKGgGaAloD0MInUfF/51jZ0CUhpRSlGgVTegDaBZHQJAPZMAWBSV1fZQoaAZoCWgPQwhavFgYIqljQJSGlFKUaBVN6ANoFkdAkBRVnmJWNnV9lChoBmgJaA9DCDuKc9TRQ0pAlIaUUpRoFUvKaBZHQJAUfPSlWOp1fZQoaAZoCWgPQwgwStBf6CBoQJSGlFKUaBVN6ANoFkdAkBrmfTTfBXV9lChoBmgJaA9DCK7Zykt+g2ZAlIaUUpRoFU3oA2gWR0CQG4bSJCSidX2UKGgGaAloD0MIV89J75u+YkCUhpRSlGgVTegDaBZHQJAcf6Fdszl1fZQoaAZoCWgPQwiVuflGdIpnQJSGlFKUaBVN6ANoFkdAkCSsYQ8OkXV9lChoBmgJaA9DCOF9VS7U52NAlIaUUpRoFU3oA2gWR0CQK7dqcmShdX2UKGgGaAloD0MIAIxn0NDtZUCUhpRSlGgVTegDaBZHQJArxsLv1Dl1fZQoaAZoCWgPQwj20hQBzsdiQJSGlFKUaBVN6ANoFkdAkCy5qh11XHV9lChoBmgJaA9DCAKgihu3DmdAlIaUUpRoFU3oA2gWR0CQMcXBP9DQdX2UKGgGaAloD0MI+py7XS+KYECUhpRSlGgVTegDaBZHQJAy5azNUwV1fZQoaAZoCWgPQwgFiljEsAtRQJSGlFKUaBVLqWgWR0CQM80se4kNdX2UKGgGaAloD0MIDHOCNjmOZUCUhpRSlGgVTegDaBZHQJA0He/Ho5h1fZQoaAZoCWgPQwgK2uTwSdBiQJSGlFKUaBVN6ANoFkdAkEhNZJTVD3V9lChoBmgJaA9DCCfbwB2obl9AlIaUUpRoFU3oA2gWR0CQSQsxO+IudX2UKGgGaAloD0MIho2yfrOvZECUhpRSlGgVTegDaBZHQJBP6+PBBRh1fZQoaAZoCWgPQwhBKVq5l5tlQJSGlFKUaBVN6ANoFkdAkFLy9ugpSnV9lChoBmgJaA9DCLGiBtMw8GRAlIaUUpRoFU3oA2gWR0CQV5EnLJS0dX2UKGgGaAloD0MIO/vKg/TJZECUhpRSlGgVTegDaBZHQJBXqisXBP91fZQoaAZoCWgPQwhGskeoGRhpQJSGlFKUaBVN6ANoFkdAkF4D4593KXV9lChoBmgJaA9DCK1QpPu5WWBAlIaUUpRoFU3oA2gWR0CQXqHB1s+FdX2UKGgGaAloD0MIsOWV622zaECUhpRSlGgVTegDaBZHQJBfjCXQdCF1fZQoaAZoCWgPQwhVE0Tdh2lkQJSGlFKUaBVN6ANoFkdAkGcV9KEnLXV9lChoBmgJaA9DCO85sBwhS0lAlIaUUpRoFUvDaBZHQJBorshPj4p1fZQoaAZoCWgPQwjwUuqS8WljQJSGlFKUaBVN6ANoFkdAkG2VJg9eQnV9lChoBmgJaA9DCDCbAMPyLV9AlIaUUpRoFU3oA2gWR0CQboyZ8a4udX2UKGgGaAloD0MI+KQTCaZdaUCUhpRSlGgVTegDaBZHQJBzhbkfcN91fZQoaAZoCWgPQwit9rAXCndgQJSGlFKUaBVN6ANoFkdAkHSS/9Hc13V9lChoBmgJaA9DCJ3WbVB7HmZAlIaUUpRoFU3oA2gWR0CQdXhf0EowdX2UKGgGaAloD0MIkSxgAjfUZUCUhpRSlGgVTegDaBZHQJB1w6xPfsN1fZQoaAZoCWgPQwja5zHKs9VmQJSGlFKUaBVN6ANoFkdAkHc7n5i3HHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07c480034c5765d113ee56199125f87ae5443c759e14f2859533f67827936472
3
+ size 147408
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f205298c310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f205298c3a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f205298c430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f205298c4c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f205298c550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f205298c5e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f205298c670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f205298c700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f205298c790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f205298c820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f205298c8b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f205298c940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f2052988570>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1675083229357058684,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMHUj4v70M/Q+gmvnqe0r6tbek93alXvQAAAAAAAAAAmqOqvIV7xrn9k2y2kdiosGyQH7uGFY01AACAPwAAgD8zQ9O7heuVudo/27pfAYS2BfGCO21CAjoAAIA/AACAP4ArVr3DOWi6pnVzOvfGa7Qt/LA6Mp6OuQAAgD8AAIA/APBDu1xDfbpjsru6Ufi+tSvg17m24No5AACAPwAAgD/NTGc66UFyvGOOhTswjU48Vz7PPbehKr0AAIA/AACAP+Ycyb3Kqo0/zbCJvQwUtb7QJhu+mPbKOgAAAAAAAAAA2k4TPhxrfD8+MI0+NYPlvjaXSD69kXA8AAAAAAAAAAAz88M79lQPutOp57qgi6y1seT2uU5rCToAAIA/AACAP2biwrxKW6U/Suc+PPtctb6N6me9ftiDvAAAAAAAAAAAmqyePCnoVbrkyj+6ZigztfQ8NDo66GE5AACAPwAAgD8AdZi8KWhOuhQGC7qmPJS0JhNGOQLGITkAAIA/AACAP4DLJT0vT7I/ScwlP2RQS74c8lS8deuXPQAAAAAAAAAAAKByPHbYCLxCcEK8dRsDPSPFZb2tkNU9AACAPwAAgD+zGzY9KaBwukidX7sudzE42+U3uJAoAjoAAIA/AACAP5qhejwUeJK6G3RrOQaSaDRehn06mVeIuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfLQ4Y5gsZkCUhpRSlIwBbJRN6AOMAXSUR0COO2KHfuTidX2UKGgGaAloD0MITkNU4U/zYkCUhpRSlGgVTegDaBZHQI5Bt5+pfhN1fZQoaAZoCWgPQwjrVs9Jb0BlQJSGlFKUaBVN6ANoFkdAjkKRtgrpaHV9lChoBmgJaA9DCFlQGJTpxmNAlIaUUpRoFU3oA2gWR0COQqnx8UmEdX2UKGgGaAloD0MI9UvEW+cOX0CUhpRSlGgVTegDaBZHQI5FHLmp2ll1fZQoaAZoCWgPQwgdAdwsXj1pQJSGlFKUaBVN6ANoFkdAjnTv9LpRoHV9lChoBmgJaA9DCISB594D43JAlIaUUpRoFU0tAWgWR0COdT/m1YyPdX2UKGgGaAloD0MIARb59cPNY0CUhpRSlGgVTegDaBZHQI54beEZiux1fZQoaAZoCWgPQwiOyHcpdZhiQJSGlFKUaBVN6ANoFkdAjnrZBkZrHnV9lChoBmgJaA9DCDcWFAZl3GJAlIaUUpRoFU3oA2gWR0COfHItDlYEdX2UKGgGaAloD0MI3C+frBhWYECUhpRSlGgVTegDaBZHQI5/HFJg9eR1fZQoaAZoCWgPQwhEwYwpWJdlQJSGlFKUaBVN6ANoFkdAjoVlLnLaEnV9lChoBmgJaA9DCMFu2LYo10JAlIaUUpRoFUvGaBZHQI6JfP5YYBN1fZQoaAZoCWgPQwhDy7p/rO9nQJSGlFKUaBVN6ANoFkdAjpRCMglniHV9lChoBmgJaA9DCKWCiqpf7UtAlIaUUpRoFUuuaBZHQI6k31lGwzN1fZQoaAZoCWgPQwhAFw0ZD/xmQJSGlFKUaBVN6ANoFkdAjqgw+UyHmHV9lChoBmgJaA9DCPhxNEdWvVxAlIaUUpRoFU3oA2gWR0COry+9Jz1cdX2UKGgGaAloD0MIYyZRL3iYZUCUhpRSlGgVTegDaBZHQI63HX5FgD11fZQoaAZoCWgPQwhRM6SK4t5nQJSGlFKUaBVN6ANoFkdAjrxM4cWCVnV9lChoBmgJaA9DCDRJLCl3CmZAlIaUUpRoFU3oA2gWR0COwjoysS00dX2UKGgGaAloD0MI0h3EzpRnZUCUhpRSlGgVTegDaBZHQI7C9dTo+wF1fZQoaAZoCWgPQwhEwYwpWIdiQJSGlFKUaBVN6ANoFkdAjsMV14gRsnV9lChoBmgJaA9DCEMEHEIV5WlAlIaUUpRoFU3oA2gWR0COxYmelKsddX2UKGgGaAloD0MIGYwRicIhZ0CUhpRSlGgVTegDaBZHQI719pdrwfB1fZQoaAZoCWgPQwiNCMbBpahbQJSGlFKUaBVN6ANoFkdAjvZDmCAc1nV9lChoBmgJaA9DCPdbO1GS3GBAlIaUUpRoFU3oA2gWR0CO+9zltCRfdX2UKGgGaAloD0MIHyv4bQg1ZUCUhpRSlGgVTegDaBZHQI79ubkOqed1fZQoaAZoCWgPQwgbhLndyytVQJSGlFKUaBVLyGgWR0CO/buPV/c4dX2UKGgGaAloD0MIKlWi7G3TcECUhpRSlGgVTdoDaBZHQI7/THfdhy91fZQoaAZoCWgPQwjmH32TJiFnQJSGlFKUaBVN6ANoFkdAjwctQKrq+3V9lChoBmgJaA9DCNek2xK5MGpAlIaUUpRoFU3oA2gWR0CPC04cWCVbdX2UKGgGaAloD0MIeQd40sKlSUCUhpRSlGgVS9ZoFkdAjxK6UaAFxHV9lChoBmgJaA9DCCApIsMqCE9AlIaUUpRoFUv1aBZHQI8UBYNiH7B1fZQoaAZoCWgPQwi2oWKcvyFKQJSGlFKUaBVLz2gWR0CPGt0cOskqdX2UKGgGaAloD0MI2jf3V490ZkCUhpRSlGgVTegDaBZHQI8pEa0hNdt1fZQoaAZoCWgPQwhSuYlamjtMQJSGlFKUaBVL4GgWR0CPKl5+H8CQdX2UKGgGaAloD0MI6LtbWaIPZUCUhpRSlGgVTegDaBZHQI8scBbOeJ51fZQoaAZoCWgPQwiILqhvmbljQJSGlFKUaBVN6ANoFkdAjzPtPYWcjXV9lChoBmgJaA9DCIuk3ejj4mhAlIaUUpRoFU3oA2gWR0CPO7aHKwIMdX2UKGgGaAloD0MILzVCP9PAZECUhpRSlGgVTegDaBZHQI9BIT4+KTB1fZQoaAZoCWgPQwjNkgA1tUJiQJSGlFKUaBVN6ANoFkdAj0e5r56+nXV9lChoBmgJaA9DCK5FC9C2J2dAlIaUUpRoFU3oA2gWR0CPSIR/3FkydX2UKGgGaAloD0MI0A64rpirZkCUhpRSlGgVTegDaBZHQI9InPLPldV1fZQoaAZoCWgPQwgcYOY7+FdnQJSGlFKUaBVN6ANoFkdAj3wHFPznR3V9lChoBmgJaA9DCAN8t3ljNWVAlIaUUpRoFU3oA2gWR0CPfFUutfXxdX2UKGgGaAloD0MIRdWvdD43Y0CUhpRSlGgVTegDaBZHQI+CKRbKRuF1fZQoaAZoCWgPQwguymyQSaxnQJSGlFKUaBVN6ANoFkdAj4PXfIjnm3V9lChoBmgJaA9DCEuvzcZKvEFAlIaUUpRoFUvEaBZHQI+OvWSU1Q91fZQoaAZoCWgPQwgQejarvk9kQJSGlFKUaBVN6ANoFkdAj5K8wxnFpHV9lChoBmgJaA9DCIARNGYSfHBAlIaUUpRoFU3LA2gWR0CPmTF5OafBdX2UKGgGaAloD0MI3zZTIZ7pZUCUhpRSlGgVTegDaBZHQI+jSKgqVhV1fZQoaAZoCWgPQwjlRLsKKRRgQJSGlFKUaBVN6ANoFkdAj7HKMm4RVnV9lChoBmgJaA9DCAZKCiwA2WZAlIaUUpRoFU3oA2gWR0CPsz4O+ZgHdX2UKGgGaAloD0MIyFuufmxIZECUhpRSlGgVTegDaBZHQI+1SKcd5pt1fZQoaAZoCWgPQwhENpAutlNmQJSGlFKUaBVN6ANoFkdAj7x6Q3gk1XV9lChoBmgJaA9DCEpBt5e0DmFAlIaUUpRoFU3oA2gWR0CPxYLKFIuodX2UKGgGaAloD0MI88mK4er4ZUCUhpRSlGgVTegDaBZHQI/LB4lhPTJ1fZQoaAZoCWgPQwhEFf4M7/RgQJSGlFKUaBVN6ANoFkdAj9GP/JeVs3V9lChoBmgJaA9DCJepSfAGWGZAlIaUUpRoFU3oA2gWR0CP0lKxLTQWdX2UKGgGaAloD0MIxqS/l0IkaECUhpRSlGgVTegDaBZHQI/SbF6zE751fZQoaAZoCWgPQwiYF2AfnQpMQJSGlFKUaBVL72gWR0CP1AjGkvbodX2UKGgGaAloD0MIdAzIXu9iUUCUhpRSlGgVS8poFkdAj90mCyyD7XV9lChoBmgJaA9DCFOu8C6XN2RAlIaUUpRoFU3oA2gWR0CP3xneSB9UdX2UKGgGaAloD0MIGqTgKeT+SECUhpRSlGgVS7loFkdAkANznq3VkXV9lChoBmgJaA9DCNArnnqkvGRAlIaUUpRoFU3oA2gWR0CQBPFZPl+3dX2UKGgGaAloD0MIinQ/pyDFY0CUhpRSlGgVTegDaBZHQJAFrUDuBtl1fZQoaAZoCWgPQwjpuvCD82VoQJSGlFKUaBVN6ANoFkdAkAqFl9SdfHV9lChoBmgJaA9DCPrS25+L6GNAlIaUUpRoFU3oA2gWR0CQDHHtF8XvdX2UKGgGaAloD0MInUfF/51jZ0CUhpRSlGgVTegDaBZHQJAPZMAWBSV1fZQoaAZoCWgPQwhavFgYIqljQJSGlFKUaBVN6ANoFkdAkBRVnmJWNnV9lChoBmgJaA9DCDuKc9TRQ0pAlIaUUpRoFUvKaBZHQJAUfPSlWOp1fZQoaAZoCWgPQwgwStBf6CBoQJSGlFKUaBVN6ANoFkdAkBrmfTTfBXV9lChoBmgJaA9DCK7Zykt+g2ZAlIaUUpRoFU3oA2gWR0CQG4bSJCSidX2UKGgGaAloD0MIV89J75u+YkCUhpRSlGgVTegDaBZHQJAcf6Fdszl1fZQoaAZoCWgPQwiVuflGdIpnQJSGlFKUaBVN6ANoFkdAkCSsYQ8OkXV9lChoBmgJaA9DCOF9VS7U52NAlIaUUpRoFU3oA2gWR0CQK7dqcmShdX2UKGgGaAloD0MIAIxn0NDtZUCUhpRSlGgVTegDaBZHQJArxsLv1Dl1fZQoaAZoCWgPQwj20hQBzsdiQJSGlFKUaBVN6ANoFkdAkCy5qh11XHV9lChoBmgJaA9DCAKgihu3DmdAlIaUUpRoFU3oA2gWR0CQMcXBP9DQdX2UKGgGaAloD0MI+py7XS+KYECUhpRSlGgVTegDaBZHQJAy5azNUwV1fZQoaAZoCWgPQwgFiljEsAtRQJSGlFKUaBVLqWgWR0CQM80se4kNdX2UKGgGaAloD0MIDHOCNjmOZUCUhpRSlGgVTegDaBZHQJA0He/Ho5h1fZQoaAZoCWgPQwgK2uTwSdBiQJSGlFKUaBVN6ANoFkdAkEhNZJTVD3V9lChoBmgJaA9DCCfbwB2obl9AlIaUUpRoFU3oA2gWR0CQSQsxO+IudX2UKGgGaAloD0MIho2yfrOvZECUhpRSlGgVTegDaBZHQJBP6+PBBRh1fZQoaAZoCWgPQwhBKVq5l5tlQJSGlFKUaBVN6ANoFkdAkFLy9ugpSnV9lChoBmgJaA9DCLGiBtMw8GRAlIaUUpRoFU3oA2gWR0CQV5EnLJS0dX2UKGgGaAloD0MIO/vKg/TJZECUhpRSlGgVTegDaBZHQJBXqisXBP91fZQoaAZoCWgPQwhGskeoGRhpQJSGlFKUaBVN6ANoFkdAkF4D4593KXV9lChoBmgJaA9DCK1QpPu5WWBAlIaUUpRoFU3oA2gWR0CQXqHB1s+FdX2UKGgGaAloD0MIsOWV622zaECUhpRSlGgVTegDaBZHQJBfjCXQdCF1fZQoaAZoCWgPQwhVE0Tdh2lkQJSGlFKUaBVN6ANoFkdAkGcV9KEnLXV9lChoBmgJaA9DCO85sBwhS0lAlIaUUpRoFUvDaBZHQJBorshPj4p1fZQoaAZoCWgPQwjwUuqS8WljQJSGlFKUaBVN6ANoFkdAkG2VJg9eQnV9lChoBmgJaA9DCDCbAMPyLV9AlIaUUpRoFU3oA2gWR0CQboyZ8a4udX2UKGgGaAloD0MI+KQTCaZdaUCUhpRSlGgVTegDaBZHQJBzhbkfcN91fZQoaAZoCWgPQwit9rAXCndgQJSGlFKUaBVN6ANoFkdAkHSS/9Hc13V9lChoBmgJaA9DCJ3WbVB7HmZAlIaUUpRoFU3oA2gWR0CQdXhf0EowdX2UKGgGaAloD0MIkSxgAjfUZUCUhpRSlGgVTegDaBZHQJB1w6xPfsN1fZQoaAZoCWgPQwja5zHKs9VmQJSGlFKUaBVN6ANoFkdAkHc7n5i3HHVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d422be61fc1132b35604f1c655e12a5e503c1152a1f3bd31e1214d49e18fc293
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20c1d4f539d45cc275a6e4379f0b0cb1b2621e010bac2066850b10a274b0ec8d
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (226 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 275.83137454076234, "std_reward": 20.42022105970336, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-30T13:48:01.697404"}