File size: 3,135 Bytes
8521085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: jackmedda/answerdotai-ModernBERT-base_finetuned_augmented_augmented_gemini
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# jackmedda/answerdotai-ModernBERT-base_finetuned_augmented_augmented_gemini

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2096
- Accuracy: 0.7941
- F1: 0.8727
- Precision: 0.8276
- Recall: 0.9231

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.6509        | 1.0   | 46   | 1.0265          | 0.7      | 0.8235 | 0.7       | 1.0    |
| 0.5885        | 2.0   | 92   | 1.0591          | 0.7      | 0.8235 | 0.7       | 1.0    |
| 0.1904        | 3.0   | 138  | 0.4697          | 0.9      | 0.9333 | 0.875     | 1.0    |
| 0.1622        | 4.0   | 184  | 0.2185          | 0.9      | 0.9333 | 0.875     | 1.0    |
| 0.0051        | 5.0   | 230  | 1.4386          | 0.7      | 0.8235 | 0.7       | 1.0    |
| 0.0006        | 6.0   | 276  | 0.4807          | 0.9      | 0.9333 | 0.875     | 1.0    |
| 0.0005        | 7.0   | 322  | 1.1236          | 0.9      | 0.9333 | 0.875     | 1.0    |
| 0.0           | 8.0   | 368  | 0.0021          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0           | 9.0   | 414  | 0.0047          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0           | 10.0  | 460  | 0.0056          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0           | 11.0  | 506  | 0.0058          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0           | 12.0  | 552  | 0.0062          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0           | 13.0  | 598  | 0.0062          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0           | 14.0  | 644  | 0.0071          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0           | 15.0  | 690  | 0.0073          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0           | 16.0  | 736  | 0.0075          | 1.0      | 1.0    | 1.0       | 1.0    |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.3.0+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0