jadechoghari commited on
Commit
32fc8c9
·
verified ·
1 Parent(s): 1cba914

Create modular_rtdetrv2.py

Browse files
Files changed (1) hide show
  1. modular_rtdetrv2.py +339 -0
modular_rtdetrv2.py ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import warnings
4
+ from dataclasses import dataclass
5
+ from functools import lru_cache, partial
6
+ from pathlib import Path
7
+ from typing import Dict, List, Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ from torch import Tensor, nn
12
+ from torch.autograd import Function
13
+ from torch.autograd.function import once_differentiable
14
+
15
+ from transformers.activations import ACT2CLS, ACT2FN
16
+ from transformers.image_transforms import center_to_corners_format, corners_to_center_format
17
+ from transformers.modeling_outputs import BaseModelOutput
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import (
20
+ ModelOutput,
21
+ add_start_docstrings,
22
+ add_start_docstrings_to_model_forward,
23
+ is_ninja_available,
24
+ is_scipy_available,
25
+ is_torch_cuda_available,
26
+ logging,
27
+ replace_return_docstrings,
28
+ requires_backends,
29
+ )
30
+
31
+ from transformers.models.rt_detr.configuration_rt_detr_resnet import RTDetrResNetConfig
32
+ from transformers.models.rt_detr.modeling_rt_detr import (
33
+ RTDetrConfig,
34
+ RTDetrDecoderOutput,
35
+ RTDetrModelOutput,
36
+ RTDetrObjectDetectionOutput,
37
+ RTDetrFrozenBatchNorm2d,
38
+ RTDetrConvEncoder,
39
+ RTDetrConvNormLayer,
40
+ RTDetrEncoderLayer,
41
+ RTDetrRepVggBlock,
42
+ RTDetrCSPRepLayer,
43
+ RTDetrMultiscaleDeformableAttention,
44
+ RTDetrMultiheadAttention,
45
+ RTDetrDecoderLayer,
46
+ RTDetrPreTrainedModel,
47
+ RTDetrEncoder,
48
+ RTDetrHybridEncoder,
49
+ RTDetrDecoder,
50
+ RTDetrModel,
51
+ RTDetrMLPPredictionHead,
52
+ RTDetrForObjectDetection
53
+ )
54
+ from transformers.loss.loss_rt_detr import (RTDetrLoss, RTDetrHungarianMatcher)
55
+ from transformers.utils.backbone_utils import load_backbone
56
+
57
+ # from .configuration_rt_detr_v2 import RTDetrV2Config TODO define the config
58
+
59
+ class RTDetrV2Config(RTDetrConfig):
60
+ model_type = "rt_detr_v2" # Update the model type
61
+ def __init__(
62
+ self,
63
+ decoder_n_levels=3,
64
+ decoder_offset_scale=0.5,
65
+ **kwargs
66
+ ):
67
+ super().__init__(**kwargs)
68
+ self.decoder_n_levels = decoder_n_levels
69
+ self.decoder_offset_scale = decoder_offset_scale
70
+
71
+ class RTDetrV2ResNetConfig(RTDetrResNetConfig):
72
+ model_type = "rt_detr_v2_resnet"
73
+
74
+
75
+ logger = logging.get_logger(__name__)
76
+
77
+
78
+ class RTDetrV2DecoderOutput(RTDetrDecoderOutput):
79
+ pass
80
+
81
+ class RTDetrV2ModelOutput(RTDetrModelOutput):
82
+ pass
83
+
84
+ class RTDetrV2ObjectDetectionOutput(RTDetrObjectDetectionOutput):
85
+ pass
86
+
87
+ class RTDetrV2FrozenBatchNorm2d(RTDetrFrozenBatchNorm2d):
88
+ pass
89
+
90
+
91
+ class RTDetrV2ConvEncoder(RTDetrConvEncoder):
92
+ pass
93
+
94
+ class RTDetrV2ConvNormLayer(RTDetrConvNormLayer):
95
+ pass
96
+
97
+ class RTDetrV2EncoderLayer(RTDetrEncoderLayer):
98
+ pass
99
+
100
+ class RTDetrV2RepVggBlock(RTDetrRepVggBlock):
101
+ pass
102
+
103
+ class RTDetrV2CSPRepLayer(RTDetrCSPRepLayer):
104
+ pass
105
+
106
+
107
+ # new implementaiton of the multiscale deformable attention (v2)
108
+ def multi_scale_deformable_attention_v2(
109
+ value: Tensor,
110
+ value_spatial_shapes: Tensor,
111
+ sampling_locations: Tensor,
112
+ attention_weights: Tensor,
113
+ num_points_list: List[int],
114
+ method="default",
115
+ ) -> Tensor:
116
+ batch_size, _, num_heads, hidden_dim = value.shape
117
+ _, num_queries, num_heads, num_levels, num_points = sampling_locations.shape
118
+ value_list = (
119
+ value.permute(0, 2, 3, 1)
120
+ .flatten(0, 1)
121
+ .split([height.item() * width.item() for height, width in value_spatial_shapes], dim=-1)
122
+ )
123
+ # sampling_offsets [8, 480, 8, 12, 2]
124
+ if method == "default":
125
+ sampling_grids = 2 * sampling_locations - 1
126
+ elif method == "discrete":
127
+ sampling_grids = sampling_locations
128
+ sampling_grids = sampling_grids.permute(0, 2, 1, 3, 4).flatten(0, 1)
129
+ sampling_grids = sampling_grids.split(num_points_list, dim=-2)
130
+ sampling_value_list = []
131
+ for level_id, (height, width) in enumerate(value_spatial_shapes):
132
+ # batch_size, height*width, num_heads, hidden_dim
133
+ # -> batch_size, height*width, num_heads*hidden_dim
134
+ # -> batch_size, num_heads*hidden_dim, height*width
135
+ # -> batch_size*num_heads, hidden_dim, height, width
136
+ value_l_ = value_list[level_id].reshape(batch_size * num_heads, hidden_dim, height, width)
137
+ # batch_size, num_queries, num_heads, num_points, 2
138
+ # -> batch_size, num_heads, num_queries, num_points, 2
139
+ # -> batch_size*num_heads, num_queries, num_points, 2
140
+ sampling_grid_l_ = sampling_grids[level_id]
141
+ # batch_size*num_heads, hidden_dim, num_queries, num_points
142
+ if method == "default":
143
+ sampling_value_l_ = nn.functional.grid_sample(
144
+ value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
145
+ )
146
+ elif method == "discrete":
147
+ sampling_coord = (sampling_grid_l_ * torch.tensor([[width, height]], device=value.device) + 0.5).to(
148
+ torch.int64
149
+ )
150
+
151
+ # Separate clamping for x and y coordinates
152
+ sampling_coord_x = sampling_coord[..., 0].clamp(0, width - 1)
153
+ sampling_coord_y = sampling_coord[..., 1].clamp(0, height - 1)
154
+
155
+ # Combine the clamped coordinates
156
+ sampling_coord = torch.stack([sampling_coord_x, sampling_coord_y], dim=-1)
157
+ sampling_coord = sampling_coord.reshape(batch_size * num_heads, num_queries * num_points_list[level_id], 2)
158
+ sampling_idx = (
159
+ torch.arange(sampling_coord.shape[0], device=value.device)
160
+ .unsqueeze(-1)
161
+ .repeat(1, sampling_coord.shape[1])
162
+ )
163
+ sampling_value_l_ = value_l_[sampling_idx, :, sampling_coord[..., 1], sampling_coord[..., 0]]
164
+ sampling_value_l_ = sampling_value_l_.permute(0, 2, 1).reshape(
165
+ batch_size * num_heads, hidden_dim, num_queries, num_points_list[level_id]
166
+ )
167
+ sampling_value_list.append(sampling_value_l_)
168
+ # (batch_size, num_queries, num_heads, num_levels, num_points)
169
+ # -> (batch_size, num_heads, num_queries, num_levels, num_points)
170
+ # -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
171
+ attention_weights = attention_weights.permute(0, 2, 1, 3).reshape(
172
+ batch_size * num_heads, 1, num_queries, sum(num_points_list)
173
+ )
174
+ output = (
175
+ (torch.concat(sampling_value_list, dim=-1) * attention_weights)
176
+ .sum(-1)
177
+ .view(batch_size, num_heads * hidden_dim, num_queries)
178
+ )
179
+ return output.transpose(1, 2).contiguous()
180
+
181
+
182
+ def __init__(self, config: RTDetrV2Config):
183
+ super().__init__(config, config.decoder_attention_heads, config.decoder_n_points)
184
+ self.n_levels = config.decoder_n_levels
185
+ self.offset_scale = config.decoder_offset_scale
186
+
187
+ class RTDetrV2MultiscaleDeformableAttention(RTDetrMultiscaleDeformableAttention):
188
+
189
+ def __init__(self, config: RTDetrV2Config):
190
+ super().__init__(config, config.decoder_attention_heads, config.decoder_n_points)
191
+ self.n_levels = config.decoder_n_levels
192
+ self.offset_scale = config.decoder_offset_scale
193
+ n_points_list = [self.n_points for _ in range(self.n_levels)]
194
+ self.n_points_list = n_points_list
195
+ n_points_scale = [1 / n for n in n_points_list for _ in range(n)]
196
+ self.register_buffer("n_points_scale", torch.tensor(n_points_scale, dtype=torch.float32))
197
+
198
+ self._reset_parameters()
199
+
200
+ def _reset_parameters(self):
201
+ nn.init.constant_(self.sampling_offsets.weight.data, 0.0)
202
+ default_dtype = torch.get_default_dtype()
203
+ thetas = torch.arange(self.n_heads, dtype=torch.int64).to(default_dtype) * (2.0 * math.pi / self.n_heads)
204
+ grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
205
+ grid_init = (
206
+ (grid_init / grid_init.abs().max(-1, keepdim=True)[0])
207
+ .view(self.n_heads, 1, 1, 2)
208
+ .repeat(1, self.n_levels, self.n_points, 1)
209
+ )
210
+ for i in range(self.n_points):
211
+ grid_init[:, :, i, :] *= i + 1
212
+ with torch.no_grad():
213
+ self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
214
+ nn.init.constant_(self.attention_weights.weight.data, 0.0)
215
+ nn.init.constant_(self.attention_weights.bias.data, 0.0)
216
+ nn.init.xavier_uniform_(self.value_proj.weight.data)
217
+ nn.init.constant_(self.value_proj.bias.data, 0.0)
218
+ nn.init.xavier_uniform_(self.output_proj.weight.data)
219
+ nn.init.constant_(self.output_proj.bias.data, 0.0)
220
+
221
+
222
+ def forward(
223
+ self,
224
+ hidden_states: torch.Tensor,
225
+ attention_mask: Optional[torch.Tensor] = None,
226
+ encoder_hidden_states=None,
227
+ encoder_attention_mask=None,
228
+ position_embeddings: Optional[torch.Tensor] = None,
229
+ reference_points=None,
230
+ spatial_shapes=None,
231
+ level_start_index=None,
232
+ output_attentions: bool = False,
233
+ ):
234
+ # add position embeddings to the hidden states before projecting to queries and keys
235
+ if position_embeddings is not None:
236
+ hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
237
+
238
+ batch_size, num_queries, _ = hidden_states.shape
239
+ batch_size, sequence_length, _ = encoder_hidden_states.shape
240
+ if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length:
241
+ raise ValueError(
242
+ "Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
243
+ )
244
+
245
+ value = self.value_proj(encoder_hidden_states)
246
+ if attention_mask is not None:
247
+ # we invert the attention_mask
248
+ value = value.masked_fill(~attention_mask[..., None], float(0))
249
+ value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
250
+ sampling_offsets = self.sampling_offsets(hidden_states).view(
251
+ batch_size, num_queries, self.n_heads, self.n_levels * self.n_points, 2
252
+ )
253
+ attention_weights = self.attention_weights(hidden_states).view(
254
+ batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
255
+ )
256
+ attention_weights = F.softmax(attention_weights, -1).view(
257
+ batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
258
+ )
259
+ # batch_size, num_queries, n_heads, n_levels, n_points, 2
260
+ num_coordinates = reference_points.shape[-1]
261
+ if num_coordinates == 2:
262
+ offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
263
+ sampling_locations = (
264
+ reference_points[:, :, None, :, None, :]
265
+ + sampling_offsets / offset_normalizer[None, None, None, :, None, :]
266
+ )
267
+ elif num_coordinates == 4:
268
+ n_points_scale = self.n_points_scale.to(dtype=hidden_states.dtype).unsqueeze(-1)
269
+ offset = sampling_offsets * n_points_scale * reference_points[:, :, None, :, 2:] * self.offset_scale
270
+ sampling_locations = reference_points[:, :, None, :, :2] + offset
271
+ else:
272
+ raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
273
+
274
+ if self.disable_custom_kernels:
275
+ # PyTorch implementation
276
+ output = multi_scale_deformable_attention_v2(
277
+ value, spatial_shapes, sampling_locations, attention_weights, self.n_points_list
278
+ )
279
+ else:
280
+ try:
281
+ # custom kernel
282
+ output = MultiScaleDeformableAttentionFunction.apply(
283
+ value,
284
+ spatial_shapes,
285
+ level_start_index,
286
+ sampling_locations,
287
+ attention_weights,
288
+ self.im2col_step,
289
+ )
290
+ except Exception:
291
+ # PyTorch implementation
292
+ output = multi_scale_deformable_attention_v2(
293
+ value, spatial_shapes, sampling_locations, attention_weights, self.n_points_list
294
+ )
295
+ output = self.output_proj(output)
296
+
297
+ return output, attention_weights
298
+
299
+ class RTDetrV2MultiheadAttention(RTDetrMultiheadAttention):
300
+ pass
301
+
302
+ class RTDetrV2DecoderLayer(RTDetrDecoderLayer):
303
+ pass
304
+
305
+
306
+ class RTDetrV2PreTrainedModel(RTDetrPreTrainedModel):
307
+ config_class = RTDetrV2Config
308
+ base_model_prefix = "rt_detr_v2"
309
+ main_input_name = "pixel_values"
310
+ _no_split_modules = [r"RTDetrV2ConvEncoder", r"RTDetrV2EncoderLayer", r"RTDetrV2DecoderLayer"]
311
+
312
+
313
+ class RTDetrV2Encoder(RTDetrEncoder):
314
+ pass
315
+
316
+ class RTDetrV2HybridEncoder(RTDetrHybridEncoder):
317
+ pass
318
+
319
+ class RTDetrV2Decoder(RTDetrDecoder):
320
+ pass
321
+
322
+
323
+ class RTDetrV2Model(RTDetrModel):
324
+ pass
325
+
326
+ class RTDetrV2Loss(RTDetrLoss):
327
+ pass
328
+
329
+
330
+ class RTDetrV2MLPPredictionHead(RTDetrMLPPredictionHead):
331
+ pass
332
+
333
+ class RTDetrV2HungarianMatcher(RTDetrHungarianMatcher):
334
+ pass
335
+
336
+
337
+ class RTDetrV2ForObjectDetection(RTDetrForObjectDetection):
338
+ pass
339
+