Update README.md
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ datasets:
|
|
22 |
</p>
|
23 |
|
24 |
<h1 align="center"> Precious3GPT </h1>
|
25 |
-
<h3 align="center"> A multimodal multi-omics multi-species multi-tissue
|
26 |
<p align="center">
|
27 |
📃 <a href="https://doi.org/10.1101/2024.07.25.605062" target="_blank">Pre-print</a> • 👾 <a href="https://discord.gg/P4PWFNbYFg" target="_blank">Discord bot</a> • 🧬 <a href="https://insilico.com/repository/precious3gpt" target="_blank">Validation digest</a>
|
28 |
<br>
|
@@ -40,7 +40,7 @@ datasets:
|
|
40 |
|
41 |
<h1 align="center"> Model summary </h1>
|
42 |
|
43 |
-
- Precious3GPT (P3GPT) is a unique
|
44 |
|
45 |
- P3GPT simulates biological processes on an omics level to return the transcriptomic, epigenetic, or proteomic signatures of a wide variety of perturbators;
|
46 |
|
@@ -50,6 +50,13 @@ datasets:
|
|
50 |
|
51 |
- You may work with P3GPT either by downloading model weights for a local deployment or by interacting with the Discord bot on the official Inisilico Medicine's server.
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
<h1 align="center"> Model usage guide </h1>
|
54 |
|
55 |
### Run model with an endpoint
|
|
|
22 |
</p>
|
23 |
|
24 |
<h1 align="center"> Precious3GPT </h1>
|
25 |
+
<h3 align="center"> A multimodal multi-omics multi-species multi-tissue Large Language of Life Model (LLLM/LLoLM). </h3>
|
26 |
<p align="center">
|
27 |
📃 <a href="https://doi.org/10.1101/2024.07.25.605062" target="_blank">Pre-print</a> • 👾 <a href="https://discord.gg/P4PWFNbYFg" target="_blank">Discord bot</a> • 🧬 <a href="https://insilico.com/repository/precious3gpt" target="_blank">Validation digest</a>
|
28 |
<br>
|
|
|
40 |
|
41 |
<h1 align="center"> Model summary </h1>
|
42 |
|
43 |
+
- Precious3GPT (P3GPT) is a unique Large Language of Life Model (LLLM/LLoLM) that has been trained on 1.2MM omics data points, knowledge graphs, and biomedical texts (PubMed) to be used in drug discovery and aging research;
|
44 |
|
45 |
- P3GPT simulates biological processes on an omics level to return the transcriptomic, epigenetic, or proteomic signatures of a wide variety of perturbators;
|
46 |
|
|
|
50 |
|
51 |
- You may work with P3GPT either by downloading model weights for a local deployment or by interacting with the Discord bot on the official Inisilico Medicine's server.
|
52 |
|
53 |
+
- Download the model with:
|
54 |
+
```python
|
55 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained("insilicomedicine/precious3-gpt-multi-modal", trust_remote_code=True)
|
57 |
+
model = AutoModelForCausalLM.from_pretrained("insilicomedicine/precious3-gpt-multi-modal", trust_remote_code=True)
|
58 |
+
```
|
59 |
+
|
60 |
<h1 align="center"> Model usage guide </h1>
|
61 |
|
62 |
### Run model with an endpoint
|