--- license: mit base_model: FacebookAI/roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-best-finetuned-hopes-fears results: [] --- # roberta-best-finetuned-hopes-fears This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3593 - Accuracy: 0.9434 - F1 Weighted: 0.9453 - Precision Fears: 0.7053 - Recall Fears: 0.8171 - F1 Fears: 0.7571 - Precision Hopes: 0.7458 - Recall Hopes: 0.88 - F1 Hopes: 0.8073 - Precision Neither: 0.9795 - Recall Neither: 0.9579 - F1 Neither: 0.9685 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Weighted | Precision Fears | Recall Fears | F1 Fears | Precision Hopes | Recall Hopes | F1 Hopes | Precision Neither | Recall Neither | F1 Neither | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:-----------------:|:--------------:|:----------:| | No log | 1.0 | 214 | 0.7739 | 0.8930 | 0.8651 | 0.4776 | 0.2602 | 0.3368 | 0.0 | 0.0 | 0.0 | 0.9129 | 0.9876 | 0.9488 | | 0.8895 | 2.0 | 428 | 0.2800 | 0.8960 | 0.9087 | 0.4736 | 0.9106 | 0.6231 | 0.7417 | 0.89 | 0.8091 | 0.9893 | 0.8949 | 0.9397 | | 0.2905 | 3.0 | 642 | 0.3252 | 0.9492 | 0.9496 | 0.7879 | 0.7398 | 0.7631 | 0.7143 | 0.95 | 0.8155 | 0.9759 | 0.9691 | 0.9725 | | 0.2905 | 4.0 | 856 | 0.2671 | 0.9281 | 0.9340 | 0.5813 | 0.8862 | 0.7021 | 0.8018 | 0.89 | 0.8436 | 0.9869 | 0.9335 | 0.9595 | | 0.1741 | 5.0 | 1070 | 0.3593 | 0.9434 | 0.9453 | 0.7053 | 0.8171 | 0.7571 | 0.7458 | 0.88 | 0.8073 | 0.9795 | 0.9579 | 0.9685 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1