File size: 9,075 Bytes
6887a13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
from typing import Dict, List, Any
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import PreTrainedTokenizerFast
from transformers import GenerationConfig
import transformers
import pandas as pd
import time
from precious3_gpt_multi_model import Custom_MPTForCausalLM
emb_gpt_genes = pd.read_pickle('./multi-modal-data/emb_gpt_genes.pickle')
emb_hgt_genes = pd.read_pickle('./multi-modal-data/emb_hgt_genes.pickle')
def create_prompt(prompt_config):
prompt = "[BOS]"
multi_modal_prefix = '<modality0><modality1><modality2><modality3>'*3
for k, v in prompt_config.items():
if k=='instruction':
prompt+=f"<{v}>"
elif k=='up':
prompt+=f'{multi_modal_prefix}<{k}>{v}</{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
elif k=='down':
prompt+=f'{multi_modal_prefix}<{k}>{v}</{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
else:
prompt+=f'<{k}>{v}</{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
return prompt
def custom_generate(input_ids,
acc_embs_up_kg_mean,
acc_embs_down_kg_mean,
acc_embs_up_txt_mean,
acc_embs_down_txt_mean,
device,
max_new_tokens,
num_return_sequences,
temperature=0.8,
top_p=0.2, top_k=3550, n_next_tokens=50,
unique_compounds):
torch.manual_seed(137)
# Set parameters
# temperature - Higher value for more randomness, lower for more control
# top_p - Probability threshold for nucleus sampling (aka top-p sampling)
# top_k - Ignore logits below the top-k value to reduce randomness (if non-zero)
# n_next_tokens - Number of top next tokens when predicting compounds
modality0_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_kg_mean), 0).to(device) # torch.from_numpy(efo_embeddings['EFO_0002618']).type(torch.bfloat16).to(device)
modality1_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_kg_mean), 0).to(device)
modality2_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_txt_mean), 0).to(device) # torch.from_numpy(efo_embeddings['EFO_0002618']).type(torch.bfloat16).to(device)
modality3_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_txt_mean), 0).to(device)
# Generate sequences
outputs = []
next_token_compounds = []
for _ in range(num_return_sequences):
start_time = time.time()
generated_sequence = []
current_token = input_ids.clone()
for _ in range(max_new_tokens): # Maximum length of generated sequence
# Forward pass through the model
logits = model.forward(input_ids=current_token,
modality0_emb=modality0_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device),
modality0_token_id=62191,
modality1_emb=modality1_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device),
modality1_token_id=62192,
modality2_emb=modality2_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device),
modality2_token_id=62193,
modality3_emb=modality3_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device),
modality3_token_id=62194)[0]
# Apply temperature to logits
if temperature != 1.0:
logits = logits / temperature
# Apply top-p sampling (nucleus sampling)
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
if top_k > 0:
sorted_indices_to_remove[..., top_k:] = 1
# Set the logit values of the removed indices to a very small negative value
inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)
logits = logits.where(sorted_indices_to_remove, inf_tensor)
# Sample the next token
if current_token[0][-1] == tokenizer.encode('<drug>')[0]:
next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), 50).indices)
next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0)
# Append the sampled token to the generated sequence
generated_sequence.append(next_token.item())
Stop generation if an end token is generated
if next_token == tokenizer.eos_token_id:
break
# Prepare input for the next iteration
current_token = torch.cat((current_token, next_token), dim=-1)
print(time.time()-start_time)
outputs.append(generated_sequence)
return outputs, next_token_compounds
def get_predicted_compounds(input_ids, generation_output, tokenizer, p3_compounds):
id_4_drug_token = list(generation_output.sequences[0][len(input_ids[0]):]).index(tokenizer.convert_tokens_to_ids(['<drug>'])[0])
id_4_drug_token += 1
print('This is token index where drug should be predicted: ', id_4_drug_token)
values, indices = torch.topk(generation_output["scores"][id_4_drug_token].view(-1), k=50)
indices_decoded = tokenizer.decode(indices, skip_special_tokens=True)
predicted_compound = indices_decoded.split(' ')
predicted_compound = [i.strip() for i in predicted_compound]
valid_compounds = sorted(set(predicted_compound) & set(p3_compounds), key = predicted_compound.index)
print(f"Model predicted {len(predicted_compound)} tokens. Valid compounds {len(valid_compounds)}")
return valid_compounds
class EndpointHandler:
def __init__(self, path=""):
# load model and processor from path
self.model = Custom_MPTForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16).to('cuda')
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file = os.path.join(path, "tokenizer.json"), unk_token="[UNK]",
pad_token="[PAD]",
eos_token="[EOS]",
bos_token="[BOS]")
self.model.config.pad_token_id = self.tokenizer.pad_token_id
self.model.config.bos_token_id = self.tokenizer.bos_token_id
self.model.config.eos_token_id = self.tokenizer.eos_token_id
unique_entities_p3 = pd.read_csv(os.path.join(path, 'all_entities_with_type.csv'))
self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()]
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
"""
Args:
data (:dict:):
The payload with the text prompt and generation parameters.
"""
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
mode = data.pop('mode', 'diff2compound')
if mode == 'diff2compound':
with open('./generation-configs/diff2compound.json', 'r') as f:
config_data = json.load(f)
else:
with open('./generation-configs/diff2compound.json', 'r') as f:
config_data = json.load(f)
prompt = create_prompt(config_data)
inputs = self.tokenizer(inputs, return_tensors="pt")
input_ids = inputs["input_ids"].to('cuda')
### Generation config https://huggingface.co/blog/how-to-generate
generation_config = GenerationConfig(**parameters,
pad_token_id=self.tokenizer.pad_token_id, num_return_sequences=1)
max_new_tokens = self.model.config.max_seq_len - len(input_ids[0]) # max_new_tokens = 560 - len(input_ids[0])
torch.manual_seed(137)
with torch.no_grad():
generation_output = self.model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens
)
if mode =='diff2compound':
predicted_compounds = get_predicted_compounds(input_ids=input_ids, generation_output=generation_output, tokenizer=self.tokenizer, p3_compounds=self.unique_compounds_p3)
output = {'output': predicted_compounds, "mode": mode, 'message': "Done!"}
else:
output = {'output': [None], "mode": mode, 'message': "Set mode"}
return output |