--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-uncased-finetuned-ner results: [] --- # distilbert-uncased-finetuned-ner This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Precision: 0.9271 - Recall: 0.9401 - F1: 0.9336 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0773 | 1.0 | 1756 | 0.0663 | 0.9058 | 0.9224 | 0.9140 | 0.9817 | | 0.0386 | 2.0 | 3512 | 0.0575 | 0.9226 | 0.9391 | 0.9308 | 0.9853 | | 0.0233 | 3.0 | 5268 | 0.0622 | 0.9271 | 0.9401 | 0.9336 | 0.9852 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2