Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,88 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- legacy-datasets/common_voice
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- sw
|
8 |
+
metrics:
|
9 |
+
- perplexity
|
10 |
+
base_model:
|
11 |
+
- mistralai/Mistral-Small-24B-Instruct-2501
|
12 |
+
pipeline_tag: text-generation
|
13 |
+
tags:
|
14 |
+
- community
|
15 |
+
- surveys
|
16 |
+
- engagement
|
17 |
+
- referral-tracking
|
18 |
+
- community-engagement
|
19 |
+
---
|
20 |
+
# Stahili LLM
|
21 |
+
|
22 |
+
[](LICENSE)
|
23 |
+
|
24 |
+
## Overview
|
25 |
+
Stahili LLM is a large language model designed for community-driven insights, localized interactions, and engagement tracking. Built with a focus on user participation, it facilitates structured data collection, analytics, and automation in survey-based applications.
|
26 |
+
|
27 |
+
## Features
|
28 |
+
- **Conversational AI**: Trained to understand and generate human-like text.
|
29 |
+
- **Survey and Referral Optimization**: Helps track user participation and referrals.
|
30 |
+
- **Customizable Workflows**: Supports integration into diverse applications.
|
31 |
+
- **Multilingual Support**: Can process multiple languages, enhancing accessibility.
|
32 |
+
- **Open-Source & Extensible**: Licensed under Apache 2.0, allowing modifications and contributions.
|
33 |
+
|
34 |
+
## Installation
|
35 |
+
To use Stahili LLM, you can either install it via `pip` or run it using Hugging Face's API:
|
36 |
+
|
37 |
+
```bash
|
38 |
+
pip install transformers torch
|
39 |
+
```
|
40 |
+
|
41 |
+
Alternatively, load it via the Hugging Face model hub:
|
42 |
+
|
43 |
+
```python
|
44 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
45 |
+
|
46 |
+
model_name = "itshunja/stahili"
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
49 |
+
```
|
50 |
+
|
51 |
+
## Usage
|
52 |
+
### Generating Text
|
53 |
+
```python
|
54 |
+
input_text = "How does Stahili optimize survey engagement?"
|
55 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
56 |
+
output = model.generate(**inputs, max_length=200)
|
57 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
58 |
+
```
|
59 |
+
|
60 |
+
### Fine-Tuning
|
61 |
+
To fine-tune Stahili LLM on a specific dataset:
|
62 |
+
```bash
|
63 |
+
python train.py --model itshunja/stahili --dataset custom_dataset.json
|
64 |
+
```
|
65 |
+
|
66 |
+
## API Integration
|
67 |
+
Use the Hugging Face Inference API:
|
68 |
+
```python
|
69 |
+
from transformers import pipeline
|
70 |
+
|
71 |
+
generator = pipeline("text-generation", model="itshunja/stahili")
|
72 |
+
response = generator("Explain the Stahili rewards program.")
|
73 |
+
print(response[0]['generated_text'])
|
74 |
+
```
|
75 |
+
|
76 |
+
## Contributing
|
77 |
+
We welcome contributions! To contribute:
|
78 |
+
1. Fork this repository.
|
79 |
+
2. Create a feature branch (`git checkout -b feature-name`).
|
80 |
+
3. Commit changes (`git commit -m 'Add new feature'`).
|
81 |
+
4. Push to your branch (`git push origin feature-name`).
|
82 |
+
5. Submit a Pull Request.
|
83 |
+
|
84 |
+
## License
|
85 |
+
This project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details.
|
86 |
+
|
87 |
+
## Contact
|
88 |
+
For questions or support, reach out via [Hugging Face Discussions](https://huggingface.co/spaces) or contact Isaac Hunja.
|