--- license: apache-2.0 datasets: - legacy-datasets/common_voice language: - en - sw metrics: - perplexity base_model: - mistralai/Mistral-Small-24B-Instruct-2501 pipeline_tag: text-generation tags: - community - surveys - engagement - referral-tracking - community-engagement --- # Stahili LLM [![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](LICENSE) ## Overview Stahili LLM is a large language model designed for community-driven insights, localized interactions, and engagement tracking. Built with a focus on user participation, it facilitates structured data collection, analytics, and automation in survey-based applications. ## Features - **Conversational AI**: Trained to understand and generate human-like text. - **Survey and Referral Optimization**: Helps track user participation and referrals. - **Customizable Workflows**: Supports integration into diverse applications. - **Multilingual Support**: Can process multiple languages, enhancing accessibility. - **Open-Source & Extensible**: Licensed under Apache 2.0, allowing modifications and contributions. ## Installation To use Stahili LLM, you can either install it via `pip` or run it using Hugging Face's API: ```bash pip install transformers torch ``` Alternatively, load it via the Hugging Face model hub: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "itshunja/stahili" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` ## Usage ### Generating Text ```python input_text = "How does Stahili optimize survey engagement?" inputs = tokenizer(input_text, return_tensors="pt") output = model.generate(**inputs, max_length=200) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` ### Fine-Tuning To fine-tune Stahili LLM on a specific dataset: ```bash python train.py --model itshunja/stahili --dataset custom_dataset.json ``` ## API Integration Use the Hugging Face Inference API: ```python from transformers import pipeline generator = pipeline("text-generation", model="itshunja/stahili") response = generator("Explain the Stahili rewards program.") print(response[0]['generated_text']) ``` ## Contributing We welcome contributions! To contribute: 1. Fork this repository. 2. Create a feature branch (`git checkout -b feature-name`). 3. Commit changes (`git commit -m 'Add new feature'`). 4. Push to your branch (`git push origin feature-name`). 5. Submit a Pull Request. ## License This project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details. ## Contact For questions or support, reach out via [Hugging Face Discussions](https://huggingface.co/spaces) or contact Isaac Hunja.