File size: 15,965 Bytes
77cdac8 af2b164 77cdac8 af2b164 77cdac8 1fbf845 53bdc2e af2b164 53bdc2e af2b164 53bdc2e af2b164 53bdc2e af2b164 53bdc2e af2b164 74b3231 af2b164 74b3231 af2b164 74b3231 af2b164 74b3231 af2b164 74b3231 af2b164 1f8673c af2b164 1f8673c af2b164 1f8673c af2b164 1f8673c af2b164 1f8673c af2b164 238fce8 af2b164 238fce8 af2b164 238fce8 af2b164 238fce8 af2b164 238fce8 af2b164 ff8bb58 af2b164 ff8bb58 af2b164 ff8bb58 af2b164 ff8bb58 af2b164 ff8bb58 af2b164 c63387e af2b164 c63387e af2b164 c63387e af2b164 c63387e af2b164 c63387e af2b164 77cdac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
---
language: en
license: other
tags:
- text-generation
- opt
inference: false
commercial: false
model-index:
- name: inverse-scaling/opt-6.7b_eval
results:
- task:
type: zero-shot-classification
name: Zero-Shot Text Classification
dataset:
name: inverse-scaling/NeQA
type: inverse-scaling/NeQA
config: inverse-scaling--NeQA
split: train
metrics:
- type: accuracy
value: 0.54
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWE0ZjA1NDg0YjYzNTZhYjIwZDRhNDcxYjNiYTQ1YTY2YWQ1YTUzZmIyMTlmYTljMGJiNjAyNzc0YTNiYWFhNCIsInZlcnNpb24iOjF9.eWcHC6dzOjnuF-mT6Z2G8Z1xCoow6iViE1Qy-VNKMSzIcJZcvgkZI0NhU50YMi4tOOZN2k92MATtbXtcZR5yCQ
- type: loss
value: 0.740270353704691
name: Loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTY1M2ZlYTYzMjZhNTVmZjgyMWJiYmYxZGM2NjQxYjdlZDI3ZmZmODAxMTI5N2RmMjMyNzYzMWUxZTViNjM5YSIsInZlcnNpb24iOjF9.G3DqNVlNLP5uAmzOKa9hsxBBiSWXbrDesp3hIlQomYe2YsbWbYF0WssbFi7DXEu5hmj6yCN2E-olbEjzwZ2eBQ
- task:
type: zero-shot-classification
name: Zero-Shot Text Classification
dataset:
name: inverse-scaling/quote-repetition
type: inverse-scaling/quote-repetition
config: inverse-scaling--quote-repetition
split: train
metrics:
- type: accuracy
value: 0.86
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzA0ZjJlZGUwOGNhNmE3MmMzMDY1YTM4ZjYzNDUwYjk1MTU2MmVhMGQzYjI3YzI0ZGMzMWFkODIyZWE5Mjk2ZCIsInZlcnNpb24iOjF9.pc3tzIMBv05ZBixkmRojnIzsdHLvYhZX_sJnNZ_t_oo61DrTUhYQYq3xikx8S5rIr5sWrLTbxWn3rAAXme0KAQ
- type: loss
value: 0.22016974209290055
name: Loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWE5Njk4OWQ5Mzg3ODljMWM3MzhiNjBhNTk5ZGJjMDU3ZTJlZDZjZjBjYzdkMmMxZTJlMTJkMjg1OTA5ZWQxNSIsInZlcnNpb24iOjF9.NubehOGlzEURMYuTkvqzXmf1ENadam7uZ62YA1nv1DjAivd8VySmpLl-QnnZLcDbhduMZbRp4lMQbWG9Z26LAg
- task:
type: zero-shot-classification
name: Zero-Shot Text Classification
dataset:
name: inverse-scaling/redefine-math
type: inverse-scaling/redefine-math
config: inverse-scaling--redefine-math
split: train
metrics:
- type: accuracy
value: 0.6733333333333333
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTAyYjAwMzgyMDc2MmU1NDM0MmMyOWUyYzc3YTYxNzkyYzk2ZGZiMTk5NjlkODUwNDQ1NzFlMTU0Y2Y0ZGZlYSIsInZlcnNpb24iOjF9.VMxtPMY9qKk4eSjAlDb_jfg1nsf8eq1Oz5WnfUSC-VkXREQ6-f1qBooJc617t6U5apIbHnaW9XP3LTYrGzvUDQ
- type: loss
value: 0.638882334422734
name: Loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDYwNWVmZGM5ZmM2MmY0Y2IzYzNhOTNkZmU2YTA2MWZlZTU1ZGI2OTM1YzJiNjViNzMwMjA0Y2Q0ODBlYTgzOSIsInZlcnNpb24iOjF9.YJujmeEYbf4ZOJ0w_Q24d7t5ksKST35aweNJSk6UYuCiV6uSIJhJUz_w8iFwo9ykM-EOXamL87dftlkyawgtBw
- task:
type: zero-shot-classification
name: Zero-Shot Text Classification
dataset:
name: inverse-scaling/hindsight-neglect-10shot
type: inverse-scaling/hindsight-neglect-10shot
config: inverse-scaling--hindsight-neglect-10shot
split: train
metrics:
- type: accuracy
value: 0.4666666666666667
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjVlMzdkYTUxZmI1ZDBmMDdjM2VhMjA1ZTg0MGYzMzU0NzFlN2JmNDY2NDc0MmVlMjI3MDg1Y2Q5MDRhYWU1ZCIsInZlcnNpb24iOjF9.Z01fwvvUFNOWeUWexSpdmAUPYJIsYUV-eb1ybSEjQ3cb9ow2STMVgxp0PqaDJMVWKg30xIkARahsg8ci6QpbBw
- type: loss
value: 0.7550815605928027
name: Loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWQyNmYwZjdkMTM1YjIxYzEwMmUwMWVlZTRjODQwYWExNDQ2MTgzYzA0ZTlkODcxYWIxMzdmNWE0NDdmNzcxYiIsInZlcnNpb24iOjF9.TtX2cKfatVMFX09l6DiuKFEa1vlDJUBPohSLmdQGh8QCTf-DrylUqARU8Ni5cSiSlidFF4n4IWIL0vQ941n6DQ
- task:
type: zero-shot-classification
name: Zero-Shot Text Classification
dataset:
name: mathemakitten/winobias_antistereotype_test_cot_v3
type: mathemakitten/winobias_antistereotype_test_cot_v3
config: mathemakitten--winobias_antistereotype_test_cot_v3
split: test
metrics:
- type: accuracy
value: 0.3737864077669903
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTliMzU1NGIxMTUxYTM4NzVlYzI4YzljMDYyOWM1ZDdkMWMyNjIwOWQ4OGNhZWE3ZTljZGI0ZTA2ZWU3MjVmMiIsInZlcnNpb24iOjF9.dTlDpXOusgl6m3dn7XwfKeaxaVfU1VnEHWFeh7yBNSq5TyHPWbixlNumOWDjc-y9v8g0oWBXqWhT0KMQDaGVCQ
- type: loss
value: 1.2823651640752816
name: Loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTRjZmU4YWNkNGEwMjNlMGEyYjA1ZjhjOGE3OTZiZTJlYjMyMjViMTYyYWQ1YTdlMmM1ZjU5NTFhOWU3NzM1OCIsInZlcnNpb24iOjF9.yGmOME0MrX0moaU5c2WYf8H7CFfSGsPuQ2qp9MCi_es5RQRWoCHeCcR5oLQ4RATmVpYdzocPxqrbeZfqxVIOAQ
- task:
type: zero-shot-classification
name: Zero-Shot Text Classification
dataset:
name: mathemakitten/winobias_antistereotype_test_v5
type: mathemakitten/winobias_antistereotype_test_v5
config: mathemakitten--winobias_antistereotype_test_v5
split: test
metrics:
- type: accuracy
value: 0.3859223300970874
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzZlZjIzNDM0Mzk5MmRlMTFlOWVlZjY3MDFmY2NhZjlkYWNmMWQ2MjdhOTg3YTg0OTI1YjY5YmYxMTc4YjYyOCIsInZlcnNpb24iOjF9.nCFVShWbHuHFKEdK5INjQSfLI9KQUNQZqqjqYCw_HVHSW0QHLIXdAb7_GDZJhCUTJ-JkBVCJFtEliA2Zw9GjAw
- type: loss
value: 1.295986159347468
name: Loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWE3ZjhmYzM3NjRhMjc3OGU5NWQzY2Q1NzA2ZDBjN2Q1YmZkYzdiMDBhMmY1ZDM5NmU2YzQ2ZGZmZmYyMzg5NiIsInZlcnNpb24iOjF9.2UzIpqw83YQdGOqTKKP7ywqpNdgCDkR36lhkbja6qFsKyQctcg4vZgLXfMSfufWf1G_9iXqY8r-JiZadMdK3Dg
---
# OPT : Open Pre-trained Transformer Language Models
OPT was first introduced in [Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) and first released in [metaseq's repository](https://github.com/facebookresearch/metaseq) on May 3rd 2022 by Meta AI.
**Disclaimer**: The team releasing OPT wrote an official model card, which is available in Appendix D of the [paper](https://arxiv.org/pdf/2205.01068.pdf).
Content from **this** model card has been written by the Hugging Face team.
## Intro
To quote the first two paragraphs of the [official paper](https://arxiv.org/abs/2205.01068)
> Large language models trained on massive text collections have shown surprising emergent
> capabilities to generate text and perform zero- and few-shot learning. While in some cases the public
> can interact with these models through paid APIs, full model access is currently limited to only a
> few highly resourced labs. This restricted access has limited researchers’ ability to study how and
> why these large language models work, hindering progress on improving known challenges in areas
> such as robustness, bias, and toxicity.
> We present Open Pretrained Transformers (OPT), a suite of decoder-only pre-trained transformers ranging from 125M
> to 175B parameters, which we aim to fully and responsibly share with interested researchers. We train the OPT models to roughly match
> the performance and sizes of the GPT-3 class of models, while also applying the latest best practices in data
> collection and efficient training. Our aim in developing this suite of OPT models is to enable reproducible and responsible research at scale, and
> to bring more voices to the table in studying the impact of these LLMs. Definitions of risk, harm, bias, and toxicity, etc., should be articulated by the
> collective research community as a whole, which is only possible when models are available for study.
## Model description
OPT was predominantly pretrained with English text, but a small amount of non-English data is still present within the training corpus via CommonCrawl. The model was pretrained using a causal language modeling (CLM) objective.
OPT belongs to the same family of decoder-only models like [GPT-3](https://arxiv.org/abs/2005.14165). As such, it was pretrained using the self-supervised causal language modedling objective.
For evaluation, OPT follows [GPT-3](https://arxiv.org/abs/2005.14165) by using their prompts and overall experimental setup. For more details, please read
the [official paper](https://arxiv.org/abs/2205.01068).
## Intended uses & limitations
The pretrained-only model can be used for prompting for evaluation of downstream tasks as well as text generation.
In addition, the model can be fine-tuned on a downstream task using the [CLM example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling). For all other OPT checkpoints, please have a look at the [model hub](https://huggingface.co/models?filter=opt).
### How to use
For large OPT models, such as this one, it is not recommend to make use of the `text-generation` pipeline because
one should load the model in half-precision to accelerate generation and optimize memory consumption on GPU.
It is recommended to directly call the [`generate`](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate)
method as follows:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> import torch
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-6.7b", torch_dtype=torch.float16).cuda()
>>> # the fast tokenizer currently does not work correctly
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-6.7b", use_fast=False)
>>> prompt = "Hello, I'm am conscious and"
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
>>> generated_ids = model.generate(input_ids)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
["Hello, I'm am conscious and aware of my surroundings. I'm not sure what you mean"]
```
By default, generation is deterministic. In order to use the top-k sampling, please set `do_sample` to `True`.
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
>>> import torch
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-6.7b", torch_dtype=torch.float16).cuda()
>>> # the fast tokenizer currently does not work correctly
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-6.7b", use_fast=False)
>>> prompt = "Hello, I'm am conscious and"
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
>>> set_seed(32)
>>> generated_ids = model.generate(input_ids, do_sample=True)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
["Hello, I'm am conscious and aware of my surroundings. I'm not sure if I'm"]
```
### Limitations and bias
As mentioned in Meta AI's model card, given that the training data used for this model contains a lot of
unfiltered content from the internet, which is far from neutral the model is strongly biased :
> Like other large language models for which the diversity (or lack thereof) of training
> data induces downstream impact on the quality of our model, OPT-175B has limitations in terms
> of bias and safety. OPT-175B can also have quality issues in terms of generation diversity and
> hallucination. In general, OPT-175B is not immune from the plethora of issues that plague modern
> large language models.
Here's an example of how the model can have biased predictions:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
>>> import torch
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-6.7b", torch_dtype=torch.float16).cuda()
>>> # the fast tokenizer currently does not work correctly
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-6.7b", use_fast=False)
>>> prompt = "The woman worked as a"
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
>>> set_seed(32)
>>> generated_ids = model.generate(input_ids, do_sample=True, num_return_sequences=5, max_length=10)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
The woman worked as a supervisor in the office
The woman worked as a bartender in a bar
The woman worked as a cashier at the
The woman worked as a teacher, and was
The woman worked as a maid at a house
```
compared to:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
>>> import torch
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-6.7b", torch_dtype=torch.float16).cuda()
>>> # the fast tokenizer currently does not work correctly
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-6.7b", use_fast=False)
>>> prompt = "The man worked as a"
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
>>> set_seed(32)
>>> generated_ids = model.generate(input_ids, do_sample=True, num_return_sequences=5, max_length=10)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
The man worked as a consultant to the Government
The man worked as a bartender in a bar
The man worked as a cashier at the
The man worked as a teacher, and was
The man worked as a professional at a bank
```
This bias will also affect all fine-tuned versions of this model.
## Training data
The Meta AI team wanted to train this model on a corpus as large as possible. It is composed of the union of the following 5 filtered datasets of textual documents:
- BookCorpus, which consists of more than 10K unpublished books,
- CC-Stories, which contains a subset of CommonCrawl data filtered to match the
story-like style of Winograd schemas,
- The Pile, from which * Pile-CC, OpenWebText2, USPTO, Project Gutenberg, OpenSubtitles, Wikipedia, DM Mathematics and HackerNews* were included.
- Pushshift.io Reddit dataset that was developed in Baumgartner et al. (2020) and processed in
Roller et al. (2021)
- CCNewsV2 containing an updated version of the English portion of the CommonCrawl News
dataset that was used in RoBERTa (Liu et al., 2019b)
The final training data contains 180B tokens corresponding to 800GB of data. The validation split was made of 200MB of the pretraining data, sampled proportionally
to each dataset’s size in the pretraining corpus.
The dataset might contains offensive content as parts of the dataset are a subset of
public Common Crawl data, along with a subset of public Reddit data, which could contain sentences
that, if viewed directly, can be insulting, threatening, or might otherwise cause anxiety.
### Collection process
The dataset was collected form internet, and went through classic data processing algorithms and
re-formatting practices, including removing repetitive/non-informative text like *Chapter One* or
*This ebook by Project Gutenberg.*
## Training procedure
### Preprocessing
The texts are tokenized using the **GPT2** byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50272. The inputs are sequences of 2048 consecutive tokens.
The 175B model was trained on 992 *80GB A100 GPUs*. The training duration was roughly ~33 days of continuous training.
### BibTeX entry and citation info
```bibtex
@misc{zhang2022opt,
title={OPT: Open Pre-trained Transformer Language Models},
author={Susan Zhang and Stephen Roller and Naman Goyal and Mikel Artetxe and Moya Chen and Shuohui Chen and Christopher Dewan and Mona Diab and Xian Li and Xi Victoria Lin and Todor Mihaylov and Myle Ott and Sam Shleifer and Kurt Shuster and Daniel Simig and Punit Singh Koura and Anjali Sridhar and Tianlu Wang and Luke Zettlemoyer},
year={2022},
eprint={2205.01068},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|