ivxxdegen commited on
Commit
d14acc9
Β·
verified Β·
1 Parent(s): 00af40d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -5
README.md CHANGED
@@ -1,7 +1,46 @@
1
  ---
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
- language:
4
- - en
5
- base_model:
6
- - microsoft/phi-4
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - text-generation
6
+ - transformers
7
+ - finetuned
8
+ - phi-4
9
+ - lora
10
+ - causal-lm
11
  license: apache-2.0
12
+ datasets: custom
13
+ model-index:
14
+ - name: mibera-v1-merged
15
+ results: []
16
+ ---
17
+
18
+ # πŸ† `mibera-v1-merged` πŸ†
19
+ πŸš€ **Fine-tuned model based on `microsoft/phi-4` using LoRA adapters**
20
+
21
+ ## πŸ”Ή Model Details
22
+ - **Base Model**: `microsoft/phi-4`
23
+ - **Fine-tuned on**: Custom dataset
24
+ - **Architecture**: Transformer-based Causal LM
25
+ - **LoRA Adapter Merging**: βœ… Yes
26
+ - **Merged Model**: βœ… Ready for inference without adapters
27
+
28
+ ## πŸ“š Training & Fine-tuning Details
29
+ - **Training Method**: Fine-tuning with **LoRA (Low-Rank Adaptation)**
30
+ - **LoRA Rank**: 32
31
+ - **Dataset**: Custom curated dataset (details not publicly available)
32
+ - **Training Library**: πŸ€— Hugging Face `transformers` + `peft`
33
+
34
+ ## πŸš€ How to Use the Model
35
+ ```python
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer
37
+
38
+ model_name = "ivxxdegen/mibera-v1-merged"
39
+
40
+ # Load tokenizer
41
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
42
+
43
+ # Load model
44
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
45
+
46
+ print("βœ… Model loaded successfully!")