File size: 9,075 Bytes
6887a13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from typing import Dict, List, Any
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import PreTrainedTokenizerFast
from transformers import GenerationConfig
import transformers 
import pandas as pd
import time
from precious3_gpt_multi_model import Custom_MPTForCausalLM


emb_gpt_genes = pd.read_pickle('./multi-modal-data/emb_gpt_genes.pickle')
emb_hgt_genes = pd.read_pickle('./multi-modal-data/emb_hgt_genes.pickle')


def create_prompt(prompt_config):

    prompt = "[BOS]"
    
    multi_modal_prefix = '<modality0><modality1><modality2><modality3>'*3
    
    for k, v in prompt_config.items():
        if k=='instruction':
            prompt+=f"<{v}>"
        elif k=='up':
            prompt+=f'{multi_modal_prefix}<{k}>{v}</{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
        elif k=='down':
            prompt+=f'{multi_modal_prefix}<{k}>{v}</{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
        else:
            prompt+=f'<{k}>{v}</{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
    return prompt

def custom_generate(input_ids, 
                    acc_embs_up_kg_mean, 
                    acc_embs_down_kg_mean, 
                    acc_embs_up_txt_mean, 
                    acc_embs_down_txt_mean,
                    device,
                    max_new_tokens, 
                    num_return_sequences,
                    temperature=0.8, 
                    top_p=0.2, top_k=3550, n_next_tokens=50,
                    unique_compounds):
    torch.manual_seed(137)
    
    # Set parameters
    # temperature - Higher value for more randomness, lower for more control
    # top_p - Probability threshold for nucleus sampling (aka top-p sampling)
    # top_k - Ignore logits below the top-k value to reduce randomness (if non-zero)
    # n_next_tokens - Number of top next tokens when predicting compounds

    modality0_emb =  torch.unsqueeze(torch.from_numpy(acc_embs_up_kg_mean), 0).to(device) # torch.from_numpy(efo_embeddings['EFO_0002618']).type(torch.bfloat16).to(device)
    modality1_emb =  torch.unsqueeze(torch.from_numpy(acc_embs_down_kg_mean), 0).to(device)
    modality2_emb =  torch.unsqueeze(torch.from_numpy(acc_embs_up_txt_mean), 0).to(device) # torch.from_numpy(efo_embeddings['EFO_0002618']).type(torch.bfloat16).to(device)
    modality3_emb =  torch.unsqueeze(torch.from_numpy(acc_embs_down_txt_mean), 0).to(device)


    # Generate sequences
    outputs = []
    next_token_compounds = [] 

    for _ in range(num_return_sequences):
        start_time = time.time()
        generated_sequence = []
        current_token = input_ids.clone()

        for _ in range(max_new_tokens):  # Maximum length of generated sequence
            # Forward pass through the model
            logits = model.forward(input_ids=current_token, 
                                   modality0_emb=modality0_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device), 
                                   modality0_token_id=62191, 
                                   modality1_emb=modality1_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device), 
                                   modality1_token_id=62192,
                                   modality2_emb=modality2_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device), 
                                   modality2_token_id=62193, 
                                   modality3_emb=modality3_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device), 
                                   modality3_token_id=62194)[0]

            # Apply temperature to logits
            if temperature != 1.0:
                logits = logits / temperature

            # Apply top-p sampling (nucleus sampling)
            sorted_logits, sorted_indices = torch.sort(logits, descending=True)
            cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
            sorted_indices_to_remove = cumulative_probs > top_p

            if top_k > 0:
                sorted_indices_to_remove[..., top_k:] = 1

            # Set the logit values of the removed indices to a very small negative value
            inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)

            logits = logits.where(sorted_indices_to_remove, inf_tensor)


            # Sample the next token
            if current_token[0][-1] == tokenizer.encode('<drug>')[0]:
                next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), 50).indices)

            next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0)


            # Append the sampled token to the generated sequence
            generated_sequence.append(next_token.item())

            Stop generation if an end token is generated
            if next_token == tokenizer.eos_token_id:
                break

            # Prepare input for the next iteration
            current_token = torch.cat((current_token, next_token), dim=-1)
        print(time.time()-start_time)
        outputs.append(generated_sequence)
    return outputs, next_token_compounds


def get_predicted_compounds(input_ids, generation_output, tokenizer, p3_compounds):
    id_4_drug_token = list(generation_output.sequences[0][len(input_ids[0]):]).index(tokenizer.convert_tokens_to_ids(['<drug>'])[0])
    id_4_drug_token += 1
    print('This is token index where drug should be predicted: ', id_4_drug_token)

    values, indices = torch.topk(generation_output["scores"][id_4_drug_token].view(-1), k=50)
    indices_decoded = tokenizer.decode(indices, skip_special_tokens=True)

    predicted_compound = indices_decoded.split('  ')
    predicted_compound = [i.strip() for i in predicted_compound]
    
    valid_compounds = sorted(set(predicted_compound) & set(p3_compounds), key = predicted_compound.index)
    print(f"Model predicted {len(predicted_compound)} tokens. Valid compounds {len(valid_compounds)}")
    return valid_compounds


class EndpointHandler:
    def __init__(self, path=""):
        # load model and processor from path
        self.model = Custom_MPTForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16).to('cuda')
        self.tokenizer = PreTrainedTokenizerFast(tokenizer_file = os.path.join(path, "tokenizer.json"), unk_token="[UNK]",
            pad_token="[PAD]",
            eos_token="[EOS]",
            bos_token="[BOS]")
        self.model.config.pad_token_id = self.tokenizer.pad_token_id
        self.model.config.bos_token_id = self.tokenizer.bos_token_id
        self.model.config.eos_token_id = self.tokenizer.eos_token_id
        unique_entities_p3 = pd.read_csv(os.path.join(path, 'all_entities_with_type.csv'))
        self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()]

    

    def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
        """
        Args:
            data (:dict:):
                The payload with the text prompt and generation parameters.
        """

        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", None)
        mode = data.pop('mode', 'diff2compound')
        
        if mode == 'diff2compound':
            with open('./generation-configs/diff2compound.json', 'r') as f:
                config_data = json.load(f)
        else:
            with open('./generation-configs/diff2compound.json', 'r') as f:
                config_data = json.load(f)
                
        prompt = create_prompt(config_data)
        
        inputs = self.tokenizer(inputs, return_tensors="pt")
        input_ids = inputs["input_ids"].to('cuda')

        ### Generation config  https://huggingface.co/blog/how-to-generate
        generation_config = GenerationConfig(**parameters, 
                                             pad_token_id=self.tokenizer.pad_token_id, num_return_sequences=1) 
        
        max_new_tokens = self.model.config.max_seq_len - len(input_ids[0]) # max_new_tokens = 560 - len(input_ids[0])
        
        torch.manual_seed(137)

        with torch.no_grad():
            generation_output = self.model.generate(
                input_ids=input_ids,
                generation_config=generation_config,
                return_dict_in_generate=True,
                output_scores=True,
                max_new_tokens=max_new_tokens
            )
        if mode =='diff2compound':
            predicted_compounds = get_predicted_compounds(input_ids=input_ids, generation_output=generation_output, tokenizer=self.tokenizer, p3_compounds=self.unique_compounds_p3)
            output = {'output': predicted_compounds, "mode": mode, 'message': "Done!"}
        else:
            output = {'output': [None], "mode": mode, 'message': "Set mode"}
        return output