itshunja commited on
Commit
3c6543d
·
verified ·
1 Parent(s): 2515010

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -3
README.md CHANGED
@@ -1,3 +1,88 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - legacy-datasets/common_voice
5
+ language:
6
+ - en
7
+ - sw
8
+ metrics:
9
+ - perplexity
10
+ base_model:
11
+ - mistralai/Mistral-Small-24B-Instruct-2501
12
+ pipeline_tag: text-generation
13
+ tags:
14
+ - community
15
+ - surveys
16
+ - engagement
17
+ - referral-tracking
18
+ - community-engagement
19
+ ---
20
+ # Stahili LLM
21
+
22
+ [![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](LICENSE)
23
+
24
+ ## Overview
25
+ Stahili LLM is a large language model designed for community-driven insights, localized interactions, and engagement tracking. Built with a focus on user participation, it facilitates structured data collection, analytics, and automation in survey-based applications.
26
+
27
+ ## Features
28
+ - **Conversational AI**: Trained to understand and generate human-like text.
29
+ - **Survey and Referral Optimization**: Helps track user participation and referrals.
30
+ - **Customizable Workflows**: Supports integration into diverse applications.
31
+ - **Multilingual Support**: Can process multiple languages, enhancing accessibility.
32
+ - **Open-Source & Extensible**: Licensed under Apache 2.0, allowing modifications and contributions.
33
+
34
+ ## Installation
35
+ To use Stahili LLM, you can either install it via `pip` or run it using Hugging Face's API:
36
+
37
+ ```bash
38
+ pip install transformers torch
39
+ ```
40
+
41
+ Alternatively, load it via the Hugging Face model hub:
42
+
43
+ ```python
44
+ from transformers import AutoModelForCausalLM, AutoTokenizer
45
+
46
+ model_name = "itshunja/stahili"
47
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
48
+ model = AutoModelForCausalLM.from_pretrained(model_name)
49
+ ```
50
+
51
+ ## Usage
52
+ ### Generating Text
53
+ ```python
54
+ input_text = "How does Stahili optimize survey engagement?"
55
+ inputs = tokenizer(input_text, return_tensors="pt")
56
+ output = model.generate(**inputs, max_length=200)
57
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
58
+ ```
59
+
60
+ ### Fine-Tuning
61
+ To fine-tune Stahili LLM on a specific dataset:
62
+ ```bash
63
+ python train.py --model itshunja/stahili --dataset custom_dataset.json
64
+ ```
65
+
66
+ ## API Integration
67
+ Use the Hugging Face Inference API:
68
+ ```python
69
+ from transformers import pipeline
70
+
71
+ generator = pipeline("text-generation", model="itshunja/stahili")
72
+ response = generator("Explain the Stahili rewards program.")
73
+ print(response[0]['generated_text'])
74
+ ```
75
+
76
+ ## Contributing
77
+ We welcome contributions! To contribute:
78
+ 1. Fork this repository.
79
+ 2. Create a feature branch (`git checkout -b feature-name`).
80
+ 3. Commit changes (`git commit -m 'Add new feature'`).
81
+ 4. Push to your branch (`git push origin feature-name`).
82
+ 5. Submit a Pull Request.
83
+
84
+ ## License
85
+ This project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details.
86
+
87
+ ## Contact
88
+ For questions or support, reach out via [Hugging Face Discussions](https://huggingface.co/spaces) or contact Isaac Hunja.