|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch.nn as nn |
|
|
|
from .encoders.dino_wrapper2 import DinoWrapper |
|
from .transformer import TriplaneTransformer |
|
from .rendering.synthesizer_part import TriplaneSynthesizer |
|
|
|
|
|
class CameraEmbedder(nn.Module): |
|
""" |
|
Embed camera features to a high-dimensional vector. |
|
|
|
Reference: |
|
DiT: https://github.com/facebookresearch/DiT/blob/main/models.py#L27 |
|
""" |
|
def __init__(self, raw_dim: int, embed_dim: int): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(raw_dim, embed_dim), |
|
nn.SiLU(), |
|
nn.Linear(embed_dim, embed_dim), |
|
) |
|
|
|
def forward(self, x): |
|
return self.mlp(x) |
|
|
|
|
|
class LRMGenerator(nn.Module): |
|
""" |
|
Full model of the large reconstruction model. |
|
""" |
|
def __init__(self, camera_embed_dim: int, rendering_samples_per_ray: int, |
|
transformer_dim: int, transformer_layers: int, transformer_heads: int, |
|
triplane_low_res: int, triplane_high_res: int, triplane_dim: int, |
|
encoder_freeze: bool = True, encoder_model_name: str = 'facebook/dinov2-base', encoder_feat_dim: int = 768): |
|
super().__init__() |
|
|
|
|
|
self.encoder_feat_dim = encoder_feat_dim |
|
self.camera_embed_dim = camera_embed_dim |
|
|
|
|
|
self.encoder = DinoWrapper( |
|
model_name=encoder_model_name, |
|
freeze=encoder_freeze, |
|
) |
|
self.camera_embedder = CameraEmbedder( |
|
raw_dim=12+4, embed_dim=camera_embed_dim, |
|
) |
|
self.transformer = TriplaneTransformer( |
|
inner_dim=transformer_dim, num_layers=transformer_layers, num_heads=transformer_heads, |
|
image_feat_dim=encoder_feat_dim, |
|
camera_embed_dim=camera_embed_dim, |
|
triplane_low_res=triplane_low_res, triplane_high_res=triplane_high_res, triplane_dim=triplane_dim, |
|
) |
|
self.synthesizer = TriplaneSynthesizer( |
|
triplane_dim=triplane_dim, samples_per_ray=rendering_samples_per_ray, |
|
) |
|
|
|
def forward(self, image, camera): |
|
|
|
|
|
assert image.shape[0] == camera.shape[0], "Batch size mismatch for image and camera" |
|
N = image.shape[0] |
|
|
|
|
|
image_feats = self.encoder(image) |
|
assert image_feats.shape[-1] == self.encoder_feat_dim, \ |
|
f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}" |
|
|
|
|
|
camera_embeddings = self.camera_embedder(camera) |
|
assert camera_embeddings.shape[-1] == self.camera_embed_dim, \ |
|
f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}" |
|
|
|
|
|
planes = self.transformer(image_feats, camera_embeddings) |
|
assert planes.shape[0] == N, "Batch size mismatch for planes" |
|
assert planes.shape[1] == 3, "Planes should have 3 channels" |
|
return planes |
|
|
|
|