|
|
|
import torch |
|
import math |
|
|
|
|
|
class AdamW(torch.optim.Optimizer): |
|
"""Implements AdamW algorithm. |
|
|
|
It has been proposed in `Fixing Weight Decay Regularization in Adam`_. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
|
|
.. Fixing Weight Decay Regularization in Adam: |
|
https://arxiv.org/abs/1711.05101 |
|
""" |
|
|
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, |
|
weight_decay=0): |
|
defaults = dict(lr=lr, betas=betas, eps=eps, |
|
weight_decay=weight_decay) |
|
super(AdamW, self).__init__(params, defaults) |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data |
|
if grad.is_sparse: |
|
raise RuntimeError('AdamW does not support sparse gradients, please consider SparseAdam instead') |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
|
|
state['exp_avg'] = torch.zeros_like(p.data) |
|
|
|
state['exp_avg_sq'] = torch.zeros_like(p.data) |
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
beta1, beta2 = group['betas'] |
|
|
|
state['step'] += 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
exp_avg.mul_(beta1).add_(1 - beta1, grad) |
|
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) |
|
|
|
denom = exp_avg_sq.sqrt().add_(group['eps']) |
|
|
|
bias_correction1 = 1 - beta1 ** state['step'] |
|
bias_correction2 = 1 - beta2 ** state['step'] |
|
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 |
|
|
|
|
|
if group['weight_decay'] != 0: |
|
p.data.add_(-group['weight_decay'] * group['lr'], p.data) |
|
|
|
|
|
p.data.addcdiv_(-step_size, exp_avg, denom) |
|
|
|
|
|
|
|
|
|
return loss |