Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,46 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
-
|
4 |
-
-
|
5 |
-
|
6 |
-
|
7 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- text-generation
|
6 |
+
- transformers
|
7 |
+
- finetuned
|
8 |
+
- phi-4
|
9 |
+
- lora
|
10 |
+
- causal-lm
|
11 |
license: apache-2.0
|
12 |
+
datasets: custom
|
13 |
+
model-index:
|
14 |
+
- name: mibera-v1-merged
|
15 |
+
results: []
|
16 |
+
---
|
17 |
+
|
18 |
+
# π `mibera-v1-merged` π
|
19 |
+
π **Fine-tuned model based on `microsoft/phi-4` using LoRA adapters**
|
20 |
+
|
21 |
+
## πΉ Model Details
|
22 |
+
- **Base Model**: `microsoft/phi-4`
|
23 |
+
- **Fine-tuned on**: Custom dataset
|
24 |
+
- **Architecture**: Transformer-based Causal LM
|
25 |
+
- **LoRA Adapter Merging**: β
Yes
|
26 |
+
- **Merged Model**: β
Ready for inference without adapters
|
27 |
+
|
28 |
+
## π Training & Fine-tuning Details
|
29 |
+
- **Training Method**: Fine-tuning with **LoRA (Low-Rank Adaptation)**
|
30 |
+
- **LoRA Rank**: 32
|
31 |
+
- **Dataset**: Custom curated dataset (details not publicly available)
|
32 |
+
- **Training Library**: π€ Hugging Face `transformers` + `peft`
|
33 |
+
|
34 |
+
## π How to Use the Model
|
35 |
+
```python
|
36 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
37 |
+
|
38 |
+
model_name = "ivxxdegen/mibera-v1-merged"
|
39 |
+
|
40 |
+
# Load tokenizer
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
+
|
43 |
+
# Load model
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
45 |
+
|
46 |
+
print("β
Model loaded successfully!")
|