bachvudinh commited on
Commit
f76e17c
·
verified ·
1 Parent(s): 4367be8

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - Menlo/Jan-v1-2509
7
+ pipeline_tag: text-generation
8
+ library_name: transformers
9
+ ---
10
+ # Jan-v1: Advanced Agentic Language Model
11
+
12
+ [![GitHub](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/menloresearch/deep-research)
13
+ [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://opensource.org/licenses/Apache-2.0)
14
+ [![Jan App](https://img.shields.io/badge/Powered%20by-Jan%20App-purple?style=flat&logo=android)](https://jan.ai/)
15
+
16
+ <!-- Optional: If you have a GIF for Jan-v1, include it here like Lucy's. -->
17
+ <!-- ![image/gif](jan_v1_demo.gif) -->
18
+
19
+ ## Overview
20
+ **Jan-v1** is the first release in the **Jan Family**, designed for agentic reasoning and problem-solving within the [Jan App](https://jan.ai/). Based on our [**Lucy**](https://huggingface.co/Menlo/Lucy) model, Jan-v1 achieves improved performance through model scaling.
21
+
22
+ Jan-v1 uses the [Qwen3-4B-thinking](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507) model to provide enhanced reasoning capabilities and tool utilization. This architecture delivers better performance on complex agentic tasks.
23
+
24
+ ## Performance
25
+
26
+ ### Question Answering (SimpleQA)
27
+ For question-answering, Jan-v1 shows a significant performance gain from model scaling, achieving 91.1% accuracy.
28
+
29
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/655e3b59d5c0d3db5359ca3c/B5OlbTP3L6Sn6iT9fA2zg.png)
30
+
31
+ *The 91.1% SimpleQA accuracy represents a significant milestone in factual question answering for models of this scale, demonstrating the effectiveness of our scaling and fine-tuning approach.*
32
+
33
+ ### Chat Benchmarks
34
+
35
+ These benchmarks evaluate the model's conversational and instructional capabilities.
36
+
37
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/655e3b59d5c0d3db5359ca3c/9EjBc6MEjpcItul6sDYkh.png)
38
+
39
+ ## Quick Start
40
+
41
+ ### Integration with Jan App
42
+
43
+ Jan-v1 is optimized for direct integration with the [Jan App](https://jan.ai/). Simply select the model from the Jan App interface for immediate access to its full capabilities.
44
+
45
+ ### Local Deployment
46
+
47
+ **Using vLLM:**
48
+ ```bash
49
+ vllm serve janhq/Jan-v1-4B \
50
+ --host 0.0.0.0 \
51
+ --port 1234 \
52
+ --enable-auto-tool-choice \
53
+ --tool-call-parser hermes
54
+
55
+ ```
56
+
57
+ **Using llama.cpp:**
58
+ ```bash
59
+ llama-server --model Jan-v1-4B-Q4_K_M.gguf \
60
+ --host 0.0.0.0 \
61
+ --port 1234 \
62
+ --jinja \
63
+ --no-context-shift
64
+ ```
65
+
66
+ ### Recommended Parameters
67
+
68
+ ```yaml
69
+ temperature: 0.6
70
+ top_p: 0.95
71
+ top_k: 20
72
+ min_p: 0.0
73
+ max_tokens: 2048
74
+ ```
75
+
76
+
77
+ ## 🤝 Community & Support
78
+
79
+ - **Discussions**: [HuggingFace Community](https://huggingface.co/janhq/Jan-v1-4B/discussions)
80
+ - **Jan App**: Learn more about the Jan App at [jan.ai](https://jan.ai/)
81
+
82
+ ## (*) Note
83
+ By default we have system prompt in chat template, this is to make sure the model having the same performance with the benchmark result. You can also use the vanilla chat template without system prompt in the file [chat_template_raw.jinja](https://huggingface.co/janhq/Jan-v1-4B/blob/main/chat_template_raw.jinja).
84
+
85
+ ## 📄 Citation
86
+ ```bibtex
87
+ Updated Soon
88
+ ```
89
+ ---